Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches
<p>Schematic diagram illustrating the localized surface plasmon on a nanoparticle surface.</p> "> Figure 2
<p>Biosensing using an aggregation assay with PSA protein in serum. Transmission electron microscopy data show a systematic trend of increasing nanostar aggregation with increasing concentrations of PSA, which gives rise to large shifts in the LSPR frequency, (<b>a</b>). Raw UV-Vis spectra of the treated nanostars, mixture of antibody-coated nanostars without PSA, and a saturating concentration of PSA revealing shifts as large as 180 nm, (<b>b</b>). The binding curve of PSA induced aggregation of antibody-coated nanostars, (<b>c</b>) The pink region depicts non-specific binding measured by mixing different concentrations of PSA with nanostars containing no antibody. The binding constant obtained from fitting the data to a single-site model indicates extremely tight binding and a limit of detection of 10<sup>−18</sup> M PSA [<a href="#B47-sensors-15-15684" class="html-bibr">47</a>].</p> "> Figure 3
<p>The detection of DNA is demonstrated in complex serum by tethering two gold nanoparticles together through a single strand of DNA with a hairpin loop. In the presence of target DNA, hybridization occurs at the hairpin loop increasing the space between the dimers resulting in a spectral blue shift as a result of decreased plasmonic coupling with great specificity. Reproduced with permission from [<a href="#B91-sensors-15-15684" class="html-bibr">91</a>].</p> "> Figure 4
<p>Size-selective sensing of colloidal nanoparticles with 200 nm Au-Ag nanobowl arrays. For nanoparticles small enough to fit into the nanobowls, a large increase in LSPR shift, (<b>a</b>) and SERS intensity; (<b>b</b>) is observed; (<b>c</b>) Scanning electron microscopy images showing the smaller nanoparticles often reside inside the nanobowls, whereas the nanoparticles too large to fit in the nanobowls reside either on top or alongside (unpublished results) [<a href="#B103-sensors-15-15684" class="html-bibr">103</a>].</p> "> Figure 5
<p>Current bilayer LSPR based sensing schemes employing silica coatings. (<b>a</b>) Nanohole arrays coated with about 20 nm of silica; (<b>b</b>) Nanodisks embedded in an optical epoxy coated with about 10 nm of silica; (<b>c</b>) Ag nanocubes coated with thin layer of silica; (<b>d</b>) Protruding nanodisk arrays coated with about 10 nm of silicon oxide or titanium oxide [<a href="#B117-sensors-15-15684" class="html-bibr">117</a>,<a href="#B120-sensors-15-15684" class="html-bibr">120</a>,<a href="#B121-sensors-15-15684" class="html-bibr">121</a>,<a href="#B122-sensors-15-15684" class="html-bibr">122</a>].</p> "> Figure 6
<p>(<b>a</b>) An HIV detection assay is depicted which relies on carbodiimide chemistry to cover the surface with antibodies specific for HIV subtypes; (<b>b</b>) The plasmonic system can detect and distinguish between HIV subtypes A, B, C, D, E, G in patients with HIV [<a href="#B136-sensors-15-15684" class="html-bibr">136</a>].</p> "> Figure 7
<p>A schematic for glucose detection through nanoparticle formation, (<b>a</b>) that was tested in whole urine samples spiked with glucose; (<b>b</b>) As the samples were heated under alkaline conditions, there was a colorimetric increase in intensity with increasing concentrations of glucose [<a href="#B151-sensors-15-15684" class="html-bibr">151</a>].</p> "> Figure 8
<p>Nanohole substrate for multiplexed biosensing and lens-free imaging. (<b>a</b>) SEM images of 6 pixels of nanohole arrays. Each pixel is 100 µm × 100 µm with hole size 200 nm; (<b>b</b>) Schematic of nanohole arrays coated with different proteins: Monolayer of BSA (M), bilayer of protein and IgG (B); (<b>c</b>) Transmission of bare nanohole arrays (red), with protein monolayer (green) and bilayer (blue); (<b>d</b>) diffraction patterns of nanohole arrays before and after functionalization with protein [<a href="#B156-sensors-15-15684" class="html-bibr">156</a>].</p> "> Figure 9
<p>Schematic of the 8-channel microfluidic device containing both control and flow layers, (<b>a</b>); Each channel contains multiple “spots” of gold nanodisc arrays for multiplexed biosensing measurements, (<b>b</b>) (inset has a scale bar of 200 nm); Overview of the optical setup used to measure the plasmonic response of the nanoparticle spot arrays within the channels, (<b>c</b>) Reproduced with permission from [<a href="#B162-sensors-15-15684" class="html-bibr">162</a>].</p> ">
Abstract
:1. Introduction
General Principles of Localized Surface Plasmon Resonance
2. The Challenge of Improving Limit of Detection
2.1. Enzymatic Amplification
2.2. Plasmonic Nanoparticle Coupling-Mediated Amplification
2.3. Biomolecular Conformationally-Gated Amplification
