Investigating LiDAR Metrics for Old-Growth Beech- and Spruce-Dominated Forest Identification in Central Europe
<p>Locations of sample plots in the Bavarian Forest National Park. The image is a true-color composite (band 432) of Sentinel-2A imagery acquired on 1 August 2020.</p> "> Figure 2
<p>The frequency of the average stand age of the old-growth and second-growth plots.</p> "> Figure 3
<p>The ranking and relative importance of the selected LiDAR metrics in old-growth forest classification generated through mean decrease accuracy (MDA) analysis. The top-ranked metrics are the metrics with the highest decreases in the accuracy coefficient. The asterisk (*) indicates the top three metrics used as the input predictors in the classification. Metrics with the □ symbol are standard metrics, and metrics with the ▲ symbol are structural metrics.</p> "> Figure 4
<p>Box plots of the Rumple index (<b>a</b>), vertical complexity index (VCI) (<b>b</b>), and gap fraction (<b>c</b>) between the old- and second-growth stages. All of the values in each selected metric were derived from the canopy height model (CHM) in the sample plot, as all the selected metrics are structural diversity metrics. Each metric can significantly distinguish old-growth from second-growth forests, determined by the Wilcoxon test <span class="html-italic">p</span>-value of < 0.05.</p> "> Figure 5
<p>The SHAP summary plot of three important LiDAR metrics for discriminating old- and second-growth forests. The positive axis indicates a greater probability of a feature value to identify a class. In contrast, the negative axis indicates that the feature value has a weak contribution to identifying a class. For example, in the old-growth class, the Rumple index’s high values were distributed on the positive axis, demonstrating a high probability of old-growth emergence prediction in the classification. On the contrary, the Rumple index’s low values were distributed on the positive axis in the second-growth class, indicating that low values of the Rumple index are good predictors for the second-growth class.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Stand Age Estimation
2.3. Airborne LiDAR Data
2.4. LiDAR Metrics Derivation
2.5. Multicollinearity Analysis
2.6. Random Forest Classification
2.7. Accuracy Assessment
Metrics | Description | Category Description |
---|---|---|
Standard Metrics | ||
ZMAX | Maximum height | Height distribution profile of the LiDAR point clouds. |
ZMEAN | Mean height above ground | |
ZSD | Standard deviation of height distribution | |
ZSKEW | Skewness of height distribution | |
ZKURT | Kurtosis of height distribution | |
ZENTROPY | Entropy of height distribution | |
ZQx | xth percentile of height distribution (5, 10, 15, 20, ……, 99) | |
PZABOVE2 | Returns percentage above 2 m | Number of returns/density of the LiDAR point clouds. |
PZABOVEZMEAN | Returns percentage above mean height | |
ZPCUMx | Cumulative percentage of return in the xth layer (1 to 9) | |
Pxth | Percentage in x returns | |
PGROUND | Returns percentage classified as “ground” | |
Structural Diversity Metrics | ||
Rumple index | Ratio between outer canopy surface area and projected ground surface | These metrics are related to canopy surface roughness, which describes the structural heterogeneity as an impact of distribution and various sizes of canopy gaps and various tree heights [59,60]. |
Rugosity | An outer canopy roughness measured by the standard deviation of the canopy height model | |
Deep Gaps Fraction | Fraction of canopy gaps per square meter | These metrics are related to the distributions of canopy gaps and openness estimation [30]. |
Cover Fraction | The inverse of the deep gap fraction | |
Gaps Fraction | Distribution of gaps in the canopy volume | |
Vegetation Area Index (VAI) | Sum of leaf-area density within the canopy volume | VAI calculates the area, density, and volume of vegetation, which is derived from the sum of leaf-area density (LAD)—a divided leaf area index (LAI) within the height interval [30,31,61,62]. |
Vertical Complexity Index (VCI) | The distribution evenness of the point cloud within a vertical layer | VCI is based on the information theory index used for quantifying species evenness. It can also quantify the evenness of three-dimensional point cloud distribution within a vertical layer [63]. |
3. Results
3.1. LiDAR Metric Selection and Variable Importance
3.2. Old-Growth Forest Classification
3.3. Differences in the Top Three Important Metrics Between Old- and Second-Growth Forests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauhus, J.; Puettmann, K.; Messier, C. Silviculture for Old-Growth Attributes. For. Ecol. Manag. 2009, 258, 525–537. [Google Scholar] [CrossRef]
- Franklin, J.F.; Cromack, K., Jr.; Denison, W.; Mckee, A.; Maser, C.; Sedell, J.; Swanson, F.; Juday, G. Ecological Characteristics of Old Growth; US Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station: Corvallis, OR, USA, 1981.
- Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-Growth Forests as Global Carbon Sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- O’Brien, L.; Schuck, A.; Fraccaroli, C.; Pötzelsberger, E.; Winkel, G.; Lindner, M. Protecting Old-Growth Forests in Europe a Review of Scientific Evidence to Inform Policy Implementation; European Forest Institute: Joensuu, Finland, 2021. [Google Scholar]
- Nyberg, J.B.; Harestad, A.S.; Bunnell, F.L. “Old Growth” by Design: Managing Young Forests for Old-Growth Wildlife. In Proceedings of the Trans. 52nd North American Wildlife & Natural Resources Conference, Quebec, QC, Canada, 20–25 March 1987; pp. 70–81. [Google Scholar]
- Mikoláš, M.; Ujházy, K.; Jasík, M.; Wiezik, M.; Gallay, I.; Polák, P.; Vysoký, J.; Čiliak, M.; Meigs, G.W.; Svoboda, M.; et al. Primary Forest Distribution and Representation in a Central European Landscape: Results of a Large-Scale Field-Based Census. For. Ecol. Manag. 2019, 449, 117466. [Google Scholar] [CrossRef]
- Sabatini, F.M.; Levers, C.; Burrascano, S.; Keeton, W.S.; Lindner, M.; Pötzschner, F.; Johannes, P.; Bauhus, J.; Buchwald, E.; Chaskovsky, O.; et al. Where Are Europe’s Last Primary Forests? Divers. Distrib. 2018, 24, 1426–1439. [Google Scholar] [CrossRef]
- Hilbert, J.; Wiensczyk, A. Old-Growth Definitions and Management: A Literature Review. BC J. Ecosyst. Manag. 2007, 8, 15–31. [Google Scholar] [CrossRef]
- Spies, T.A. Ecological Concepts and Diversity of Old-Growth Forests. J. For. 2004, 102, 14–20. [Google Scholar] [CrossRef]
- Oliver, C.; Larson, B. Forest Stand Dynamics (Update Edition); John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Barredo, J.I.; Brailescu, C.; Teller, A.; Sabatini, F.M.; Mauri, A. Mapping and Assessment of Primary and Old-Growth Forests in Europe; Amt fur Veroffentlichungen der EU: Luxembourg, 2021. [Google Scholar]
- Brunet, J.; Fritz, Ö.; Richnau, G. Biodiversity in European Beech Forests—A Review with Recommendations for Sustainable Forest Management. Ecol. Bull. 2010, 53, 77–94. [Google Scholar]
- Vandekerkhove, K.; Meyer, P.; Kirchmeir, H.; Piovesan, G.; Hirschmugl, M.; Larrieu, L.; Kozàk, D.; Mikolas, M.; Nagel, T.; Schmitt, C.; et al. Old-Growth Criteria and Indicators for Beech Forests (Fageta). 2022. In LIFE-PROGNOSES — Work Package 1.11. Available online: https://lifeprognoses.eu/wp-content/uploads/2022/04/Criteria-oldgrowth-PROGNOSES-Final (accessed on 16 August 2022).
