Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis
<p>Near-space definition and its advantages while compared to space including geosynchronous earth orbit (GEO), middle earth orbit (MEO) and low earth orbit (LEO), and airspace.</p> "> Figure 2
<p>Ground coverage area as a function of looking-down angle for different flying altitude.</p> "> Figure 3
<p>Configurations of near-space passive radar system: <b>(a)</b> one receiver with two channels; <b>(b)</b> multiple receivers.</p> "> Figure 4
<p>Near-space passive radar with digital beamforming on receive.</p> "> Figure 5
<p>Calculated NESZ with a function of target-to-receiver distance.</p> "> Figure 6
<p>System geometry of ear-space passive bistatic SAR.</p> "> Figure 7
<p>Targets with the same range delay at zero-Doppler but will have different range histories.</p> "> Figure 8
<p>The azimuth-variable characteristics of Doppler chirp rate for near-space passive bistatic SAR.</p> "> Figure 9
<p>Near-space HRWS SAR with three sub-apertures.</p> "> Figure 10
<p>Azimuthal spectra synthesis for multichannel subsampling in case of three channels.</p> "> Figure 11
<p>Transponder based motion compensation.</p> "> Figure 12
<p>Spectrum of retransmitted signal modulated by the transponder.</p> ">
Abstract
:1. Introduction
2. Superiorities of Near-Space Radar Platform
2.1. Persistent Region Coverage or Fast Re-Visiting Frequency
Orbital Altitude(km) | Maximum Pass Time (minutes:seconds) | ||||
Angle Above Horizon (degrees) | |||||
0 | 5 | 10 | 30 | 45 | |
200 | 7:49 | 5:37 | 4:08 | 1:40 | 1:00 |
300 | 9:35 | 7:16 | 5:34 | 2:24 | 1:27 |
400 | 11:10 | 8:44 | 6:54 | 3:08 | 1:54 |
2.2. Inherently Survivable
2.3. Low Cost
2.4. Relative High Sensitivity and Large Footprint
3. Near-Space Passive Radar Remote Sensing
3.1. Radar Configurations
3.2. Power Budget Analysis
3.3. Potential Applications
3.4. Technical Challenges
4. Near-Space High-Resolution and Wide-Swath Imaging
4.1. System Configuration
4.2. Potentials and Challenges
5. Motion Compensation
6. Conclusions
Acknowledgements
References and Notes
- Meyer, F.; Hinz, S.; Laika, A.; Weihing, D.; Bamler, R. Performance analysis of the TerraSAR-X traffic monitoring concept. ISPRS J. Photogramm. Remote Sens. 2006, 61, 225–242. [Google Scholar] [CrossRef]
- Solberg, A.H.S.; Brekke, C.; Husoy, P.O. Oil spill detection in Radarsat and Envisat SAR images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 746–755. [Google Scholar] [CrossRef]
- Trouve, E.; Vasile, G.; Gay, M. Combining airborne photographs and spaceborne SAR data to monitor temperate ciers: potentials and limits. IEEE Trans. Geosci. Remote Sens. 2007, 45, 905–924. [Google Scholar] [CrossRef]
- Massonnet, D. Capabilities and limitations of the interferometric cartwheel. IEEE Trans. Geosci. Remote Sens. 2001, 39, 506–520. [Google Scholar] [CrossRef]
- Wang, W.Q.; Cai, J.Y. A technique for jamming bi- and multistatic SAR systems. IEEE Geosci. Remote Sens. Lett. 2007, 4, 80–82. [Google Scholar] [CrossRef]
- Wang, W.Q. Application of near-space passive radar for homeland security. Sens. Imag. Int. J. 2007, 8, 39–52. [Google Scholar] [CrossRef]
- Sullivan, I.W.T.; Knowles, S.T. The near-space unwanted RF environment as observed using VHF lunar reflections. IEEE Trans. Electromag. Compat. 1985, 27, 115–118. [Google Scholar] [CrossRef]
- Zheng, B.; Ren, Q.H.; Liu, Y.J.; Chu, Z.Y.; Zhao, F. Characteristic and simulation of the near space communication channel. In Proceedings of International Symposium on Microwave, Antenna, Propagation, EMC Technologies for Wireless Communication,, Huangshan, China; 2007; pp. 769–773. [Google Scholar]
- Allen, E.H. The case for near-space. Aerosp. Am. 2006, 22, 31–34. [Google Scholar]
- Marcel, M.J.; Baker, J. Interdisciplinary design of a near space vehicle. In Proceedings of Southeast Conference, Richmon, VA, USA, 2007; pp. 421–426.
