An Optimized Diffuse Kalman Filter for Frequency and Phase Synchronization in Distributed Radar Networks
<p>(<b>a</b>) A schematic diagram of wireless synchronization for distributed UAV-borne radars, with <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> as an example. Each colored line represents the transmitted waveform propagating toward a far field point target. (<b>b</b>) The transmitted signals are coherently superimposed at the point target.</p> "> Figure 2
<p>Radiated normalized energy of 5 radars randomly arranged in the x-y plane, with the statistical beamforming gain at <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (indicated by a red cross symbol), is designated as the evaluation metric for synchronization performance. (<b>a</b>) Pattern of synchronized radars. (<b>b</b>) Pattern of unsynchronized radars with <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>φ</mi> </msub> <mo>=</mo> <msup> <mn>20</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> phase errors.</p> "> Figure 3
<p>Diagram of the diffusion Kalman filter.</p> "> Figure 4
<p>Normalized statistical beamforming gain with phase variances <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>ϕ</mi> </msub> </semantics></math>.</p> "> Figure 5
<p>Normalized statistical beamforming gain with frequency variances <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <msub> <mi>f</mi> <mi>D</mi> </msub> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>f</mi> </msub> </mrow> </semantics></math> and time <span class="html-italic">t</span>.</p> "> Figure 6
<p>The network topology consists of <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> distributed radar nodes labeled 1–20, where the dotted lines represent the wireless synchronization links.</p> "> Figure 7
<p>Frequency synchronization deviations (in Hz) over 15 iterations for DFPC, KF-DFPC, Metropolis-based DKF, and ODKF methods, under conditions <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> Hz and <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <msub> <mi>f</mi> <mi>D</mi> </msub> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> Hz. Each colored line represents the frequency deviation of a different node.</p> "> Figure 8
<p>Phase synchronization deviations (in degree) over 15 iterations for DFPC, KF-DFPC, Metropolis-based DKF, and ODKF methods, under condition <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>φ</mi> </msub> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math>. Each colored line represents the phase deviation of a different node.</p> "> Figure 9
<p>Comparison of normalized MSD for frequency synchronization using DKF, DFPC, KF-DFPC, and FA-DKF with different <math display="inline"><semantics> <mi>γ</mi> </semantics></math> value.</p> "> Figure 10
<p>Comparison of normalized MSD for phase synchronization using DKF, DFPC, KF-DFPC, and FA-DKF with different <math display="inline"><semantics> <mi>γ</mi> </semantics></math> value.</p> "> Figure 11
<p>Eigenvalue distributions of the diffusion matrix <math display="inline"><semantics> <mi mathvariant="bold">C</mi> </semantics></math>. The red dotted line indicates the second largest eigenvalue.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
3. Frequency and Phase Synchronization Method Based on Diffuse Kalman Filter
3.1. DKF-Based Frequency and Phase Synchronization
Algorithm 1 DKF-based frequency and phase synchronization. |
|
3.2. ODKF Optimization for Diffusion Matrix
4. Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hügler, P.; Grebner, T.; Knill, C.; Waldschmidt, C. UAV-borne 2-D and 3-D radar-based grid mapping. IEEE Geosci. Remote Sens. Lett. 2020, 19, 3500405. [Google Scholar] [CrossRef]
- Noviello, C.; Esposito, G.; Catapano, I.; Soldovieri, F. Multilines imaging approach for mini-UAV radar imaging system. IEEE Geosci. Remote Sens. Lett. 2021, 19, 3507105. [Google Scholar] [CrossRef]
- Liang, J.; Liang, Q. Design and analysis of distributed radar sensor networks. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1926–1933. [Google Scholar] [CrossRef]
- Nanzer, J.A.; Mghabghab, S.R.; Ellison, S.M.; Schlegel, A. Distributed phased arrays: Challenges and recent advances. IEEE Trans. Microw. Theory Tech. 2021, 69, 4893–4907. [Google Scholar] [CrossRef]
- Li, L.; Yan, J.; Sun, Y.; Wang, Z.; Li, H.; Wang, Y.; Ding, Z. Multistatic UAV SAR Joint Synchronization Based on Multiple Direct Wave Pulses Exchange. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4005705. [Google Scholar] [CrossRef]
- Mudumbai, R.; Barriac, G.; Madhow, U. On the feasibility of distributed beamforming in wireless networks. IEEE Trans. Wirel. Commun. 2007, 6, 1754–1763. [Google Scholar] [CrossRef]
- Wang, W.-Q. GPS-based time & phase synchronization processing for distributed SAR. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1040–1051. [Google Scholar]