3. The Challenge of Improving Selectivity in Complex Solution
3.1. Improving Selectivity through Functionalization Layers
3.2. Improving Selectivity through Biological Scaffolds
3.3. Increasing Selectivity through Size-Selective Films or Shape Complementarity
4. The Challenge of Detecting of Membrane-Associated Species
4.1. Supported Lipid Membranes
4.2. LSPR Based Membrane Biosensors Using Supported Lipid Bilayers
Sensor Substrate | Bulk Sensitivity (nm/RIU) | Coating Thickness (nm) | Reference |
---|---|---|---|
Au nanoholes | 113 | 20 | [120] |
Ag nanoholes | 75 | 20 | [120] |
Flat Au nanodisks | [4.5 nm/(nm of Al2O3)] 150 (approximate) | 10 | [122] |
Ag nanocubes | 123 | 3.9 | [121] |
Protruding Au nanodisks | 110 | 10 | [116] |
5. The Challenge of Incorporating LSPR Biosensing into Point-of-Care Diagnostic Devices
5.1. Plasmonic Point-of-Care Diagnostics
5.2. Multiplexed LSPR Platforms
5.2.1. Multiplexed Plasmonic Arrays
5.2.2. Multiplexed Single Nanoparticle LSPR Sensing
5.3. Microfluidic LSPR Biosensing Devices
6. Prospective and Conclusions
Acknowledgments
Conflicts of Interest
References
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absoprtion and Scattering Properties of Gold Nanoparticles of Different Size, Shape and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef]
- Schlucker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Adleman, J.R.; Boyd, D.A.; Goodwin, D.G.; Psaltis, D. Heterogenous Catalysis Mediated by Plasmon Heating. Nano Lett. 2009, 9, 4417–4423. [Google Scholar] [CrossRef]
- Nielsen, M.P.; Ashfar, A.; Cadien, K.; Elezzabi, A.Y. Plasmonic materials for metal-insulator-semiconductor-insulator-metal nanoplasmonic waveguides on silicon-on-insulator platform. Opt. Mater. 2013, 36, 294–298. [Google Scholar] [CrossRef]
- Sun, M.T.; Xu, H.X. A Novel Application of Plasmonics: Plasmon-Driven Surface-Catalyzed Reactions. Small 2012, 8, 2777–2786. [Google Scholar] [CrossRef]
- Kang, B.; Afifi, M.M.; Austin, L.A.; EI-Sayed, M.A. Exploiting the Nanoparticle Plasmon Effect: Observing Drug Delivery Dynamics in Single Cells via Raman/Fluorescence Imaging Spectroscopy. ACS Nano 2013, 7, 7420–7427. [Google Scholar] [CrossRef]
- Sagle, L.B.; Ruvuna, L.K.; Ruemmele, J.A.; van Duyne, R.P. Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 2011, 6, 1447–1462. [Google Scholar] [CrossRef]
- Vilela, D.; Gonzalez, M.C.; Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Anal. Chim. Acta 2012, 751, 24–43. [Google Scholar] [CrossRef]
- Ameen, A.; Gartia, M.R.; Hsiao, A.; Chang, T.W.; Xu, Z.D.; Liu, G.L. Ultra-Sensitive Colorimetric Plasmonic Sensing and Microfluidics for Biofluid Diagnostics Using Nanohole Array. J. Nanomater. 2015. [Google Scholar] [CrossRef]
- Hammond, J.L.; Bhalla, N.; Rafiee, S.D.; Estrela, P. Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries. Biosensors 2014, 4, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Myroshnychenko, V.; Rodriguez-Fernandez, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L.M.; de Abajo, F.J.G. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805. [Google Scholar] [CrossRef]
- Bantz, K.C.; Meyer, A.F.; Wittenberg, N.J.; Im, H.; Kurtulus, O.; Lee, S.H.; Lindquist, N.C.; Oh, S.H.; Haynes, C.L. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 2011, 13, 11551–11567. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Wang, H.N.; Scaffidi, J. Plasmonic nanoprobes for SERS biosensing and bioimaging. J. Biophotonics 2010, 3, 89–102. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloider Metallösungen. Ann. Phys. 1908, 25, 377–445. [Google Scholar] [CrossRef]
- Yang, W.H.; Schatz, G.C.; Vanduyne, R.P. Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes. J. Chem. Phys. 1995, 103, 869–875. [Google Scholar] [CrossRef]
- Haes, A.J.; van Duyne, R.P. A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604. [Google Scholar] [CrossRef]
- Jung, L.S.; Campbell, C.T.; Chinowsky, T.M.; Mar, M.N.; Yee, S.S. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 1998, 14, 5636–5648. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Bingham, J.M.; Paige Hall, W.; van Duyne, R.P. Exploring the Unique Characteristics of LSPR Biosensing. In Nanoplasmonic Sensors; Dmitriev, A., Ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Haes, A.J.; Zou, S.L.; Schatz, G.C.; van Duyne, R.P. A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004, 108, 109–116. [Google Scholar] [CrossRef]
- Miller, M.M.; Lazarides, A.A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 2005, 109, 21556–21565. [Google Scholar] [CrossRef]
- Miller, M.M.; Lazarides, A.A. Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering. J. Opt. A Pure Appl. Opt. 2006, 8, S239–S249. [Google Scholar] [CrossRef]
- Sepulveda, B.; Angelome, P.C.; Lechuga, L.M.; Liz-Marzan, L.M. LSPR-based nanobiosensors. Nano Today 2009, 4, 244–251. [Google Scholar] [CrossRef]
