A Novel Gridless Non-Uniform Linear Array Direction of Arrival Estimation Approach Based on the Improved Alternating Descent Conditional Gradient Algorithm for Automotive Radar System
"> Figure 1
<p>Schematic diagrams of the models for ULA, RLA and CLA used in the experiments. The circles in the figure represent the positions of the array elements. (<b>a</b>) The ULA. (<b>b</b>) The RLA. (<b>c</b>) The CLA.</p> "> Figure 2
<p>Comparison of the RMSE of CS-ADCG, ANM, IST, and MUSIC algorithms under different SNRs for the three types of arrays. (<b>a</b>) The ULA. (<b>b</b>) The RLA. (<b>c</b>) The CLA.</p> "> Figure 3
<p>Comparison of the success rate of CS-ADCG, ANM, IST, and MUSIC algorithms under different SNRs for the three types of arrays. (<b>a</b>) The ULA. (<b>b</b>) The RLA. (<b>c</b>) The CLA.</p> "> Figure 4
<p>Comparison of the RMSE of CS-ADCG, ANM, IST, and MUSIC algorithms under different angular intervals for the three types of arrays. (<b>a</b>) The ULA. (<b>b</b>) The RLA. (<b>c</b>) The CLA.</p> "> Figure 5
<p>Comparison of the success rate of CS-ADCG, ANM, IST, and MUSIC algorithms under different angular intervals for the three types of arrays. (<b>a</b>) The ULA. (<b>b</b>) The RLA. (<b>c</b>) The CLA.</p> "> Figure 6
<p>Comparison of the RMSE of CS-ADCG, ANM, IST, and MUSIC algorithms under different sparsities for the three types of arrays. (<b>a</b>) The ULA. (<b>b</b>) The RLA. (<b>c</b>) The CLA.</p> "> Figure 7
<p>Comparison of the success rate of CS-ADCG, ANM, IST, and MUSIC algorithms under different sparsities for the three types of arrays. (<b>a</b>) The ULA. (<b>b</b>) The RLA. (<b>c</b>) The CLA.</p> "> Figure 8
<p>The reconstruction result of two corner reflectors. (<b>a</b>–<b>c</b>) The angle interval between the corner reflectors is 3°. (<b>d</b>–<b>f</b>) The angle interval between the corner reflectors is 2°. (<b>g</b>–<b>i</b>) The angle interval between the corner reflectors is 1°.</p> ">
Abstract
:1. Introduction
2. Automotive MMW Radar Signal Model and the ADCG Algorithm
2.1. Automotive MMW Radar Signal Model
2.2. The ADCG Algorithm for Gridless Sparse Reconstruction
Algorithm 1 Alternating descent conditional gradient method (ADCG). |
Input: K, , , |
1: Compute gradient of loss: |
2: Compute next source: |
3: Update support: |
4: Coordinate descent on nonconves objective: |
5: Repeated : |
6: Compute weights: |
7: Prune support: |
8: Locally improve support: |
Output: |
3. CS-ADCG Algorithm for Gridless Automotive MMW Radar DOA Estimation
Algorithm 2 CS-ADCG. |
Input: K, , , , |
1: Compute next source: |
2: Update support: |
3: Compute weights: |
4: Update residual: |
5: Coordinate descent on non-conves objective: |
6: Locally improve support: |
Output: |
4. Simulation Experiments
4.1. Accuracy and Robustness Analysis
4.2. Resolution Analysis
4.3. Comparison of Different Sparsities
4.4. Efficiency Comparison Under Different Numbers of Array Elements
5. Real Data Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levy-Israel, M.; Bilik, I.; Tabrikian, J. MCRB on DOA estimation for automotive MIMO radar in the presence of multipath. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4831–4843. [Google Scholar] [CrossRef]