- Guan, M.X.; Guo, Q.; Li, L. A novel access protocol for communication system in near space. In Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, 2007; pp. 1849–1852.
- Galletti, M.; Krieger, G.; Thomas, B.; Marquart, M.; Johannes, S.S. Concept design of a near-space radar for tsunami detection. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007; pp. 34–37.
- Wang, W.Q.; Cai, J.Y.; Peng, Q.C. Near-space SAR: a revolutionizing remote sensing mission. In Proceedings of Asia-Pacific Synthetic Aperture Radar Conference, Huangshan, China, 2007; pp. 127–131.
- Tomme, E.B. Balloons in today’s military? an introduction to the near-space concept. Air Space. J. 2005, 19, 39–50. [Google Scholar]
- Kuo, W.M.L.; Krithivasan, R.; Li, X.; Lu, Y.; Cressler, J.D.; Gustat, H.; Heinemann, B. A low-power X-band SiGe HBT low-noise amplifier for near-space radar applications. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 520–522. [Google Scholar] [CrossRef]
- Pulinets, S.A. Space technologies for short-term earthquake warning. Adv. Space Res. 2006, 37, 643–652. [Google Scholar] [CrossRef]
- Tomme, E.B. The paradigm shift to effects-based space: near-space as a combat space effects enabler. Available online: http://www.airpower.au.af.mil (accessed on March 2008).
- Willis, N.J. Bistatic Radar; SciTech Publishing Inc.: Raleigh, NC, USA, 1995. [Google Scholar]
- Tan, D.K.P.; Sun, H.; Lu, Y.; Lesturgie, M.; Chen, H.L. Passive radar using global system for mobile communication signal: theory, implementation and measurements. IEE Proc. Radar Sonar Navig. 2005, 152, 116–123. [Google Scholar] [CrossRef]
- Howland, P.E. Passive radar systems. IEE Proc. Radar Sonar Navig. 2005, 152, 105–106. [Google Scholar] [CrossRef]
- Griffiths, H.D.; Baker, C.J. Passive coherent location radar systems. part 1: performance prediction. IEE Proc. Radar Sonar Navig. 2005, 152, 153–159. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A. Spaceborne bi- and multistatic SAR: potential and challenges. IEE Proc. Radar Sonar Navig. 2006, 153, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Cherniakov, M. Bistatic Radar: Principles and Practice; John Wiley & Sons: Chichester, England, UK, 2007. [Google Scholar]
- Cherniakov, M. Bistatic Radar: Emerging Technology; John Wiley & Sons: Chichester, England, UK, 2008. [Google Scholar]
- Wang, W.Q. Approach of adaptive synchronization for bistatic SAR real-time imaging. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2695–2700. [Google Scholar] [CrossRef]
- Walterscheid, I.; Brenner, A.R.; Ender, J.H.G. Results on bistatic synthetic aperture radar. Electron. Lett. 2004, 40, 1224–1225. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mulgrew, B. Bistatic SAR ATR. IET Radar Sonar Navig. 2007, 1, 459–469. [Google Scholar] [CrossRef]
- Martorella, M.; Palmer, J.; Homer, J.; Littleton, B.; Longstaff, I.D. On bistatic inverse synthetic aperture radar. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1125–1134. [Google Scholar] [CrossRef]
- Cetin, M.; Lanterman, A.D. Region-enhanced passive radar imaging. IEE Proc. Radar Sonar Navig. 2005, 152, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Xu, J.; Peng, N.Y.; Xia, X.G. Bistatic linear antenna array SAR for moving target detection, location, and imaging with two passive airborne radars. IEEE Trans. Geosci. Remote Sens. 2007, 45, 554–565. [Google Scholar] [CrossRef]