- Haynes, C.L.; van Duyne, R.P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M.I. Plasmon hybridizaton in nanoparticle dimers. Nano Lett. 2004, 4, 899–903. [Google Scholar] [CrossRef]
- Jain, P.K.; EI-Sayed, M.A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010, 487, 153–164. [Google Scholar] [CrossRef]
- Dahlin, A.B. Size Matters: Problems and Advantages Associated with Highly Miniaturized Sensors. Sensors 2012, 12, 3018–3036. [Google Scholar] [CrossRef]
- Dahlin, A.B.; Wittenberg, N.J.; Hook, F.; Oh, S.H. Promises and challenges of nanoplasmonic devices for refractometric biosensing. Nanophotonics 2013, 2, 83–101. [Google Scholar] [CrossRef]
- El-Dessouky, R.; Georges, M.; Azzazy, H.M.E. Silver Nanostructures: Properties, Synthesis, and Biosensor Applications. In Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices; American Chemical Society: Washington, DC, USA, 2012; Volume I. [Google Scholar]
- Kedem, O.; Vaskevich, A.; Rubinstein, I. Critical Issues in Localized Plasnnon Sensing. J. Phys. Chem. C 2014, 118, 8227–8244. [Google Scholar] [CrossRef]
- Tong, L.M.; Wei, H.; Zhang, S.P.; Xu, H.X. Recent Advances in Plasmonic Sensors. Sensors 2014, 14, 7959–7973. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; O’Neil, D.; EI-Sayed, M.A. Hollow and Solid Metallic Nanoparticles in Sensing and in Nanocatalysis. Chem. Mater. 2014, 26, 44–58. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.N.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, K.S.; Ahn, J.; Lee, J.J.; Kim, M.G.; Shin, Y.B. Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography. ACS Nano 2011, 5, 897–904. [Google Scholar] [CrossRef]
- Lee, T.H.; Lee, S.W.; Jung, J.A.; Ahn, J.; Kim, M.G.; Shin, Y.B. Signal Amplification by Enzymatic Reaction in an Immunosensor Based on Localized Surface Plasmon Resonance (LSPR). Sensors 2010, 10, 2045–2053. [Google Scholar] [CrossRef]
- Saa, L.; Coronado-Puchau, M.; Pavlov, V.; Liz-Marzan, L.M. Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale 2014, 6, 7405–7409. [Google Scholar] [CrossRef]
- Xia, Y.S.; Ye, J.J.; Tan, K.H.; Wang, J.J.; Yang, G. Colorimetric Visualization of Glucose at the Submicromole Level in Serum by a Homogenous Silver Nanoprism-Glucose Oxidase System. Anal. Chem. 2013, 85, 6241–6247. [Google Scholar] [CrossRef]
- Yang, A.K.; Huntington, M.D.; Cardinal, M.F.; Masango, S.S.; van Duyne, R.P.; Odom, T.W. Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing. ACS Nano 2014, 8, 7639–7647. [Google Scholar] [CrossRef]
- Rodriguez-Lorenzo, L.; de la Rica, R.; Alvarez-Puebla, R.A.; Liz-Marzan, L.M.; Stevens, M.M. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 2012, 11, 604–607. [Google Scholar] [CrossRef]
- Sharpe, J.C.; Mitchell, J.S.; Lin, L.; Sedoglavich, H.; Blaikie, R.J. Gold nanohole array substrates as immunobiosensors. Anal. Chem. 2008, 80, 2244–2249. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Liang, H.Y.; Suri, S.; Ma, D.L.; Wu, N.Q. Plasmonic Nanorice Antenna on Triangle Nanoarray for Surface-Enhanced Raman Scattering Detection of Hepatitis B Virus DNA. Anal. Chem. 2013, 85, 2072–2078. [Google Scholar] [CrossRef]
- Hall, W.P.; Ngatia, S.N.; van Duyne, R.P. LSPR Biosensor Signal Enhancement Using Nanoparticle-Antibody Conjugates. J. Phys. Chem. C 2011, 115, 1410–1414. [Google Scholar] [CrossRef]
- Sudeep, P.K.; Joseph, S.T.S.; Thomas, K.G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 2005, 127, 6516–6517. [Google Scholar] [CrossRef]
- Wang, C.G.; Chen, Y.; Wang, T.T.; Ma, Z.F.; Su, Z.M. Biorecognition-driven self-assembly of gold nanorods: A rapid and sensitive approach toward antibody sensing. Chem. Mater. 2007, 19, 5809–5811. [Google Scholar] [CrossRef]
- Wang, L.B.; Zhu, Y.Y.; Xu, L.G.; Chen, W.; Kuang, H.; Liu, L.Q.; Agarwal, A.; Xu, C.L.; Kotov, N.A. Side-by-Side and End-to-End Gold Nanorod Assemblies for Environmental Toxin Sensing. Angew. Chem. Int. Ed. 2010, 49, 5472–5475. [Google Scholar] [CrossRef]
- Jana, D.; Matti, C.; He, J.; Sagle, L. Capping Agent-Free Gold Nanostars Show Greatly Increased Versatility and Sensitivity for Biosensing. Anal. Chem. 2015, 87, 3964–3972. [Google Scholar] [CrossRef]
- Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081. [Google Scholar] [CrossRef]
- Storhoff, J.J.; Elghanian, R.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, 1959–1964. [Google Scholar] [CrossRef]
- Bailey, R.C.; Nam, J.M.; Mirkin, C.A.; Hupp, J.T. Real-time multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes. J. Am. Chem. Soc. 2003, 125, 13541–13547. [Google Scholar] [CrossRef]
- Jin, R.C.; Wu, G.S.; Li, Z.; Mirkin, C.A.; Schatz, G.C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 2003, 125, 1643–1654. [Google Scholar] [CrossRef]