- Wirth, C.; Messier, C.; Bergeron, Y.; Frank, D. Old-Growth Forest Definitions: A Pragmatic View. In Old-Growth Forests: Function, Fate and Value; Wirth, C., Gleixner, G., Heimann, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 11–33. ISBN 9783540927051. [Google Scholar]
- Donato, D.C.; Campbell, J.L.; Franklin, J.F. Multiple Successional Pathways and Precocity in Forest Development: Can Some Forests Be Born Complex? J. Veg. Sci. 2012, 23, 576–584. [Google Scholar] [CrossRef]
- Gerzon, M.; Seely, B.; Mackinnon, A. The Temporal Development of Old-Growth Structural Attributes in Second-Growth Stands: A Chronosequence Study in the Coastal Western Hemlock Zone in British Columbia. Can. J. For. Res. 2011, 41, 1534–1546. [Google Scholar] [CrossRef]
- Ziegler, S.S. Comparison of Structural Characteristics between Old Growth and Postfire Second-Growth Hemlock—Hardwood. Glob. Ecol. Biogeogr. 2000, 9, 373–389. [Google Scholar] [CrossRef]
- Mosseler, A.; Lynds, J.A.; Major, J.E. Old-Growth Forests of the Acadian Forest Region. Environ. Rev. 2003, 11, 47–77. [Google Scholar] [CrossRef]
- Abrams, M.D. Age-Diameter Relationships of Quercus Species in Relation to Edaphic Factors in Gallery Forests in Northeast Kansas. For. Ecol. Manag. 1985, 13, 181–193. [Google Scholar] [CrossRef]
- Pretzsch, H.; Dieler, J. The Dependency of the Size-Growth Relationship of Norway Spruce (Picea abies [L.] Karst.) and European Beech (Fagus sylvatica [L.]) in Forest Stands on Long-Term Site Conditions, Drought Events, and Ozone Stress. Trees—Struct. Funct. 2011, 25, 355–369. [Google Scholar] [CrossRef]
- Pretzsch, H.; Hilmers, T.; Biber, P.; Avdagić, A.; Binder, F.; Bončina, A.; Bosela, M.; Dobor, L.; Forrester, D.I.; Lévesque, M.; et al. Evidence of Elevation-Specific Growth Changes of Spruce, Fir, and Beech in European Mixed Mountain Forests during the Last Three Centuries. Can. J. For. Res. 2020, 50, 689–703. [Google Scholar] [CrossRef]
- Spracklen, B.; Spracklen, D.V. Determination of Structural Characteristics of Old-growth Forest in Ukraine Using Spaceborne Lidar. Remote Sens. 2021, 13, 1233. [Google Scholar] [CrossRef]
- de Assis Barros, L.; Elkin, C. An Index for Tracking Old-Growth Value in Disturbance-Prone Forest Landscapes. Ecol. Indic. 2021, 121, 107175. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Evans, J.S.; Martinuzzi, S.; Gessler, P.E.; Hudak, A.T. Characterizing Forest Succession with Lidar Data: An Evaluation for the Inland Northwest, USA. Remote Sens. Environ. 2009, 113, 946–956. [Google Scholar] [CrossRef]
- Martin, M.; Cerrejón, C.; Valeria, O. Complementary Airborne LiDAR and Satellite Indices Are Reliable Predictors of Disturbance-Induced Structural Diversity in Mixed Old-Growth Forest Landscapes. Remote Sens. Environ. 2021, 267, 112746. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, L.; She, G. Estimating Forest Structural Parameters Using Canopy Metrics Derived from Airborne LiDAR Data in Subtropical Forests. Remote Sens. 2017, 9, 940. [Google Scholar] [CrossRef]
- Pearse, G.D.; Watt, M.S.; Dash, J.P.; Stone, C.; Caccamo, G. Comparison of Models Describing Forest Inventory Attributes Using Standard and Voxel-Based Lidar Predictors across a Range of Pulse Densities. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 341–351. [Google Scholar] [CrossRef]
- Walter, J.A.; Stovall, A.E.L.; Atkins, J.W. Vegetation Structural Complexity and Biodiversity in the Great Smoky Mountains. Ecosphere 2021, 12, e03390. [Google Scholar] [CrossRef]
- LaRue, E.A.; Wagner, F.W.; Fei, S.; Atkins, J.W.; Fahey, R.T.; Gough, C.M.; Hardiman, B.S. Compatibility of Aerial and Terrestrial LiDAR for Quantifying Forest Structural Diversity. Remote Sens. 2020, 12, 1407. [Google Scholar] [CrossRef]
