Application of MODIS Products for Air Quality Studies Over Southeastern Italy
<p>The geographical location of the study area (black dot) in the Mediterranean basin.</p> "> Figure 2
<p>Time evolution of <b>(a)</b> PM10 mass concentrations, <b>(b)</b> MODIS aerosol optical thicknesses (AOT), <b>(c)</b> mean mixing layer heights within 9–15 Universal Time (UT) time interval (Hmix), and <b>(d)</b> mean wind speed values within 9–15 Universal Time time interval (WSav), at Arnesano from 2006 to 2008. Grey lines show daily measurements, black lines show monthly means.</p> "> Figure 3
<p>Time evolution of <b>(a)</b> PM10 mass concentrations, <b>(b)</b> MODIS aerosol optical thicknesses (AOT), and <b>(c)</b> mean mixing layer heights within 9–15 Universal Time (UT) time interval (Hmix), at Guagnano from 2006 to 2008. Grey lines show daily measurements, black lines show monthly means.</p> "> Figure 4
<p>Scatterplot of daily-AOTs retrieved from MODIS-Terra measurements <span class="html-italic">versus</span> daily-AOTs from MODIS-Aqua measurements for a 20 × 20 km<sup>2</sup> box centered at Arnesano in <b>(a)</b> 2006, <b>(b)</b> 2007, and <b>(c)</b> 2008. The slope and intercept of regression line and linear correlation coefficient (<span class="html-italic">R</span>) are also given in each plot.</p> "> Figure 5
<p>Scatterplot of PM10 mass concentrations <span class="html-italic">versus</span> co-located in space MODIS-AOTs at Arnesano for <b>(a)</b> 2006, <b>(b)</b> 2007, and <b>(c)</b> 2008. Slope, intercept and linear correlation coefficient (<span class="html-italic">R</span>) are also given in each plot, in addition to the total number of data points (<span class="html-italic">N</span>). Black dots represent data points referring to clear-sky MODIS measurements.</p> "> Figure 6
<p>Scatterplot of PM10 mass concentrations <span class="html-italic">versus</span> co-located in space MODIS-AOTs at Guagnano for <b>(a)</b> 2006, <b>(b)</b> 2007, and <b>(c)</b> 2008. Slope, intercept and linear correlation coefficient (<span class="html-italic">R</span>) are also given in each plot, in addition to the total number of data points (<span class="html-italic">N</span>). Black dots represent data points referring to clear-sky MODIS measurements.</p> "> Figure 7
<p><b>(a)</b> Normalized frequency distribution histogram <span class="html-italic">versus</span> CF bins for the PM-AOT data set of Arnesano in 2006, 2007, and 2008<b>. (b)</b> Histogram of linear correlation coefficients retrieved by taking into account PM-AOT data sets characterized by CF <10%, 30%, 50%, and 70%, respectively, in 2006, 2007, and 2008. <b>(c)</b> Normalized frequency distribution histogram <span class="html-italic">versus</span> CF calculated by considering all clear-sky MODIS measurements referring to Arnesano in 2006, 2007, and 2008. N represents the total number of used data points.</p> "> Figure 8
<p>PM-AOT scatterplot obtained by taking into accounts all clear-sky PM-AOT data points retrieved at Arnesano and Guagnano over the different years. The solid line represents the linear regression line fitting the data points. Slope, intercept, correlation coefficient (<span class="html-italic">R</span> ), and total number of data points (<span class="html-italic">N</span> ) are also given.</p> "> Figure 9