- Xu, X.Y.; Han, M.S.; Mirkin, C.A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angew. Chem. Int. Ed. 2007, 46, 3468–3470. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, T.; Fan, Q.; Li, G.X. A new strategy for a DNA assay based on a target-triggered isothermal exponential degradation reaction. Chem. Commun. 2011, 47, 5262–5264. [Google Scholar] [CrossRef]
- Xie, X.J.; Xu, W.; Liu, X.G. Improving Colorimetric Assays through Protein Enzyme-Assisted Gold Nanoparticle Amplification. Acc. Chem. Res. 2012, 45, 1511–1520. [Google Scholar] [CrossRef]
- Guarise, C.; Pasquato, L.; de Filippis, V.; Scrimin, P. Gold nanoparticles-based protease assay. Proc. Natl. Acad. Sci. USA 2006, 103, 3978–3982. [Google Scholar] [CrossRef]
- Hall, W.P.; Anker, J.N.; Lin, Y.; Modica, J.; Mrksich, M.; van Duyne, R.P. A calcium-modulated plasmonic switch. J. Am. Chem. Soc. 2008, 130, 5836–5837. [Google Scholar] [CrossRef]
- Pandya, A.; Sutariya, P.G.; Menon, S.K. A non enzymatic glucose biosensor based on an ultrasensitive calix[4]arene functionalized boronic acid gold nanoprobe for sensing in human blood serum. Analyst 2013, 138, 2483–2490. [Google Scholar] [CrossRef]
- Xia, F.; Zuo, X.L.; Yang, R.Q.; Xiao, Y.; Kang, D.; Vallee-Belisle, A.; Gong, X.; Yuen, J.D.; Hsu, B.B.Y.; Heeger, A.J.; et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. USA 2010, 107, 10837–10841. [Google Scholar] [CrossRef]
- Zeng, S.W.; Yong, K.T.; Roy, I.; Dinh, X.Q.; Yu, X.; Luan, F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics 2011, 6, 491–506. [Google Scholar] [CrossRef]
- Rosman, C.; Prasad, J.; Neiser, A.; Henkel, A.; Edgar, J.; Sonnichsen, C. Multiplexed Plasmon Sensor for Rapid Label-Free Analyte Detection. Nano Lett. 2013, 13, 3243–3247. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Cao, X.N.; Wang, L.H.; Li, D.; Song, S.P.; Ye, B.C.; Fan, C.H. Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst 2009, 134, 1355–1360. [Google Scholar] [CrossRef]
- Liu, J.C.; Bai, W.H.; Niu, S.C.; Zhu, C.; Yang, S.M.; Chen, A.L. Highly sensitive colorimetric detection of 17 beta-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef]
- Xu, H.; Mao, X.; Zeng, Q.X.; Wang, S.F.; Kawde, A.N.; Liu, G.D. Aptamer-Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for Protein Analysis. Anal. Chem. 2009, 81, 669–675. [Google Scholar] [CrossRef]
- Liu, G.D.; Mao, X.; Phillips, J.A.; Xu, H.; Tan, W.H.; Zeng, L.W. Aptamer-Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells. Anal. Chem. 2009, 81, 10013–10018. [Google Scholar] [CrossRef]
- Lu, W.T.; Arumugam, R.; Senapati, D.; Singh, A.K.; Arbneshi, T.; Khan, S.A.; Yu, H.T.; Ray, P.C. Multifunctional Oval-Shaped Gold-Nanoparticle-Based Selective Detection of Breast Cancer Cells Using Simple Colorimetric and Highly Sensitive Two-Photon Scattering Assay. ACS Nano 2010, 4, 1739–1749. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.H.; Kim, I.A.; Lee, S.J.; Jurng, J.; Gu, M.B. A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens. Bioelectron. 2010, 26, 1644–1649. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.H.; Pan, D.; Song, S.P.; Boey, F.Y.C.; Zhang, H.; Fan, C.H. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 2008, 4, 1196–1200. [Google Scholar] [CrossRef]
- Smith, J.E.; Griffin, D.K.; Leny, J.K.; Hagen, J.A.; Chavez, J.L.; Kelley-Loughnane, N. Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field. Talanta 2014, 121, 247–255. [Google Scholar] [CrossRef]
- Song, K.M.; Cho, M.; Jo, H.; Min, K.; Jeon, S.H.; Kim, T.; Han, M.S.; Ku, J.K.; Ban, C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem. 2011, 415, 175–181. [Google Scholar] [CrossRef]
- Deng, B.; Lin, Y.W.; Wang, C.; Li, F.; Wang, Z.X.; Zhang, H.Q.; Li, X.F.; Le, X.C. Aptamer binding assays for proteins: The thrombin example-A review. Anal. Chim. Acta 2014, 837, 1–15. [Google Scholar] [CrossRef]
- Gooding, J.J.; Ciampi, S. The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 2011, 40, 2704–2718. [Google Scholar] [CrossRef]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef]
- Mrksich, M.; Whitesides, G.M. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55–78. [Google Scholar] [CrossRef]
- Ostuni, E.; Yan, L.; Whitesides, G.M. The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver. Colloid Surf. B 1999, 15, 3–30. [Google Scholar] [CrossRef]
- Menz, B.; Knerr, R.; Gopferich, A.; Steinem, C. Impedance and QCM analysis of the protein resistance of self-assembled PEGylated alkanethiol layers on gold. Biomaterials 2005, 26, 4237–4243. [Google Scholar] [CrossRef]
- Elbert, L.; Hubbell, J.A. Surface Treatments of Polymers for Biocompatibility. Ann. Rev. Mater. Sci. 1996, 26, 365–394. [Google Scholar] [CrossRef]
- Li, J.T.; Caldwell, K.D.; Rapaport, N. Surface properties of pluronic-coated polymeric colloids. Langmuir 1994, 10, 4475–4482. [Google Scholar] [CrossRef]