- Baral, A.B.; Torlak, M. Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars. IEEE J. Sel. Top. Signal Process. 2021, 15, 980–995. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Zhang, Q.; Liu, B. Joint Customer Assignment, Power Allocation, and Subchannel Allocation in a UAV-Based Joint Radar and Communication Network. IEEE Internet Things J. 2024, 11, 29643–29660. [Google Scholar] [CrossRef]
- Zhang, H.; Weijian, L.; Zhang, Q.; Taiyong, F. A robust joint frequency spectrum and power allocation strategy in a coexisting radar and communication system. Chin. J. Aeronaut. 2024, 37, 393–409. [Google Scholar] [CrossRef]
- Sun, S.; Petropulu, A.P.; Poor, H.V. MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges. IEEE Signal Process. Mag. 2020, 37, 98–117. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, W.; Zhang, X.; Wang, X.; Amin, M.G. Enhanced Automotive Sensing Assisted by Joint Communication and Cognitive Sparse MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4782–4799. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.D. 4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach. IEEE J. Sel. Top. Signal Process. 2021, 15, 879–891. [Google Scholar] [CrossRef]
- Engels, F.; Heidenreich, P.; Wintermantel, M.; Stäcker, L.; Al Kadi, M.; Zoubir, A.M. Automotive radar signal processing: Research directions and practical challenges. IEEE J. Sel. Top. Signal Process. 2021, 15, 865–878. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Yang, S.; Lu, W. DOA estimation method based on EMD and MUSIC for mutual interference in FMCW automotive radars. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Ding, X.; Xu, W.; Wang, Y.; Li, Y.; Huang, Y. Wideband 2D DoA Estimation with Uniform Circular Array. IEEE Sens. J. 2024, 24, 11585–11598. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Kim, S.; Oh, D.; Lee, J. Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1710–1713. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 2007, 35, 2313–2351. [Google Scholar]
- Yuan, X.; Brady, D.J.; Katsaggelos, A.K. Snapshot compressive imaging: Theory, algorithms, and applications. IEEE Signal Process. Mag. 2021, 38, 65–88. [Google Scholar] [CrossRef]
- Tan, Z.; Eldar, Y.C.; Nehorai, A. Direction of arrival estimation using co-prime arrays: A super resolution viewpoint. IEEE Trans. Signal Process. 2014, 62, 5565–5576. [Google Scholar] [CrossRef]
- Li, W.T.; Lei, Y.J.; Shi, X.W. DOA estimation of time-modulated linear array based on sparse signal recovery. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2336–2340. [Google Scholar] [CrossRef]
- Leite, W.S.; de Lamare, R.C. List-based OMP and an enhanced model for DOA estimation with nonuniform arrays. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4457–4464. [Google Scholar] [CrossRef]
- Delgado, A.V.; Sánchez-Fernández, M.; Venturino, L.; Tulino, A. Super-resolution in automotive pulse radars. IEEE J. Sel. Top. Signal Process. 2021, 15, 913–926. [Google Scholar] [CrossRef]
- Amani, N.; Jansen, F.; Filippi, A.; Ivashina, M.V.; Maaskant, R. Sparse automotive MIMO radar for super-resolution single snapshot DOA estimation with mutual coupling. IEEE Access 2021, 9, 146822–146829. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, S.; Cai, X.; Nie, L.; Wang, M.; Shi, J.; Cui, G. Dual-domain Feature-oriented Interference Suppression for FMCW Automotive Radar. IEEE Sens. J. 2024, 24, 6405–6417. [Google Scholar] [CrossRef]
