Improved Feature Detection in Fused Intensity-Range Images with Complex SIFT (ℂSIFT)
<p>RIM. <math display="inline"> <msub> <mi>I</mi> <mi>p</mi> </msub> </math>, <math display="inline"> <msub> <mi>I</mi> <mi>a</mi> </msub> </math>, <span class="html-italic">φ</span> (from left to right).</p> "> Figure 2
<p>TLS. Left: <math display="inline"> <msub> <mi>I</mi> <mi>raw</mi> </msub> </math>, Right: <span class="html-italic">φ</span>.</p> "> Figure 3
<p>SLP. Left: <math display="inline"> <msub> <mi>I</mi> <mi>p</mi> </msub> </math>, right: <span class="html-italic">φ</span>.</p> "> Figure 4
<p>Homologous matched feature points in SLP image: <math display="inline"> <msub> <mi>S</mi> <mi>raw</mi> </msub> </math>, <math display="inline"> <msub> <mi>S</mi> <mi>Polar</mi> </msub> </math>, <math display="inline"> <msub> <mi>S</mi> <mi>Cartesian</mi> </msub> </math> (from left to right).</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Complex-Valued Image Description
2.2. Mutual Information in Complex-Valued Images
2.3. Naive Approach
2.4. Feature Distribution in Complex-Valued Images
3. Experiments
3.1. Range Imaging (RIM)
3.2. Terrestrial Laser Scanning (TLS)
3.3. Structured Light Projection (SLP)
4. Results
Polar | Cartesian | ||||||
---|---|---|---|---|---|---|---|
RIM | 7.4184 | 6.6761 | 1.0976 | 7.0763 | 1.2991 | 0.9494 | 1.2929 |
TLS | 7.2282 | 7.213 | 4.9165 | 6.6763 | 4.6484 | 1.2193 | 1.4772 |
SLP | 7.8106 | 7.1925 | 1.0543 | 7.2595 | 0.9879 | 0.8303 | 0.8309 |
Polar | Cartesian | ||||||
---|---|---|---|---|---|---|---|
RIM | 159 | 159 | 59 | 218 | 156 | 119 | 275 |
TLS | 1335 | 1335 | 222 | 1557 | 567 | 1133 | 1700 |
SLP | 1004 | 1004 | 81 | 1085 | 967 | 1084 | 2051 |
horizontal | vertical | Euclidean | |||||||
---|---|---|---|---|---|---|---|---|---|
RIM | 0.18294 | 0.17035 | 0.16402 | 0.12487 | 0.11194 | 0.12745 | 0.22149 | 0.2039 | 0.20754 |
TLS | 0.1699 | 0.18024 | 0.1815 | 0.17369 | 0.16188 | 0.15585 | 0.24297 | 0.24264 | 0.23921 |
SLP | 0.04855 | 0.064263 | 0.059843 | 0.051329 | 0.033411 | 0.036508 | 0.070652 | 0.072429 | 0.0701 |
5. Conclusions
Acknowledgments
References
- Tuytelaars, T.; Mikolajczyk, K. Local invariant feature detectors: A survey. Found. Trends Comput. Graph. Vis. 2008, 3, 177–280. [Google Scholar] [CrossRef] [Green Version]
- Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 10, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Rusinkiewicz, S.; Levoy, M. Efficient Variants of the ICP Algorithm. In Proceedings of the 3rd International Conference on 3D Digital Imaging and Modeling (3DIM), Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152.
- Lowe, D. Object Recognition from Local Scale-Invariant Features. In Proceedings of the International Conference on Computer Vision (ICCV 1999), Corfu, Greece, 20–23 September 1999; pp. 1150–1157.
- Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91C110. [Google Scholar] [CrossRef]
- Haker, M.; Böhme, M.; Martinetz, T.; Barth, E. Scale-Invariant Range Features for Time-of-Flight Camera Applications. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW08, Anchorage, AK, USA, 23–28 June 2008.
- Barnea, S.; Filin, S. Keypoint based autonomous registration of terrestrial laser point-clouds. ISPRS J. Photogramm. Remote Sens. 2008, 63, 19–35. [Google Scholar] [CrossRef]
- Böhm, J.; Becker, S. Automatic Marker-Free Registration of Terrestrial Laser Scans Using Reflectance Features. In Proceedings of the 8th Conference on Optical 3D measurment Techniques, Zurich, Switzerland, 9–12 July 2007; pp. 338–344.
- Wang, Z.; Brenner, C. Point Based Registration of Terrestrial Laser Data Using Intensity and Geometry Features. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Beijing, China, 3–11 July 2008; Volume XXXVII, pp. 583–590.
- Weinmann, M.; Weinmann, M.; Hinz, S.; Jutzi, B. Fast and automatic image-based registration of TLS data. ISPRS J. Photogramm. Remote Sens. 2011, in press. [Google Scholar] [CrossRef]
- Sawada, H.; Mukai, R.; Araki, S.; Makino, S. Polar coordinate based nonlinear function for frequency-domain blind source separation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2003, E86-A, 590–596. [Google Scholar]
- Hnizdo, V.; Gilson, M. Thermodynamic and differential entropy under a change of variables. Entropy 2010, 12, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Glivenko, V. Sulla determinazione empirica della legge di probabilita. Giorn. Ist. Ital. Attuari 1933, 4, 92–99. [Google Scholar]
- Cantelli, F. Sulla determinazione empirica della legge di probabilita. Giorn. Ist. Ital. Attuari 1933, 4, 221–424. [Google Scholar]
- Lopes, R.; Reid, I.; Hobson, P. The Two-Dimensional Kolmogorov-Smirnov Test. In Proceedings of the XI International Workshop on Advanced Computing and Analysis in Physics Research, Amsterdam, The Netherlands, 23–27 April 2007.
- Vedaldi, A. SIFT for Matlab. Available online: http://www.vlfeat.org/∼vedaldi/code/sift.html (accessed on 1 September 2011).
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bradley, P.E.; Jutzi, B. Improved Feature Detection in Fused Intensity-Range Images with Complex SIFT (ℂSIFT). Remote Sens. 2011, 3, 2076-2088. https://doi.org/10.3390/rs3092076
Bradley PE, Jutzi B. Improved Feature Detection in Fused Intensity-Range Images with Complex SIFT (ℂSIFT). Remote Sensing. 2011; 3(9):2076-2088. https://doi.org/10.3390/rs3092076
Chicago/Turabian StyleBradley, Patrick Erik, and Boris Jutzi. 2011. "Improved Feature Detection in Fused Intensity-Range Images with Complex SIFT (ℂSIFT)" Remote Sensing 3, no. 9: 2076-2088. https://doi.org/10.3390/rs3092076
APA StyleBradley, P. E., & Jutzi, B. (2011). Improved Feature Detection in Fused Intensity-Range Images with Complex SIFT (ℂSIFT). Remote Sensing, 3(9), 2076-2088. https://doi.org/10.3390/rs3092076