- Deng, L.; Mrksich, M.; Whitesides, G.M. Self-assembled monolayers of alkanethiolates presenting tri(propylene sulfoxide) groups resist the adsorption of protein. J. Am. Chem. Soc. 1996, 118, 5136–5137. [Google Scholar] [CrossRef]
- Fyrner, T.; Lee, H.H.; Mangone, A.; Ekblad, T.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Conlan, S.L.; Mutton, R.; Clare, A.S.; et al. Saccharide-Functionalized Alkanethiols for Fouling-Resistant Self-Assembled Monolayers: Synthesis, Monolayer Properties, and Antifouling Behavior. Langmuir 2011, 27, 15034–15047. [Google Scholar] [CrossRef]
- Luk, Y.Y.; Kato, M.; Mrksich, M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 2000, 16, 9604–9608. [Google Scholar] [CrossRef]
- Siegers, C.; Biesalski, M.; Haag, R. Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem. Eur. J. 2004, 10, 2831–2838. [Google Scholar] [CrossRef]
- Wyszogrodzka, M.; Haag, R. Synthesis and Characterization of Glycerol Dendrons, Self-Assembled Monolayers on Gold: A Detailed Study of Their Protein Resistance. Biomacromolecules 2009, 10, 1043–1054. [Google Scholar] [CrossRef]
- Chen, S.F.; Cao, Z.Q.; Jiang, S.Y. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials 2009, 30, 5892–5896. [Google Scholar] [CrossRef]
- Statz, A.R.; Meagher, R.J.; Barron, A.E.; Messersmith, P.B. New peptidomimetic polymers for antifouling surfaces. J. Am. Chem. Soc. 2005, 127, 7972–7973. [Google Scholar] [CrossRef]
- Dalsin, J.L.; Hu, B.H.; Lee, B.P.; Messersmith, P.B. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J. Am. Chem. Soc. 2003, 125, 4253–4258. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Ishihara, K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005, 381, 534–546. [Google Scholar] [CrossRef]
- Chen, S.F.; Zheng, J.; Li, L.Y.; Jiang, S.Y. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 2005, 127, 14473–14478. [Google Scholar] [CrossRef]
- Holmlin, R.E.; Chen, X.X.; Chapman, R.G.; Takayama, S.; Whitesides, G.M. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17, 2841–2850. [Google Scholar] [CrossRef]
- Reinhard, B.M.; Siu, M.; Agarwal, H.; Alivisatos, A.P.; Liphardt, J. Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Lett. 2005, 5, 2246–2252. [Google Scholar] [CrossRef]
- Sonnichsen, C.; Reinhard, B.M.; Liphardt, J.; Alivisatos, A.P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745. [Google Scholar] [CrossRef]
- Chen, J.I.L.; Chen, Y.; Ginger, D.S. Plasmonic Nanoparticle Dimers for Optical Sensing of DNA in Complex Media. J. Am. Chem. Soc. 2010, 132, 9600–9601. [Google Scholar] [CrossRef]
- Chen, J.I.L.; Durkee, H.; Traxler, B.; Ginger, D.S. Optical Detection of Protein in Complex Media with Plasmonic Nanoparticle Dimers. Small 2011, 7, 1993–1997. [Google Scholar] [CrossRef]
- Reinhard, B.M.; Sheikholeslami, S.; Mastroianni, A.; Alivisatos, A.P.; Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl. Acad. Sci. USA 2007, 104, 2667–2672. [Google Scholar] [CrossRef]
- Jun, Y.W.; Sheikholeslami, S.; Hostetter, D.R.; Tajon, C.; Craik, C.S.; Alivisatos, A.P. Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. Proc. Natl. Acad. Sci. USA 2009, 106, 17735–17740. [Google Scholar] [CrossRef]
- Liu, N.; Hentschel, M.; Weiss, T.; Alivisatos, A.P.; Giessen, H. Three-Dimensional Plasmon Rulers. Science 2011, 332, 1407–1410. [Google Scholar] [CrossRef]
- Hong, C.; Lee, J.; Zheng, H.; Hong, S.S.; Lee, C. Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Hong, S.; Lee, S.; Yi, J. Sensitive and molecular size-selective detection of proteins using a chip-based and heteroliganded gold nanoisland by localized surface plasmon resonance spectroscopy. Nanoscale Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Kreno, L.E.; Hupp, J.T.; van Duyne, R.P. Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing. Anal. Chem. 2010, 82, 8042–8046. [Google Scholar] [CrossRef]
- Lu, G.; Farha, O.K.; Kreno, L.E.; Schoenecker, P.M.; Walton, K.S.; van Duyne, R.P.; Hupp, J.T. Fabrication of Metal-Organic Framework-Containing Silica-Colloidal Crystals for Vapor Sensing. Adv. Mater. 2011, 23, 4449–4452. [Google Scholar] [CrossRef]
- Lopez-Puente, V.; Abalde-Cela, S.; Angelome, P.C.; Alvarez-Puebla, R.A.; Liz-Marzan, L.M. Plasmonic Mesoporous Composites as Molecular Sieves for SERS Detection. J. Phys. Chem. Lett. 2013, 4, 2715–2720. [Google Scholar] [CrossRef]
- Anderson, B.D.; Tracy, J.B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 2014, 6, 12195–12216. [Google Scholar] [CrossRef]
- Fredriksson, H.; Alaverdyan, Y.; Dmitriev, A.; Langhammer, C.; Sutherland, D.S.; Zaech, M.; Kasemo, B. Hole-mask colloidal lithography. Adv. Mater. 2007, 19. [Google Scholar] [CrossRef]
- Jana, D.; Lehnoff, E.; Bruzas, I.; Robinson, J.; Lum, W.; Sagle, L. Tunable Au-Ag Nanobowl Arrays for Size-Selective Plasmonic Biosensing. Unpublished results.