- Atkins, J.W.; Fahey, R.T.; Hardiman, B.H.; Gough, C.M. Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale. J. Geophys. Res. Biogeosci. 2018, 123, 1387–1405. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G.; Spies, T.A.; Harding, D. Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sens. Environ. 1999, 70, 339–361. [Google Scholar] [CrossRef]
- Bell, D.M.; Spies, T.A.; Pabst, R. Historical Harvests Reduce Neighboring Old-Growth Basal Area across a Forest Landscape. Ecol. Appl. 2017, 27, 1666–1676. [Google Scholar] [CrossRef]
- Næsset, E. Estimating Timber Volume of Forest Stands Using Airborne Laser Scanner Data. Remote Sens. Environ. 1997, 61, 246–253. [Google Scholar] [CrossRef]
- Senécal, J.; Doyon, F.; St-onge, B. Discrimination of Canopy Gaps and Non-Regenerating Openings in Old-Growth Temperate Deciduous Forests Using Airborne LiDAR Data. Can. J. For. Res. 2018, 48, 774–782. [Google Scholar] [CrossRef]
- Jarron, L.R.; Coops, N.C.; MacKenzie, W.H.; Dykstra, P. Detection and Quantification of Coarse Woody Debris in Natural Forest Stands Using Airborne LiDAR. For. Sci. 2021, 67, 550–563. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Sobe, C.; Di Filippo, A.; Berger, V.; Kirchmeir, H.; Vandekerkhove, K. Review on the Possibilities of Mapping Old—Growth Temperate Forests by Remote Sensing in Europe. Environ. Model. Assess. 2023, 28, 761–785. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Heurich, M.; Englmaier, K.H. The Development of Tree Species Composition in the Rachel—Lusen Region of the Bavarian Forest National Park. Silva Gabreta 2010, 16, 165–186. [Google Scholar]
- Bässler, C.; Seifert, L.; Müller, J. The BIOKLIM Project in the National Park Bavarian Forest: Lessons from a Biodiversity Survey. Silva Gabreta 2015, 21, 81–93. [Google Scholar]
- Cailleret, M.; Heurich, M.; Bugmann, H. Reduction in Browsing Intensity May Not Compensate Climate Change Effects on Tree Species Composition in the Bavarian Forest National Park. For. Ecol. Manag. 2014, 328, 179–192. [Google Scholar] [CrossRef]
- van der Knaap, W.O.; van Leeuwen, J.F.N.; Fahse, L.; Szidat, S.; Studer, T.; Baumann, J.; Heurich, M.; Tinner, W. Vegetation and Disturbance History of the Bavarian Forest National Park, Germany. Veg. Hist. Archaeobot. 2020, 29, 277–295. [Google Scholar] [CrossRef]
- Hilmers, T.; Bässler, C.; Friess, N.; Heurich, M.; Müller, J.; Seifert, L. Changes in Forest Structure in the Bavarian Forest National Park-an Evaluation after 10 Years of the BIOKLIM-Project. Silva Gabreta 2018, 24, 161–170. [Google Scholar]
- Mat, M.S.C.; Nor, M.A.M.; Diah, J.M.; Din, M.A.M.; Hashim, K.A.; Manan Samad, A. Tree Age Estimation by Tree Diameter Measurement Using Digital Close-Range Photogrammetry (DCRP). In Proceedings of the Proceedings—4th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2014, Penang, Malaysia, 28–30 November 2014; pp. 421–426. [Google Scholar]
- Di Filippo, A.; Biondi, F.; Piovesan, G.; Ziaco, E. Tree Ring-Based Metrics for Assessing Old-Growth Forest Naturalness. J. Appl. Ecol. 2017, 54, 737–749. [Google Scholar] [CrossRef]
- Zong, X.; Wang, T.; Skidmore, A.K.; Heurich, M. Estimating Fine-Scale Visibility in a Temperate Forest Landscape Using Airborne Laser Scanning. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102478. [Google Scholar] [CrossRef]
- Roussel, J.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Sánchez, A.; Bourdon, J.; Boissieu, F.D.; Achim, A. LidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Black, W.C.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Cengage Learning EMEA: Hampshire, UK, 2018; ISBN 9781473756540. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Skidmore, A.K.; Heurich, M. Important LiDAR Metrics for Discriminating Forest Tree Species in Central Europe. ISPRS J. Photogramm. Remote Sens. 2018, 137, 163–174. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4766–4775. [Google Scholar]
- Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-Resolution Landcover Classification Using Random Forest. Remote Sens. Lett. 2014, 5, 112–121. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Kane, V.R.; Bakker, J.D.; McGaughey, R.J.; Lutz, J.A.; Gersonde, R.F.; Franklin, J.F. Examining Conifer Canopy Structural Complexity across Forest Ages and Elevations with LiDAR Data. Can. J. For. Res. 2010, 40, 774–787. [Google Scholar] [CrossRef]
- Hardiman, B.S.; Bohrer, G.; Gough, C.M.; Vogel, C.S.; Curtis, P.S. The Role of Canopy Structural Complexity in Wood Net Primary Production of a Maturing Northern Deciduous Forest. Ecology 2011, 92, 1818–1827. [Google Scholar] [CrossRef]
- Bouvier, M.; Durrieu, S.; Fournier, R.A.; Renaud, J.P. Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- Kamoske, A.G.; Dahlin, K.M.; Stark, S.C.; Serbin, S.P. Leaf Area Density from Airborne LiDAR: Comparing Sensors and Resolutions in a Temperate Broadleaf Forest Ecosystem. For. Ecol. Manag. 2019, 433, 364–375. [Google Scholar] [CrossRef]
- van Ewijk, K.Y.; Treitz, P.M.; Scott, N.A. Characterizing Forest Succession in Central Ontario Using Lidar-Derived Indices. Photogramm. Eng. Remote Sens. 2011, 77, 261–269. [Google Scholar] [CrossRef]
- Franklin, J.F.; Van Pelt, R. Spatial Aspects of Structural Complexity in Old-Growth Forests. J. For. 2004, 102, 22–29. [Google Scholar] [CrossRef]
- Solano, F.; Modica, G.; Praticò, S.; Box, O.F.; Piovesan, G. Unveiling the Complex Canopy Spatial Structure of a Mediterranean Old-Growth Beech (Fagus sylvatica L.) Forest from UAV Observations. Ecol. Indic. 2022, 138, 108807. [Google Scholar] [CrossRef]
- Tíscar, P.A.; Lucas-Borja, M.E. Structure of Old-Growth and Managed Stands and Growth of Old Trees in a Mediterranean Pinus Nigra Forest in Southern Spain. Forestry 2016, 89, 201–207. [Google Scholar] [CrossRef]
- Markham, K.; Frazier, A.E.; Singh, K.K.; Madden, M. A Review of Methods for Scaling Remotely Sensed Data for Spatial Pattern Analysis. Landsc. Ecol. 2023, 38, 619–635. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.L. Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef]
LiDAR Metrics | VIF |
---|---|
1. Rumple Index ** | 4.67 |
2. Vegetation Area Index ** | 4.14 |
3. Gap Fraction ** | 3.24 |
4. Vertical Complexity Index *** | 2.78 |
5. ZQ10 * | 2.16 |
6. PGROUND * | 1.52 |
7. ZMAX ** | 1.45 |
8. ZQ5 * | 1.36 |
9. P4TH * | 1.27 |
10. ZPCUM9 * | 1.24 |
11. ZPCUM1 ** | 1.22 |
Class | Old Growth | Second Growth | Total | UA (%) |
---|---|---|---|---|
16 | 2 | 18 | 89% | |
6 | 12 | 18 | 67% | |
Total | 16 | 20 | 36 | |
PA (%) | 73% | 86% | OA: 78% | |
0.73 (Sensitivity) | 0.86 (Specificity) | TSS: 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adiningrat, D.P.; Skidmore, A.; Schlund, M.; Wang, T.; Abdullah, H.; Heurich, M. Investigating LiDAR Metrics for Old-Growth Beech- and Spruce-Dominated Forest Identification in Central Europe. Remote Sens. 2025, 17, 251. https://doi.org/10.3390/rs17020251
Adiningrat DP, Skidmore A, Schlund M, Wang T, Abdullah H, Heurich M. Investigating LiDAR Metrics for Old-Growth Beech- and Spruce-Dominated Forest Identification in Central Europe. Remote Sensing. 2025; 17(2):251. https://doi.org/10.3390/rs17020251
Chicago/Turabian StyleAdiningrat, Devara P., Andrew Skidmore, Michael Schlund, Tiejun Wang, Haidi Abdullah, and Marco Heurich. 2025. "Investigating LiDAR Metrics for Old-Growth Beech- and Spruce-Dominated Forest Identification in Central Europe" Remote Sensing 17, no. 2: 251. https://doi.org/10.3390/rs17020251
APA StyleAdiningrat, D. P., Skidmore, A., Schlund, M., Wang, T., Abdullah, H., & Heurich, M. (2025). Investigating LiDAR Metrics for Old-Growth Beech- and Spruce-Dominated Forest Identification in Central Europe. Remote Sensing, 17(2), 251. https://doi.org/10.3390/rs17020251