- Thomas, J.M.; Griffiths, H.D.; Baker, C.J. Ambiguity function analysis of digital radio mondiale signals for hf passive bistatic radar. Electron. Lett. 2007, 42, 1482–1483. [Google Scholar] [CrossRef]
- Morabito, A.N.; Meyer, M.G.; Sahr, J.D. Improved computational performance for distributed passive radar processing through channelised data. IEE Proc. Radar Sonar Navig. 2005, 152, 179–184. [Google Scholar] [CrossRef]
- Himed, B.; Soumekh, M. Synthetic aperture radar–moving target indicator processing of multi-channel airborne radar measurement data. IEE Proc. Radar Sonar Navig. 2006, 153, 532–543. [Google Scholar] [CrossRef]
- Howland, P.E.; Maksimiuk, D.; Reitsma, G. FM radio based bistatic radar. IEE Proc. Radar Sonar Navig. 2005, 152, 107–115. [Google Scholar] [CrossRef]
- Saini, R.; Cherniakov, M. DTV signal ambiguity function analysis for radar application. IEE Proc. Radar Sonar Navig. 2005, 152, 133–142. [Google Scholar] [CrossRef]
- Poullin, D. Passive detection using digital broadcasters (DAB, DVB) with COFDM modulation. IEE Proc. Radar Sonar Navig. 2005, 152, 143–152. [Google Scholar] [CrossRef]
- Antoniou, M.; Saini, R.; Cherniakov, M. Results of a space-surface bistatic SAR image formation algorithm. IEEE Trans. Geosci. Remote Sens. 2005, 45, 3359–3371. [Google Scholar] [CrossRef]
- Zuffada, C.; Zavorotny, V. Coherence time and statistical properties of the GPS signal scattered off the ocean surface and their impact on the accuracy of remote sensing of sea surface topography and winds. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, Sydney, NSW, 2001; pp. 3332–3334.
- Gleason, S. Fading statistics of bistatically scattered GPS signals detected from ocean and land in low earth orbit. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007; pp. 5097–5100.
- Coatanhay, A.; Khenchaf, A. Model of GPS signal from the ocean based on an electromagnetic scattering theory: a two scale model (TSM) approach. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005; pp. 3200–3203.
- Zavorotny, V.Z.; Voronovich, G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef]
- Zuffada, C.; Fung, A.; Parker, J.; Okolocanyi, M.; Huang, E. Polarization properties of the GPS signal scattered off a wind-driven ocean. IEEE Trans. Antenna Propag. 2004, 52, 172–188. [Google Scholar] [CrossRef]
- He, X.; Cherniakov, M.; Zeng, T. Signal detectability in SS-BSAR with GNSS non-cooperative transmitter. IEE Proc. Radar Sonar Navig. 2005, 152, 124–132. [Google Scholar] [CrossRef]
- He, X.; Zeng, T.; Cherniakov, M. Interference level evaluation in SS-BSAR with GNSS non-cooperative transmitter. IEE Electron. Lett. 2004, 40, 1222–1223. [Google Scholar] [CrossRef]
- Burkholder, R.J.; Guota, I.J.; Johnson, J.T. Comparison of monostatic and bistatic radar images. IEEE Trans. Antenna Propag. Mag. 2003, 45, 41–50. [Google Scholar] [CrossRef]
- Kuang, K.; Jin, Y.Q. Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm. IEEE Trans. Antenna Propag. 2007, 55, 2302–2312. [Google Scholar] [CrossRef]
- Griffiths, H.D.; Baker, C.J. The signal and interference environment in passive bistatic radar. In Proceedings of Information, Decision and Control Conference, Adelaide, Australia, 2007; pp. 1–10.