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef]
- Jacoby, E.; Bouhelal, R.; Gerspacher, M.; Seuwen, K. The 7TM G-protein-coupled receptor target family. ChemMedChem 2006, 1, 760–782. [Google Scholar] [CrossRef]
- Hopkins, A.L.; Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 2002, 1, 727–730. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, X. Tools for GPCR drug discovery. Acta Pharmacol. Sin. 2012, 33, 372–384. [Google Scholar] [CrossRef]
- Castellana, E.T.; Cremer, P.S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surf. Sci. Rep. 2006, 61, 429–444. [Google Scholar] [CrossRef]
- Maynard, J.A.; Lindquist, L.C.; Sutherland, J.N.; Lesuffleur, A.; Warrington, A.E.; Rodriguez, M.; Oh, S. Surface plasmon resonance for high-thoughput ligand screening of membrane-bound proteins. Biotechnol. J. 2009, 4, 1542–1558. [Google Scholar] [CrossRef]
- Konradi, R.; Textor, M.; Reimhult, E. Using Complementary Acoustic and Optical Tehcniques for Quantitative Monitoring of Biomolecular Adsorption at Interfaces. Biosensors 2012, 2, 341–376. [Google Scholar] [CrossRef]
- Dahlin, A.B.; Jonsson, M.P.; Hook, F. Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold. Adv. Mater. 2008, 20. [Google Scholar] [CrossRef]
- Kumar, K.; Dahlin, A.B.; Sannomiya, T.; Kaufmann, S.; Isa, L.; Reimhult, E. Embedded Plasmonic Nanomenhirs as Location-Specific Biosensors. Nano Lett. 2013, 13, 6122–6129. [Google Scholar] [CrossRef]
- Cremer, P.S.; Boxer, S.G. Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B 1999, 103, 2554–2559. [Google Scholar] [CrossRef]
- Richter, R.P.; Brisson, A.R. Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D, and ellipsometry. Biophys. J. 2005, 88, 3422–3433. [Google Scholar] [CrossRef]
- Khan, M.S.; Dosoky, N.S.; Williams, J.D. Engineering Lipid Bilayer Membranes for Protein Studies. Int. J. Mol. Sci. 2013, 14, 21561–21597. [Google Scholar] [CrossRef]
- Jackman, J.A.; Tabaei, S.R.; Zhao, Z.L.; Yorulmaz, S.; Cho, N.J. Self-Assembly Formation of Lipid Bilayer Coatings on Bare Aluminum Oxide: Overcoming the Force of Interfacial Water. ACS Appl. Mater. Interfaces 2015, 7, 959–968. [Google Scholar] [CrossRef]
- Zan, G.H.; Jackman, J.A.; Kim, S.O.; Cho, N.J. Controlling Lipid Membrane Architecture for Tunable Nanoplasmonic Biosensing. Small 2014, 10, 4828–4832. [Google Scholar] [CrossRef]
- Tanaka, M.; Sackmann, E. Polymer-supported membranes as models of the cell surface. Nature 2005, 437, 656–663. [Google Scholar] [CrossRef]
- Parikh, A.N.; Groves, J.T. Materials science of supported lipid membranes. MRS Bull. 2006, 31, 507–512. [Google Scholar] [CrossRef]
- Dahlin, A.; Zach, M.; Rindzevicius, T.; Kall, M.; Sutherland, D.S.; Hook, F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J. Am. Chem. Soc. 2005, 127, 5043–5048. [Google Scholar] [CrossRef]
- Jonsson, M.P.; Jonsson, P.; Dahlin, A.B.; Hook, F. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett. 2007, 7, 3462–3468. [Google Scholar] [CrossRef]
- Wu, H.J.; Henzie, J.; Lin, W.C.; Rhodes, C.; Li, Z.; Sartorel, E.; Thorner, J.; Yang, P.D.; Groves, J.T. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nat. Methods 2012, 9, 1189–1191. [Google Scholar] [CrossRef]
- Jose, J.; Jordan, L.R.; Johnson, T.W.; Lee, S.H.; Wittenberg, N.J.; Oh, S.H. Topographically Flat Substrates with Embedded Nanoplasmonic Devices for Biosensing. Adv. Funct. Mater. 2013, 23, 2812–2820. [Google Scholar] [CrossRef]
- Langhammer, C.; Larsson, E.M.; Kasemo, B.; Zoric, I. Indirect Nanoplasmonic Sensing: Ultrasensitive Experimental Platform for Nanomaterials Science and Optical Nanocalorimetry. Nano Lett. 2010, 10, 3529–3538. [Google Scholar] [CrossRef]
- Baciu, C.L.; Becker, J.; Janshoff, A.; Sonnichsen, C. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008, 8, 1724–1728. [Google Scholar] [CrossRef]