<p><b>(a)</b> Differences between measured and estimated PM10 mass concentrations in accordance with Equation (1) at Arnesano (open dots) and Guagnano (full dots) in 2006, 2007, and 2008. Dotted lines represent ±1 SD deviation of PM10 mass concentration yearly mean values. Cumulative frequency distribution of absolute difference values at <b>(b)</b> Arnesano and <b>(c)</b> Guagnano.</p> "> Figure 10
<p>Yearly means ±1 SD of measured and satellite estimated PM10 mass concentrations by Equation (1) and Equation (2) at <b>(a)</b> Arnesano and <b>(b)</b> Guagnano.</p> "> Figure 11
<p>Scatterplot of PM10 mass concentrations <span class="html-italic">versus</span> <b>(a)</b> mixing layer height mean values (Hmix) and <b>(b)</b> wind speed mean values (WSav) for Arnesano and 2006-year data.</p> "> Figure 12
<p>Scatterplot of Arnesano-PM10 mass concentrations <span class="html-italic">versus</span> clear-sky AOTs/Hmix values for <b>(a)</b> 2006, <b>(b)</b> 2007, and <b>(c)</b> 2008. Slope, intercept and linear correlation coefficient (<span class="html-italic">R</span>) are also given in each plot in addition to the total number of data points (<span class="html-italic">N</span>).</p> "> Figure 13
<p>Scatterplot of Guagnano-PM10 mass concentrations <span class="html-italic">versus</span> clear-sky AOTs/Hmix values for <b>(a)</b> 2006, <b>(b)</b> 2007, and <b>(c)</b> 2008. Slope, intercept and linear correlation coefficient (<span class="html-italic">R</span>) are also given in each plot in addition to the total number of data points (<span class="html-italic">N</span>).</p> "> Figure 14
<p>Scatterplot of Arnesano-PM10 mass concentrations <span class="html-italic">versus</span> clear-sky AOTs divided by the (WSav × Hmix) product for <b>(a)</b> 2006, <b>(b)</b> 2007, and <b>(c)</b> 2008. Slope, intercept and linear correlation coefficient (<span class="html-italic">R</span>) are also given in each plot in addition to the total number of data points (<span class="html-italic">N</span>).</p> "> Figure 15
<p>Scatterplot of Guagnano-PM10 mass concentrations <span class="html-italic">versus</span> clear-sky AOTs divided by the (WSav × Hmix) product for <b>(a)</b> 2006, <b>(b)</b> 2007, and <b>(c)</b> 2008. Slope, intercept and linear correlation coefficient (<span class="html-italic">R</span>) are also given in each plot in addition to the total number of data points (<span class="html-italic">N</span>).</p> "> Figure 16
<p>Scatterplot of PM10 <span class="html-italic">versus</span> AOT/(WSav × Hmix) by including the Arnesano and Guagnano data points referring to different years. The solid line represents the linear regression line fitting the data points. Slope, intercept, correlation coefficient (<span class="html-italic">R</span>), and total number of data points (<span class="html-italic">N</span>) are also given.</p> "> Figure 17
<p><b>(a)</b> Differences between measured and estimated PM10 mass concentrations in accordance with Equation (2) for Arnesano (open dots) and Guagnano (full dots) in 2006, 2007, and 2008. Dotted lines represent ±1 SD deviation of PM10 mass concentration yearly means. Cumulative frequency distribution of absolute differences at <b>(b)</b> Arnesano and <b>(c)</b> Guagnano.</p> ">