- Balke, F. Field test of bistatic forward-looking synthetic aperture radar. In Proceedings of IEEE Radar Conference, Washington, DC, USA, 2005; pp. 424–429.
- Soumekh, M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Trans. Signal Process. 1991, 39, 2044–2055. [Google Scholar] [CrossRef]
- Younis, M.; Fischer, C.; Wiesbeck, W. Digital beamforming in SAR systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1735–1739. [Google Scholar] [CrossRef]
- Ender, J. Space-time processing for multichannel synthetic aperture radar. Electron. Commun. Eng. J. 1999, 11, 29–38. [Google Scholar] [CrossRef]
- Herbert, G.M.; Richardson, P.G. Benefits of space-time adaptive processing (STAP) in bistatic airborne radar. IEE Proc. Radar Sonar Navig. 2003, 150, 13–17. [Google Scholar] [CrossRef]
- Capraro, C.T.; Capraro, G.T.; Maio, A.D.; Farina, A.; Wicks, M. Demonstration of knowledge-aided space-time adaptive processing using measured airborne data. IEE Proc. Radar Sonar Navig. 2006, 153, 487–494. [Google Scholar] [CrossRef]
- Zheng, T.; Cherniakov, M.; Long, T. Generalized approach to resolution analysis in BSAR. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 461–474. [Google Scholar] [CrossRef]
- Henderson, F.M.; Xia, Z.G. SAR applications in human settlement detection population and urban land use pattern analysis: a status report. IEEE Trans. Geosci. Remote Sens. 1997, 35, 79–85. [Google Scholar] [CrossRef]
- Kouchi, K.; Yamazaki, F. Characteristics of tsunami-affected areas in moderate-resolution satellite images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1650–1657. [Google Scholar] [CrossRef]
- Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A split-based approach to unsupervised change detection in large-size multitemporal images: application to tsunami-damage assessment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1658–1679. [Google Scholar] [CrossRef]
- Wang, W.Q. Conceptual design of near-space radar for ocean remote sensing. In Proceedings of International Workshop Advances SAR Oceanography from ENVISAT and ERS Missions, Rome, Italy, 2008; pp. 1–5.
- Wang, W.Q. Near-Space Passive Remote Sensing for Homeland Security: Potential and Challenges. In Proceedings of XXI International Society for Photogrammetry Remote Sensing, Beijing, China, 2008; pp. 1021–1027.
- Younis, M.; Metzig, R.; Krieger, G. Performance prediction of a phase synchronization link for bistatic SAR. IEEE Geosci. Remote Sens. Lett. 2006, 3, 429–433. [Google Scholar] [CrossRef]
- Wang, W.Q.; Ding, C.B.; Liang, X.D. Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems. IET Radar Sonar Navig. 2008, 2, 1–11. [Google Scholar] [CrossRef]
- D’Errico, M.; Moccia, A. Attitude and antenna pointing design of bistatic radar formations. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 949–960. [Google Scholar] [CrossRef]
- Purdy, D.S. Receiver antenna scan rate requirements needed to implement pulse chasing in a bistatic radar receiver. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 285–288. [Google Scholar] [CrossRef]
- Wang, W.Q. Clock timing jitter analysis and compensation for bistatic synthetic aperture radar systems. Fluct. Noise Lett. 2007, 7, 341–350. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Bamler, R. A comparison of range-Doppler and wavenumber domain SAR focus algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Sanz-Marcos, J.; Mallorqui, J.J. Bistatic parasitic SAR processor evaluation. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 2004; pp. 3666–3669.