- Garrenton, L.S.; Young, S.L.; Thorner, J. Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain. Gene Dev. 2006, 20, 1946–1958. [Google Scholar] [CrossRef]
- Wittenberg, N.J.; Im, H.; Xu, X.H.; Wootla, B.; Watzlawik, J.; Warrington, A.E.; Rodriguez, M.; Oh, S.H. High-Affinity Binding of Remyelinating Natural Autoantibodies to Myelin-Mimicking Lipid Bilayers Revealed by Nanohole Surface Plasmon Resonance. Anal. Chem. 2012, 84, 6031–6039. [Google Scholar] [CrossRef]
- Im, H.; Wittenberg, N.J.; Lesuffleur, A.; Lindquist, N.C.; Oh, S.H. Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci. 2010, 1, 688–696. [Google Scholar] [CrossRef]
- Im, H.; Sutherland, J.N.; Maynard, J.A.; Oh, S.H. Nanohole-Based Surface Plasmon Resonance Instruments with Improved Spectral Resolution Quantify a Broad Range of Antibody-Ligand Binding Kinetics. Anal. Chem. 2012, 84, 1941–1947. [Google Scholar] [CrossRef]
- Tokel, O.; Inci, F.; Demirci, U. Advances in Plasmonic Technologies for Point of Care Applications. Chem. Rev. 2014, 114, 5728–5752. [Google Scholar] [CrossRef]
- Haes, A.J.; Chang, L.; Klein, W.L.; van Duyne, R.P. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 2005, 127, 2264–2271. [Google Scholar] [CrossRef]
- Cecchin, D.; de la Rica, R.; Bain, R.E.S.; Finnis, M.W.; Stevens, M.M.; Battaglia, G. Plasmonic ELISA for the detection of gp120 at ultralow concentrations with the naked eye. Nanoscale 2014, 6, 9559–9562. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, C.Z. One-step conjugation chemistry of DNA with highly scattered silver nanoparticles for sandwich detection of DNA. Analyst 2012, 137, 3434–3436. [Google Scholar] [CrossRef]
- Wabuyele, M.B.; vo-Dinh, T. Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal. Chem. 2005, 77, 7810–7815. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, B.C.; Oh, B.K.; Choi, J.W. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomedcine 2013, 9, 1018–1026. [Google Scholar] [CrossRef]
- Inci, F.; Tokel, O.; Wang, S.Q.; Gurkan, U.A.; Tasoglu, S.; Kuritzkes, D.R.; Demirci, U. Nanoplasmonic Quantitative Detection of Intact Viruses from Unprocessed Whole Blood. ACS Nano 2013, 7, 4733–4745. [Google Scholar] [CrossRef]
- Lee, J.; Ahmed, S.R.; Oh, S.; Kim, J.; Suzuki, T.; Parmar, K.; Park, S.S.; Lee, J.; Park, E.Y. A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens. Bioelectron. 2015, 64, 311–317. [Google Scholar] [CrossRef]
- Chang, Y.F.; Wang, S.F.; Huang, J.C.; Su, L.C.; Yao, L.; Li, Y.C.; Wu, S.C.; Chen, Y.M.A.; Hsieh, J.P.; Chou, C.; et al. Detection of swine-origin influenza A (H1N1) viruses using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens. Bioelectron. 2010, 26, 1068–1073. [Google Scholar] [CrossRef]
- Draz, M.S.; Fang, B.A.; Li, L.J.; Chen, Z.; Wang, Y.J.; Xu, Y.H.; Yang, J.; Killeen, K.; Chen, F.F. Hybrid Nanocluster Plasmonic Resonator for Immunological Detection of Hepatitis B Virus. ACS Nano 2012, 6, 7634–7643. [Google Scholar] [CrossRef]
- Zheng, S.; Kim, D.K.; Park, T.J.; Lee, S.J.; Lee, S.Y. Label-free optical diagnosis of hepatitis B virus with genetically engineered fusion proteins. Talanta 2010, 82, 803–809. [Google Scholar] [CrossRef]
- Tian, L.M.; Morrissey, J.J.; Kattumenu, R.; Gandra, N.; Kharasch, E.D.; Singamaneni, S. Bioplasmonic Paper as a Platform for Detection of Kidney Cancer Biomarkers. Anal. Chem. 2012, 84, 9928–9934. [Google Scholar] [CrossRef]
- Chen, S.; Svedendahl, M.; Kall, M.; Gunnarsson, L.; Dmitriev, A. Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology 2009, 20. [Google Scholar] [CrossRef]
- El-Sayed, I.H.; Huang, X.H.; el-Sayed, M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829–834. [Google Scholar] [CrossRef]
- Leonor Guariguata, T.N.; Beagley, J.; Linnekamp, U.; Jacqmain, O. (Eds.) I.D. Federation, about Diabetes; International Diabetes Federation. Available online: http://www.idf.org (accessed on 5 September 2014).