Abstract
:1. Introduction
2. Data Source and Statistical Analysis
2.1. Site Description and PM10 Data
ARNESANO | GUAGNANO | |||||
---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2006 | 2007 | 2008 | |
Yearly mean (μg/m3) | 36 ± 18 | 34 ± 16 | 30 ± 14 | 33 ± 20 | 29 ± 16 | 26 ± 15 |
Min − Max (μg/m3) | 5.9 − 125 | 5.5 − 111 | 7.7 − 91 | 3.5 − 152 | 1.6 − 113 | 3.8 − 91 |
AW (μg/m3) | 39 ± 21 | 35 ± 18 | 30 ± 18 | 36 ± 20 | 30 ± 18 | 29 ± 17 |
SS (μg/m3) | 32 ± 15 | 33 ± 13 | 28 ± 14 | 31 ± 19 | 28 ± 14 | 24 ± 13 |
2.2. Aerosol Optical Thicknesses by MODIS and Properties
ARNESANO | GUAGNANO | |||||
---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2006 | 2007 | 2008 | |
Yearly means | 0.16 ± 0.11 | 0.17 ± 0.15 | 0.16 ± 0.12 | 0.15 ± 0.12 | 0.15 ± 0.13 | 0.16 ± 0.11 |
Min − Max | 0.002 − 0.62 | 0.001 − 0.8 | 0.015 − 0.74 | 0.008 − 0.71 | 0.005 − 0.78 | 0.02 − 0.74 |
AW | 0.11 ± 0.08 | 0.11 ± 0.07 | 0.12 ± 0.08 | 0.12 ± 0.08 | 0.11 ± 0.07 | 0.12 ± 0.06 |
SS | 0.18 ± 0.12 | 0.20 ± 0.17 | 0.18 ± 0.14 | 0.18 ± 0.13 | 0.18 ± 0.14 | 0.18 ± 0.13 |
3. Results on PM10-MODIS AOT Correlations
3.1. Clear-Sky MODIS Measurements According to AERONET
ARNESANO | GUAGNANO | |||||
---|---|---|---|---|---|---|
Slope | Intercept (μg/m3) | R | Slope | Intercept (μg/m3) | R | |
2006 | 57 | 32 | 0.40 | 102 | 23 | 0.50 |
2007 | 43 | 31 | 0.49 | 69 | 20 | 0.57 |
2008 | 60 | 19 | 0.34 | 89 | 15 | 0.40 |
Mean | 53 | 27 | 0.41 | 87 | 19 | 0.49 |
4. Sensitivity Studies
4.1. Mixing Layer Height’s Role
ARNESANO | GUAGNANO | |||||
---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2006 | 2007 | 2008 | |
Yearly means (m) | 615 ± 335 | 488 ± 381 | 489 ± 338 | 642 ± 336 | 532 ± 396 | 507 ± 344 |
Min − Max (m) | 148 − 1466 | 73 − 2527 | 77 − 1923 | 175 − 1553 | 73 − 2527 | 77 − 1923 |
AW (m) | 669 ± 352 | 690 ± 434 | 657 ± 367 | 706 ± 351 | 710 ± 426 | 717 ± 367 |
SS (m) | 583 ± 322 | 390 ± 307 | 394 ± 280 | 603 ± 320 | 424 ± 334 | 382 ± 261 |
4.2. Wind Speed’s Role
ARNESANO | |||
---|---|---|---|
2006 | 2007 | 2008 | |
Yearly means (m/s) | 4.0 ± 2.0 | 4.0 ± 2.0 | 4.0 ± 2.0 |
Min − Max (m/s) | 0.7 − 8.6 | 0.7 − 11.3 | 1.0 − 9.0 |
AW (m/s) | 3.5 ± 2.0 | 3.6 ± 2.0 | 3.7 ± 2.0 |
SS (m/s) | 4.0 ± 1.5 | 4.0 ± 1.5 | 4.4 ± 1.5 |
4.3. Impact of Dust Particles
Date dd/mm/yy | PM (μg/m3) | AOD (550 nm) | Å (440–870 nm) |
---|---|---|---|
11/09/2006 11/09/2006 06/05/2006 21/07/2007 26/07/2007 26/07/2007 28/07/2007 28/07/2007 31/08/2007 | 35.1 22.8 36.9 59.8 59.6 61.5 35.5 31.8 58.3 | 0.52 0.43 0.43 0.43 0.80 0.78 0.70 0.56 0.78 | 0.48 0.48 1.69 1.80 1.95 1.95 1.91 1.91 1.18 |
5. Summary and Conclusion
Acknowledgements
References and Notes
- Gupta, P.; Christopher, S.A. Seven year particulate matter air quality assessment from surface and satellite measurements. Atmos. Chem. Phys. 2008, 8, 3311–3324. [Google Scholar] [CrossRef]
- Schaap, M.; Apituley, A.; Timmermans, R.M.A.; Koelemeijer, R.B.A.; De Leeuw, G. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 2009, 9, 909–925. [Google Scholar] [CrossRef]
