Gradient Enhancement Techniques and Motion Consistency Constraints for Moving Object Segmentation in 3D LiDAR Point Clouds
"> Figure 1
<p>Visualization of 2D image.</p> "> Figure 2
<p>Details of improved convolution methods.</p> "> Figure 3
<p>An overview of our method. The upper part illustrates the overall workflow of the network, while the lower part details the specific implementation of each submodule.</p> "> Figure 4
<p>Details of Depth Pixel Difference Convolution (DPDC).</p> "> Figure 5
<p>Qualitative comparisons of various methods for LiDAR-MOS in different scenes on the SemanticKITTI-MOS validation set are presented. Blue circles emphasize mispredictions and indistinct boundaries. For optimal viewing, refer to the images in color and zoom in for finer details.</p> "> Figure 6
<p>Qualitative comparisons of various methods for LiDAR-MOS between consecutive frames on the SemanticKITTI-MOS validation set are presented. Blue circles emphasize mispredictions and indistinct boundaries. For optimal viewing, refer to the images in color and zoom in for finer details.</p> ">
Abstract
:1. Introduction
- A novel DPDC based on image gradient priors is proposed to enhance spatial representation in range images, improving LiDAR segmentation accuracy;
- Bayesian filtering is introduced for the first time to apply motion constraints, smoothing multi-frame predictions and reducing edge blurring caused by moving object occlusion;
- A novel edge-aware loss function is designed, incorporating edge information into the loss function for the first time, with a progressive training strategy to improve model performance;
- In the latest SemanticKITTI-MOS benchmark, the proposed method shows consistent performance improvements over existing techniques and outperforms SOTA methods.
2. Related Work
2.1. Range Image-Based Point Cloud Segmentation
2.2. Gradient Enhancement Techniques
3. Method
3.1. Preliminaries
3.1.1. LiDAR Point Cloud Input Representation
3.1.2. Convolution Methods and Improvement Strategies
3.2. Network Overview
3.3. Depth Pixel Difference Convolution
3.4. Motion Consistency Constraints
Algorithm 1: Recursive Bayesian Filtering Process with Network Prediction Output |
3.5. Edge-Aware Loss Function
4. Experiments
4.1. Experimental Setup
4.1.1. Implementation Details
4.1.2. Dataset
4.1.3. Baseline
4.1.4. Metrics for Evaluation
4.2. Results and Comparisons
4.3. Ablation Study
4.4. Runtime and Efficiency
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, Y.; Li, B.; Zhou, J.; Zhang, H.; Cao, Y. Removing Moving Objects without Registration from 3D LiDAR Data Using Range Flow Coupled with IMU Measurements. Remote Sens. 2023, 15, 3390. [Google Scholar] [CrossRef]
- Montañez, O.J.; Suarez, M.J.; Fernandez, E.A. Application of Data Sensor Fusion Using Extended Kalman Filter Algorithm for Identification and Tracking of Moving Targets from LiDAR–Radar Data. Remote Sens. 2023, 15, 3396. [Google Scholar] [CrossRef]
- Muzahid, A.J.M.; Kamarulzaman, S.F.B.; Rahman, M.A.; Murad, S.A.; Kamal, M.A.S.; Alenezi, A.H. Multiple vehicle cooperation and collision avoidance in automated vehicles: Survey and an AI-enabled conceptual framework. Sci. Rep. 2023, 13, 603. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Wang, F.; Lei, T.; Luo, C. Path Planning Based on Deep Reinforcement Learning for Autonomous Underwater Vehicles Under Ocean Current Disturbance. IEEE Trans. Intell. Veh. 2023, 8, 108–120. [Google Scholar] [CrossRef]
- Wang, H.; Tang, F.; Wei, J.; Zhu, B.; Wang, Y.; Zhang, K. Online Semi-supervised Transformer for Resilient Vehicle GNSS/INS Navigation. IEEE Trans. Veh. Technol. 2024, 73, 16295–16311. [Google Scholar] [CrossRef]
- Tuna, T.; Nubert, J.; Nava, Y.; Khattak, S.; Hutter, M. X-ICP: Localizability-Aware LiDAR Registration for Robust Localization in Extreme Environments. IEEE Trans. Robot. 2022, 40, 452–471. [Google Scholar] [CrossRef]
- Zou, Q.; Sun, Q.; Chen, L.; Nie, B.; Li, Q. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6907–6921. [Google Scholar] [CrossRef]
- Arora, M.; Wiesmann, L.; Chen, X.; Stachniss, C. Mapping the Static Parts of Dynamic Scenes from 3D LiDAR Point Clouds Exploiting Ground Segmentation. In Proceedings of the 2021 European Conference on Mobile Robots (ECMR), Bonn, Germany, 31 August–3 September 2021; pp. 1–6. [Google Scholar]
- Tang, F.; Zhang, S.; Zhu, B.; Sun, J. Outdoor large-scene 3D point cloud reconstruction based on transformer. Front. Phys. 2024, 12, 1474797. [Google Scholar] [CrossRef]
- Dewan, A.; Oliveira, G.L.; Burgard, W. Deep semantic classification for 3D LiDAR data. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24 September 2017; pp. 3544–3549. [Google Scholar]
- Yang, H.; Yezzi, A.J. Decomposing the Tangent of Occluding Boundaries According to Curvatures and Torsions. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022. [Google Scholar]
- Schauer, J.; Nüchter, A. The Peopleremover—Removing Dynamic Objects From 3-D Point Cloud Data by Traversing a Voxel Occupancy Grid. IEEE Robot. Autom. Lett. 2018, 3, 1679–1686. [Google Scholar] [CrossRef]