- Ngoepe, M.; Choonara, Y.E.; Tyagi, C.; Tomar, L.K.; du Toit, L.C.; Kumar, P.; Ndesendo, V.M.K.; Pillay, V. Integration of Biosensors and Drug Delivery Technologies for Early Detection and Chronic Management of Illness. Sensors 2013, 13, 7680–7713. [Google Scholar] [CrossRef]
- Radhakumary, C.; Sreenivasan, K. Naked Eye Detection of Glucose in Urine Using Glucose Oxidase Immobilized Gold Nanoparticles. Anal. Chem. 2011, 83, 2829–2833. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Montelongo, Y.; Vasconcellos, F.D.; Martinez-Hurtado, J.L.; Neupane, S.; Butt, H.; Qasim, M.M.; Blyth, J.; Burling, K.; Carmody, J.B.; et al. Reusable, Robust, and Accurate Laser-Generated Photonic Nanosensor. Nano Lett. 2014, 14, 3587–3593. [Google Scholar] [CrossRef]
- Joshi, G.K.; Johnson, M.A.; Sardar, R. Novel pH-responsive nanoplasmonic sensor: Controlling polymer structural change to modulate localized surface plasmon resonance response. RSC Adv. 2014, 4, 15807–15815. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.Y.; Tan, P.L.; Zhou, J.; Huang, Y.; Nie, Z.; Yao, S.Z. A plasmonic blood glucose monitor based on enzymatic etching of gold nanorods. Chem. Commun. 2013, 49, 1856–1858. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, H.; Lin, Y.Q.; Zhu, N.N.; Ma, Y.R.; Mao, L.Q. Colorimetric Detection of Glucose in Rat Brain Using Gold Nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 4800–4804. [Google Scholar] [CrossRef]
- Unser, S.; Campbell, I.; Jana, D.; Sagle, L. Direct glucose sensing in the physiological range through plasmonic nanoparticle formation. Analyst 2015, 140, 590–599. [Google Scholar] [CrossRef]
- Yu, C.; Irudayaraj, J. Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays. Biophys. J. 2007, 93, 3684–3692. [Google Scholar] [CrossRef]
- Endo, T.; Kerman, K.; Nagatani, N.; Hiepa, H.M.; Kim, D.-K.; Yonezawa, Y.; Nakano, K.; Tamiya, E. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal. Chem. 2006, 78, 6465–6475. [Google Scholar] [CrossRef]
- Jia, K.; Bijeon, J.L.; Adam, P.M.; Ionescu, R.E. Sensitive localized surface plasmon resonance multiplexing protocols. Anal. Chem. 2012, 84, 8020–8027. [Google Scholar] [CrossRef]
- Ruemmele, J.A.; Hall, W.P.; Ruvuna, L.K.; van Duyne, R.P. A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal. Chem. 2013, 85, 4560–4566. [Google Scholar] [CrossRef]
- Cetin, A.E.; Coskun, A.F.; Galarreta, B.C.; Huang, M.; Herman, D.; Ozcan, A.; Altug, H. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci. Appl. 2014, 3. [Google Scholar] [CrossRef]
- Rodriguez-Lorenzo, L.; Alvarez-Puebla, R.A.; Pastoriza-Santos, I.; Mazzucco, S.; Stephan, O.; Kociak, M.; Liz-Marzan, L.M.; de Abajo, F.J.G. Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618. [Google Scholar] [CrossRef]
- Klar, T.; Perner, M.; Grosse, S.; von Plessen, G.; Spirkl, W.; Feldmann, J. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 1998, 80. [Google Scholar] [CrossRef]
- Taton, T.A.; Lu, G.; Mirkin, C.A. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc. 2001, 123, 5164–5165. [Google Scholar] [CrossRef]
- Hu, R.; Yong, K.-T.; Roy, I.; Ding, H.; He, S.; Prasad, P.N. Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells. J. Phys. Chem. C 2009, 113, 2676–2684. [Google Scholar] [CrossRef]
- Ahijado-Guzmán, R.; Prasad, J.; Rosman, C.; Henkel, A.; Tome, L.; Schneider, D.; Rivas, G.; Sönnichsen, C. Plasmonic Nanosensors for Simultaneous Quantification of Multiple Protein-Protein Binding Affinities. Nano Lett. 2014, 14, 5528–5532. [Google Scholar] [CrossRef]
- Acimovic, S.S.; Ortega, M.A.; Sanz, V.; Berthelot, J.; Garcia-Cordero, J.L.; Renger, J.; Maerkl, S.J.; Kreuzer, M.P.; Quidant, R. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett. 2014, 14, 2636–2641. [Google Scholar] [CrossRef]
- Lee, S.H.; Lindquist, N.C.; Wittenberg, N.J.; Jordan, L.R.; Oh, S.H. Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 2012, 12, 3882–3890. [Google Scholar] [CrossRef]
- Chen, P.; Chung, M.T.; McHugh, W.; Nidetz, R.; Liu, Y.; Fu, J.; Cornell, T.T.; Shanley, T.P.; Kurabayashi, K. Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays. ACS Nano 2015, 9, 4173–4181. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684-15716. https://doi.org/10.3390/s150715684
Unser S, Bruzas I, He J, Sagle L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors. 2015; 15(7):15684-15716. https://doi.org/10.3390/s150715684
Chicago/Turabian StyleUnser, Sarah, Ian Bruzas, Jie He, and Laura Sagle. 2015. "Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches" Sensors 15, no. 7: 15684-15716. https://doi.org/10.3390/s150715684
APA StyleUnser, S., Bruzas, I., He, J., & Sagle, L. (2015). Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors, 15(7), 15684-15716. https://doi.org/10.3390/s150715684