- Tsai, T.C.; Jeng, Y.-J.; Chu, D.A.; Chen, J.-P.; Chang, S.-C. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmos. Environ. 2009. [CrossRef]
- Koelemeijer, R.B.A.; Homan, C.D.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter in Europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.C.; Kumar, N. Satellite remote sensing of particulate matter and air quality over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Schaap, M.; Timmermans, R.M.A.; Koelemeijer, R.B.A.; De Leeuw, G.; Builtjes, P.J.H. Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmos. Environ. 2008, 42, 2187–2197. [Google Scholar] [CrossRef]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.J.; Dentener, F.J.; Fischer, H.; Feichter, J.; Flatau, P.J.; Heland, J.; Holzinger, R.; Korrmann, R.; Lawrence, M.G.; Levin, Z.; Markowicz, K.M.; Mihalopoulos, N.; Minikin, A.; Ramanathan, V.; Reus, M.D.; Roelofs, G.J.; Scheeren, H.A.; Sciare, J.; Schlager, H.; Schultz, M.; Siegmund, P.; Steil, B.; Stephanou, E.G.; Stier, P.; Traub, M.; Warneke, C.; Williams, J.; Ziereis, H. Global air pollution crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Santese, M.; De Tomasi, F.; Perrone, M.R. Advection patterns and aerosol optical and microphysical properties by AERONET over south-east Italy in the central Mediterranean. Atm. Chem. Phys. 2008, 8, 1881–1886. [Google Scholar] [CrossRef]
- Bergamo, A.; Tafuro, M.; Kinne, S.; De Tomasi, F.; Perrone, M.R. Monthly averaged anthropogenic aeorosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties. Atmos. Chem. Phys. 2008, 8, 6995–7014. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; Lavenu, F.; Jankowiak, I.; Smirnov, A. AERONET: A federated instrument network and data archive for aerosol characterization. Rem. Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Perrone, M.R.; Carofalo, I.; Dinoi, A.; Buccolieri, A.; Buccolieri, G. Ionic and elemental composition of TSP, PM10 and PM2.5 samples collected over South-East Italy. Nuovo Cimento 2009. [Google Scholar] [CrossRef]
- Perrone, M.R.; Bergamo, A.; Bellantone, V. Aerosol direct radiative forcing during Sahara dust intrusions in the central Mediterranean. Atmos. Chem. Phys. 2009. [CrossRef]
- De Tomasi, F.; Perrone, M.R. PBL and dust layer seasonal evolution by lidar and radiosounding measurements over a peninsular site. Atoms. Res. 2006, 80, 86–103. [Google Scholar] [CrossRef]
- De Tomasi, F.; Perrone, M.R. Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy. J. Geophys. Res. 2003, 108, 4286–4297. [Google Scholar] [CrossRef]
- Giugliano, M.; Lonati, G.; Budelli, P.; Romele, L.; Tardivo, R.; Grosso, M. Fine particulate (PM2.5–PM1) at urban sites with different traffic exposure. Atoms. Environ. 2005, 39, 2421–2431. [Google Scholar]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; Eck, T.F.; Vermote, E.; Holben, B.N. The MODIS Aerosol Algorithm, Products and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112, D13211. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res. 2007, 112, D13210. [Google Scholar] [CrossRef]
- Remer, L.A.; Tanré, D.; Kaufman, Y.J.; Levy, R.; Mattoo, S. Algorithm for remote sensing of troposphere aerosol from MODIS: Collection 005. Available online: http://modisatmos.gsfc.nasa.gov/_docs/MOD04:MYD04 (accessed on 12 May 2010).