- Lee, J.C.; Cho, S.J.; Jeon, Y.H.; Jeon, J.W. Dynamic drift compensation for the distributed clock in EtherCAT. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 1872–1876. [Google Scholar]
- Sun, Y.; Chen, F.; Lu, Z.; Wang, F. Anti-jamming method and implementation for GNSS receiver based on array antenna rotation. Remote Sens. 2022, 14, 4774. [Google Scholar] [CrossRef]
- Ouassal, H.; Yan, M.; Nanzer, J.A. Decentralized frequency alignment for collaborative beamforming in distributed phased arrays. IEEE Trans. Wirel. Commun. 2021, 20, 6269–6281. [Google Scholar] [CrossRef]
- Schenato, L.; Gamba, G. A distributed consensus protocol for clock synchronization in wireless sensor network. In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; pp. 2289–2294. [Google Scholar]
- Nanzer, J.A.; Schmid, R.L.; Comberiate, T.M.; Hodkin, J.E. Open-loop coherent distributed arrays. IEEE Trans. Microw. Theory Tech. 2017, 65, 1662–1672. [Google Scholar] [CrossRef]
- Prager, S.; Haynes, M.S.; Moghaddam, M. Wireless subnanosecond RF synchronization for distributed ultrawideband software-defined radar networks. IEEE Trans. Microw. Theory Tech. 2020, 68, 4787–4804. [Google Scholar] [CrossRef]
- Kenney, R.H.; McDaniel, J.W. All-digital carrier frequency synchronization for distributed radar sensor networks. In Proceedings of the IEEE/MTT-S International Microwave Symposium-IMS 2024, Washington, DC, USA, 16–21 June 2024; pp. 493–496. [Google Scholar]
- Kenney, R.H.; Metcalf, J.G.; McDaniel, J.W. Wireless distributed frequency and phase synchronization for mobile platforms in cooperative digital radar networks. IEEE Trans. Radar Syst. 2024, 2, 268–287. [Google Scholar] [CrossRef]
- Rashid, M.; Nanzer, J.A. Frequency and phase synchronization in distributed antenna arrays based on consensus averaging and Kalman filtering. IEEE Trans. Wirel. Commun. 2022, 22, 2789–2803. [Google Scholar] [CrossRef]
- Rashid, M.; Nanzer, J.A. High accuracy distributed Kalman filtering for synchronizing frequency and phase in distributed phased arrays. IEEE Signal Process. Lett. 2023, 30, 688–692. [Google Scholar] [CrossRef]
- Xiao, L.; Boyd, S.; Kim, S.-J. Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 2007, 67, 33–46. [Google Scholar] [CrossRef]
- Yang, S.; Jakobsson, A.; Yi, W. Moving target detection using a distributed MIMO radar system with synchronization errors. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5107417. [Google Scholar] [CrossRef]
- Shandi, N.; Merlo, J.M.; Nanzer, J.A. Wireless Picosecond Time Synchronization for Distributed Antenna Arrays with Dynamic Connectivity. arXiv 2024, arXiv:2410.17356. [Google Scholar]
- Dagres, I.; Polydoros, A.; Moustakas, A. Performance analysis of distributed beamforming in wireless networks: The effect of synchronization and Doppler spread. In Proceedings of the IEEE Military Communications Conference (MILCOM), San Diego, CA, USA, 29 November–2 December 2021; pp. 957–962. [Google Scholar]
- Wang, W.; Zhang, W. Jittering effects analysis and beam training design for UAV millimeter wave communications. IEEE Trans. Wirel. Commun. 2021, 21, 3131–3146. [Google Scholar] [CrossRef]
- Bisgaard, T.M.; Sasvári, Z. Characteristic Functions and Moment Sequences: Positive Definiteness in Probability; Nova Publishers: New York, NY, USA, 2000. [Google Scholar]
- Sayed, A.H.; Tu, S.-Y.; Chen, J.; Zhao, X.; Towfic, Z.J. Diffusion strategies for adaptation and learning over networks: An examination of distributed strategies and network behavior. IEEE Signal Process. Mag. 2013, 30, 155–171. [Google Scholar] [CrossRef]
- Cattivelli, F.S.; Sayed, A.H. Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Autom. Control 2010, 55, 2069–2084. [Google Scholar] [CrossRef]
- Perron, O. Zur Theorie der Matrices. Math. Ann. 1907, 64, 248–263. [Google Scholar] [CrossRef]
- Boyd, S.; Diaconis, P.; Xiao, L. Fastest mixing Markov chain on a graph. SIAM Rev. 2004, 46, 667–689. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, X.; Wang, J.; Yang, B.; Sun, J. An Optimized Diffuse Kalman Filter for Frequency and Phase Synchronization in Distributed Radar Networks. Remote Sens. 2025, 17, 497. https://doi.org/10.3390/rs17030497
Geng X, Wang J, Yang B, Sun J. An Optimized Diffuse Kalman Filter for Frequency and Phase Synchronization in Distributed Radar Networks. Remote Sensing. 2025; 17(3):497. https://doi.org/10.3390/rs17030497
Chicago/Turabian StyleGeng, Xueyin, Jun Wang, Bin Yang, and Jinping Sun. 2025. "An Optimized Diffuse Kalman Filter for Frequency and Phase Synchronization in Distributed Radar Networks" Remote Sensing 17, no. 3: 497. https://doi.org/10.3390/rs17030497
APA StyleGeng, X., Wang, J., Yang, B., & Sun, J. (2025). An Optimized Diffuse Kalman Filter for Frequency and Phase Synchronization in Distributed Radar Networks. Remote Sensing, 17(3), 497. https://doi.org/10.3390/rs17030497