- Chi, Y.; Scharf, L.L.; Pezeshki, A.; Calderbank, A.R. Sensitivity to basis mismatch in compressed sensing. IEEE Trans. Signal Process. 2011, 59, 2182–2195. [Google Scholar] [CrossRef]
- Herman, M.A.; Strohmer, T. General deviants: An analysis of perturbations in compressed sensing. IEEE J. Sel. Top. Signal Process. 2010, 4, 342–349. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process. 2012, 61, 38–43. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 2006, 59, 1207–1223. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y. Sparse Bayesian DOA estimation using hierarchical synthesis lasso priors for off-grid signals. IEEE Trans. Signal Process. 2020, 68, 872–884. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L. Enhancing sparsity and resolution via reweighted atomic norm minimization. IEEE Trans. Signal Process. 2015, 64, 995–1006. [Google Scholar] [CrossRef]
- Chu, Y.; Wei, Z.; Yang, Z. New reweighted atomic norm minimization approach for line spectral estimation. Signal Process. 2023, 206, 108897. [Google Scholar] [CrossRef]
- Tang, G.; Bhaskar, B.N.; Shah, P.; Recht, B. Compressed sensing off the grid. IEEE Trans. Inf. Theory 2013, 59, 7465–7490. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Stoica, P.; Xie, L. Sparse methods for direction-of-arrival estimation. In Academic Press Library in Signal Processing, Volume 7; Elsevier: Amsterdam, The Netherlands, 2018; pp. 509–581. [Google Scholar]
- Zhang, Z.; Wang, Y.; Tian, Z. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization. Signal Process. 2019, 163, 95–106. [Google Scholar] [CrossRef]
- Tang, W.G.; Jiang, H.; Zhang, Q. Range-angle decoupling and estimation for FDA-MIMO radar via atomic norm minimization and accelerated proximal gradient. IEEE Signal Process. Lett. 2020, 27, 366–370. [Google Scholar] [CrossRef]
- Lau, K.H.; Ng, C.K.; Song, J. Low-Complex Single-Snapshot DoA-Estimation With Higher Degree of Atomic Separation-Freedom in a MU-MIMO System Aided by Prior Information. IEEE Signal Process. Lett. 2023, 30, 349–353. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Wang, W.Q.; So, H.C. DOA estimation of coherent sources using coprime array via atomic norm minimization. IEEE Signal Process. Lett. 2022, 29, 1312–1316. [Google Scholar] [CrossRef]
- Chu, Y.; Wei, Z.; Yang, Z.; Ng, D.W.K. Channel Estimation for RIS-Aided MIMO Systems: A Partially Decoupled Atomic Norm Minimization Approach. IEEE Trans. Wirel. Commun. 2024, 23, 16048–16061. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, X. Two-dimensional off-grid DOA estimation using unfolded parallel coprime array. IEEE Commun. Lett. 2018, 22, 2495–2498. [Google Scholar] [CrossRef]
- Shen, F.F.; Liu, Y.M.; Zhao, G.H.; Chen, X.Y.; Li, X.P. Sparsity-based off-grid DOA estimation with uniform rectangular arrays. IEEE Sens. J. 2018, 18, 3384–3390. [Google Scholar] [CrossRef]
- Badiu, M.A.; Hansen, T.L.; Fleury, B.H. Variational Bayesian inference of line spectra. IEEE Trans. Signal Process. 2017, 65, 2247–2261. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. A discretization-free sparse and parametric approach for linear array signal processing. IEEE Trans. Signal Process. 2014, 62, 4959–4973. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, W.P.; Yan, J. A fast gridless covariance matrix reconstruction method for one-and two-dimensional direction-of-arrival estimation. IEEE Sens. J. 2017, 17, 4916–4927. [Google Scholar] [CrossRef]