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS. J. Geophys. Res. 1997, 102, 17051–17068. [Google Scholar] [CrossRef]
- Tanré, D.; Kaufman, Y.J.; Herman, M.; Mattoo, S. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. 1997, 102, 16971–16988. [Google Scholar] [CrossRef]
- Santese, M.; De Tomasi, F.; Perrone, M.R. Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) retrievals during dust outbreaks over the Mediterranean. J. Geophys. Res. 2007, 112, D18201. [Google Scholar] [CrossRef]
- Santese, M.; De Tomasi, F.; Perrone, M.R. AERONET versus MODIS aerosol parameters at different spatial resolutions over southeast Italy. J. Atmos. Sci. 2007, 112, D10214. [Google Scholar] [CrossRef]
- Perrone, M.R.; Santese, M.; Tafuro, A.M.; Holben, B.; Smirnov, A. Aerosol load characterization over South-East Italy for one year of AERONET sun-photometer measurements. Atoms. Res. 2005, 75, 111–133. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Martins, J.V.; Tanre, D.; Remer, L.A.; Kaufman, Y.J.; Mattoo, S.; Levy, R. MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 1998, 103, 32139–32140. [Google Scholar] [CrossRef]
- Gao, B.C.; Yang, P.; Han, W.; Li, R.R.; Wiscombe, W.J. An algorithm using visible and 1.38 mm channels to retrieve cirrus reflectances from aircraft and satellite data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1659–1668. [Google Scholar]
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Tanré, D.; Ginoux, P.; Fan, S. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. 2005, 110, D10S12. [Google Scholar] [CrossRef]
- Wen, G.; Cahalan, R.F.; Tsay, S.; Oreopoulos, L. Impact of cumulus cloud spacing on Landsat atmospheric correction and aerosol retrieval. J. Geophys. Res. 2001, 106, 12129–12138. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. 2001, 106, 9807–9826. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Dubovik, T.F.; Slutsker, O. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Gai, C.S.; Li, X.Q.; Zhao, F.S. Mineral aerosol properties observed in the northwest region of China. Glob. Planet. Changes 2006, 52, 173–181. [Google Scholar] [CrossRef]
- Chu, D.A.; Kaufman, Y.J.; Zibordi, G.; Chern, J.D.; Mao, J.; Li, C.; Holben, B.N. Global monitoring of air pollution over land from the Earth observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. 2003, 108, D21. [Google Scholar] [CrossRef]
- Hybrid Single Particle Lagrangian Integrated Trajectory Model. Available online: http://www.arl.nooa.gov/ready/hysplit4.html (accessed on 10 May 2010).
- NOAA/ ESRL Radiosonde Database. Available online: http://raob.fsl.noaa.gov/ (accessed on 10 May 2010).
- Sicard, M.; Pérez, C.; Rocadenbosch, F.; Baldasano, J.M.; García-Vizcaino, D. Mixed-layer depth determination in the Barcelona Coastal Area from regular LiDAR measurements: Methods, results and limitations. Bound.-Layer Meteor. 2006, 119, 135–157. [Google Scholar]
- Holzworth, G.C. Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution throughout the Contiguous United States; Pub. No. AP-101; Office of Air Programs, U.S. Environmental Protection Agency: Washington, DC, USA, 1972; pp. 3–34. [Google Scholar]
- Analytical Back Trajectories. Available online: http://croc.gsfc.nasa.gov/aeronet/IMAGES//Y06/M09/ktraj_tlk_7bck06091112.ps147001.gif (accessed on 10 May 2010).
- MODIS true colour images. Available online: http://rapidfire.sci.gsfc.nasa.gov/realtime/single.php?T062541000 (accessed on 10 May 2010).
- Kaiser, J.W.; Suttie, M.; Flemming, J.; Morcrette, J.-J.; Boucher, O.; Schultz, M.G. Smoke in the air. ECMWF Newslett. 2009, 119, 9–15. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dinoi, A.; Perrone, M.R.; Burlizzi, P. Application of MODIS Products for Air Quality Studies Over Southeastern Italy. Remote Sens. 2010, 2, 1767-1796. https://doi.org/10.3390/rs2071767
Dinoi A, Perrone MR, Burlizzi P. Application of MODIS Products for Air Quality Studies Over Southeastern Italy. Remote Sensing. 2010; 2(7):1767-1796. https://doi.org/10.3390/rs2071767
Chicago/Turabian StyleDinoi, Adelaide, Maria Rita Perrone, and Pasquale Burlizzi. 2010. "Application of MODIS Products for Air Quality Studies Over Southeastern Italy" Remote Sensing 2, no. 7: 1767-1796. https://doi.org/10.3390/rs2071767
APA StyleDinoi, A., Perrone, M. R., & Burlizzi, P. (2010). Application of MODIS Products for Air Quality Studies Over Southeastern Italy. Remote Sensing, 2(7), 1767-1796. https://doi.org/10.3390/rs2071767