- Wong, F.H.; Yeo, T.S. New applications of nonlinear chirp scaling in SAR data processing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 946–953. [Google Scholar] [CrossRef]
- Currie, A.; Brown, M.A. Wide-swath SAR. IEE Proc. Radar Sonar Navig. 1992, 139, 122–135. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Callaghan, G.D.; Longsta, I.D. Wide-swath space-borne SAR using a quad-element array. IEEE Proc. Radar Sonar Navig. 1999, 146, 159–165. [Google Scholar] [CrossRef]
- Bellettini, A.; Pinto, M.A. Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna. IEEE J. Oceanic Eng. 2002, 27, 780–789. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, B.S.; Desai, N.M.; Gujraty, V.R. SAR for disaster management. IEEE Trans. Aerosp. Electron. Syst. 1983, 19, 389–397. [Google Scholar] [CrossRef]
- Wang, C.T.; Chen, K.S.; Lee, H.W.; Lee, J.S.; Boerner, W.M.; Wang, R.W.; Wan, H.S. Disaster monitoring and environmental alert in Taiwan by repeat-pass spaceborne SAR. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007; pp. 609–612.
- Smith, W.H.F.; Scharroo, R.; Titov, V.V.; Arcas, D.; Arbic, B.K. Satellite altimeters measure tsunami. Oceanography 2005, 18, 11–13. [Google Scholar] [CrossRef]
- Troitskaya, T.; Yuliya, I.; Ermakov, F.; Stanislav, A. Manifestations of the Indian ocean tsunami of 2004 in satellite nadir-viewing radar backscatter variations. Geophys. Rev. Lett. 2006, 33, 4607.1–4607.5. [Google Scholar] [CrossRef]
- Alpers, W.R. Theory of radar imaging of internal waves. Nature 1985, 314, 245–247. [Google Scholar] [CrossRef]
- Gebert, N.; Krieger, G.; Moreira, A. Digital beamforming for HRWS-SAR imaging: system design, performance and optimization strategies. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, Denver, CO, USA, 2006; pp. 1836–1839.
- Gebert, N.; Krieger, G.; Moreira, A. SAR signal reconstruction from non-uniform displaced phase centre sampling in the presence of perturbations. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, Seoul, Kroea, 2005; pp. 1034–1037.
- Krieger, G.; Moreira, A. Potentials of digital beamforming in bi- and multistatic SAR. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, Toulouse, France, 2003; pp. 527–529.
- Fornaro, G.; Franceschetti, G.; Pema, S. Motion compensation errors: effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1338–1351. [Google Scholar] [CrossRef]
- Shin, H.S.; Lim, J.T. Motion error correction of range migration algorithm for aircraft spotlight SAR imaging. IET Radar Sonar Navig. 2008, 2, 79–85. [Google Scholar] [CrossRef]
- Weiβ, M. Transponder for calibrating bistatic SAR systems. In Proceedings of European Conference on SAR, Ulm, Germany, 2004; pp. 925–928.
- Weiβ, M. A new transponder technique for calibrating wideband imaging radars. In Proceedings of European Conference on SAR, Cologne, Germany, 2002; pp. 493–495.
- Berens, P. Estimation of carrier track for high precision SAR imaging using active reference reflectors. In Proceedings of European Conference on SAR, Cologne, Germany, 2002; pp. 241–244.
- Potsis, A.; Reigber, A.; Mittermayer, J.; Moreira, A.; Uzunoglou, N. Sub-aperture algorithm for motion compensation improvement in wide-beam SAR data processing. Electron. Lett. 2001, 37, 1405–1407. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, W.-Q.; Cai, J.; Peng, Q. Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis. Remote Sens. 2010, 2, 717-739. https://doi.org/10.3390/rs2030717
Wang W-Q, Cai J, Peng Q. Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis. Remote Sensing. 2010; 2(3):717-739. https://doi.org/10.3390/rs2030717
Chicago/Turabian StyleWang, Wen-Qin, Jingye Cai, and Qicong Peng. 2010. "Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis" Remote Sensing 2, no. 3: 717-739. https://doi.org/10.3390/rs2030717
APA StyleWang, W. -Q., Cai, J., & Peng, Q. (2010). Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis. Remote Sensing, 2(3), 717-739. https://doi.org/10.3390/rs2030717