- Wagner, M.; Park, Y.; Gerstoft, P. Gridless DOA estimation and root-MUSIC for non-uniform linear arrays. IEEE Trans. Signal Process. 2021, 69, 2144–2157. [Google Scholar] [CrossRef]
- Boyd, N.; Schiebinger, G.; Recht, B. The alternating descent conditional gradient method for sparse inverse problems. SIAM J. Optim. 2017, 27, 616–639. [Google Scholar] [CrossRef]
- Kakkavas, A.; Wymeersch, H.; Seco-Granados, G.; García, M.H.C.; Stirling-Gallacher, R.A.; Nossek, J.A. Power allocation and parameter estimation for multipath-based 5G positioning. IEEE Trans. Wirel. Commun. 2021, 20, 7302–7316. [Google Scholar] [CrossRef]
- Huang, J.; Sun, M.; Ma, J.; Chi, Y. Super-resolution image reconstruction for high-density three-dimensional single-molecule microscopy. IEEE Trans. Comput. Imaging 2017, 3, 763–773. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 2004, 57, 1413–1457. [Google Scholar] [CrossRef]
- Frank, M.; Wolfe, P. An algorithm for quadratic programming. Nav. Res. Logist. Q. 1956, 3, 95–110. [Google Scholar] [CrossRef]
Number | 20 | 60 | 100 | 150 | 200 | |
ULA | CS-ADCG | 0.70 | 0.76 | 1.01 | 1.58 | 1.95 |
ANM | 48.07 | 78.25 | 225.04 | 837.72 | 2730.59 | |
IST | 1.39 | 2.81 | 3.97 | 6.33 | 9.74 | |
MUSIC | 0.41 | 0.94 | 2.04 | 4.43 | 8.48 | |
RA | CS-ADCG | 0.77 | 1.11 | 1.54 | 2.00 | 2.11 |
IST | 1.48 | 3.01 | 6.14 | 7.29 | 12.05 | |
MUSIC | 0.46 | 1.07 | 2.29 | 4.62 | 9.13 | |
Number | 11 | 17 | 20 | 25 | 30 | |
CPA | CS-ADCG | 0.50 | 0.52 | 0.51 | 0.63 | 0.69 |
ANM | 204.28 | 2567.29 | 9735.35 | >10 h | >40 h | |
IST | 1.29 | 1.39 | 1.45 | 1.74 | 1.87 | |
MUSIC | 0.41 | 0.43 | 0.45 | 0.57 | 0.62 |
CS-ADCG | ANM | IST | MUSIC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Angle Interval of 3° | 3.03 | 3.05 | 3.01 | 2.98 | 2.98 | 3.02 | 3.00 | 3.00 | 3.00 | 2.90 | 2.90 | 3.00 |
Angle Interval of 2° | 1.98 | 1.99 | 1.98 | 2.03 | 2.04 | 2.03 | 2.00 | 2.10 | 2.00 | 1.90 | 2.10 | 1.90 |
Angle Interval of 1° | 0.99 | 1.03 | 1.04 | 1.05 | 1.03 | 1.09 | ∖ | ∖ | ∖ | ∖ | ∖ | ∖ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, M.; Fan, Y.; Zhang, Y.; Zhang, Z.; Zhao, J.; Zhang, B. A Novel Gridless Non-Uniform Linear Array Direction of Arrival Estimation Approach Based on the Improved Alternating Descent Conditional Gradient Algorithm for Automotive Radar System. Remote Sens. 2025, 17, 303. https://doi.org/10.3390/rs17020303
Shao M, Fan Y, Zhang Y, Zhang Z, Zhao J, Zhang B. A Novel Gridless Non-Uniform Linear Array Direction of Arrival Estimation Approach Based on the Improved Alternating Descent Conditional Gradient Algorithm for Automotive Radar System. Remote Sensing. 2025; 17(2):303. https://doi.org/10.3390/rs17020303
Chicago/Turabian StyleShao, Mingxiao, Yizhe Fan, Yan Zhang, Zhe Zhang, Jie Zhao, and Bingchen Zhang. 2025. "A Novel Gridless Non-Uniform Linear Array Direction of Arrival Estimation Approach Based on the Improved Alternating Descent Conditional Gradient Algorithm for Automotive Radar System" Remote Sensing 17, no. 2: 303. https://doi.org/10.3390/rs17020303
APA StyleShao, M., Fan, Y., Zhang, Y., Zhang, Z., Zhao, J., & Zhang, B. (2025). A Novel Gridless Non-Uniform Linear Array Direction of Arrival Estimation Approach Based on the Improved Alternating Descent Conditional Gradient Algorithm for Automotive Radar System. Remote Sensing, 17(2), 303. https://doi.org/10.3390/rs17020303