- Postica, G.; Romanoni, A.; Matteucci, M. Robust moving objects detection in lidar data exploiting visual cues. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 1093–1098. [Google Scholar]
- Tang, F.; Gui, L.; Liu, J.; Chen, K.; Lang, L.; Cheng, Y. Metal target detection method using passive millimeter-wave polarimetric imagery. Opt. Express 2020, 28, 13336–13351. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, A.; Cheng, Y.; Qi, J. Matrix diffractive deep neural networks merging polarization into meta-device. Laser Photonics Rev. 2023, 18, 2300903. [Google Scholar] [CrossRef]
- Cheng, Y.; Tian, X.; Zhu, D.; Wu, L.; Zhang, L.; Qi, J.; Qiu, J. Regional-Based Object Detection Using Polarization and Fisher Vectors in Passive Millimeter-Wave Imaging. IEEE Trans. Microw. Theory Tech. 2023, 71, 2702–2713. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, Y.; Meng, Z. PointSLOT: Real-Time Simultaneous Localization and Object Tracking for Dynamic Environment. IEEE Robot. Autom. Lett. 2023, 8, 2645–2652. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Z.; Zhao, S.; Lin, Y.; Lin, J.; Wang, H.; Han, S. Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution. arXiv 2020, arXiv:abs/2007.16100. [Google Scholar]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, A.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2019; pp. 11105–11114. [Google Scholar]
- Chen, X.; Li, S.; Mersch, B.; Wiesmann, L.; Gall, J.; Behley, J.; Stachniss, C. Moving Object Segmentation in 3D LiDAR Data: A Learning-Based Approach Exploiting Sequential Data. IEEE Robot. Autom. Lett. 2021, 6, 6529–6536. [Google Scholar] [CrossRef]
- Sun, J.; Dai, Y.; Zhang, X.; Xu, J.; Ai, R.; Gu, W.; Chen, X. Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 11456–11463. [Google Scholar]
- Zhu, X.; Zhou, H.; Wang, T.; Hong, F.; Ma, Y.; Li, W.; Li, H.; Lin, D. Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2020; pp. 9934–9943. [Google Scholar]
- Zhao, Z.; Gan, S.; Xiao, B.; Wang, X.; Liu, C. Three-Dimensional Reconstruction of Zebra Crossings in Vehicle-Mounted LiDAR Point Clouds. Remote Sens. 2024, 16, 3722. [Google Scholar] [CrossRef]
- Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet++: Fast and Accurate LiDAR Semantic Segmentation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4213–4220. [Google Scholar] [CrossRef]
- Cortinhal, T.; Tzelepis, G.; Aksoy, E.E. SalsaNext: Fast, Uncertainty-Aware Semantic Segmentation of LiDAR Point Clouds. In Proceedings of the International Symposium on Visual Computing, San Diego, CA, USA, 5–7 October 2020; pp. 207–222. [Google Scholar]
- Li, S.; Chen, X.; Liu, Y.; Dai, D.; Stachniss, C.; Gall, J. Multi-Scale Interaction for Real-Time LiDAR Data Segmentation on an Embedded Platform. IEEE Robot. Autom. Lett. 2022, 7, 738–745. [Google Scholar] [CrossRef]
- Wang, D.Z.; Posner, I.; Newman, P. What could move? Finding cars, pedestrians and bicyclists in 3D laser data. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, 14–18 May 2012; pp. 4038–4044. [Google Scholar] [CrossRef]
- Ruchti, P.; Burgard, W. Mapping with Dynamic-Object Probabilities Calculated from Single 3D Range Scans. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 6331–6336. [Google Scholar] [CrossRef]
- Chen, X.; Milioto, A.; Palazzolo, E.; Giguère, P.; Behley, J.; Stachniss, C. SuMa++: Efficient LiDAR-based Semantic SLAM. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4530–4537. [Google Scholar] [CrossRef]
- Thomas, H.; Qi, C.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6410–6419. [Google Scholar]
- Shi, H.; Lin, G.; Wang, H.; Hung, T.Y.; Wang, Z. SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4573–4582. [Google Scholar]
- Zhu, X.; Zhou, H.; Wang, T.; Hong, F.; Li, W.; Ma, Y.; Li, H.; Yang, R.; Lin, D. Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-Based Perception. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 6807–6822. [Google Scholar] [CrossRef]
- Baur, S.A.; Emmerichs, D.; Moosmann, F.; Pinggera, P.; Ommer, B.; Geiger, A. SLIM: Self-Supervised LiDAR Scene Flow and Motion Segmentation. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 13106–13116. [Google Scholar]
- Liu, X.; Qi, C.; Guibas, L.J. FlowNet3D: Learning Scene Flow in 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2018; pp. 529–537. [Google Scholar]
- Wu, W.; Wang, Z.; Li, Z.; Liu, W.; Li, F. PointPWC-Net: Cost Volume on Point Clouds for (Self-)Supervised Scene Flow Estimation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Beltrán, J.; Guindel, C.; Moreno, F.; Cruzado, D.; Garcia, F.; Escalera, A.D.L. Birdnet: A 3D Object Detection Framework from Lidar Information. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3517–3523. [Google Scholar]
- Lang, A.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection from Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Vaquero, V.; del Pino, I.; Moreno-Noguer, F.; Solà, J.; Sanfeliu, A.; Andrade-Cetto, J. Dual-Branch CNNs for Vehicle Detection and Tracking on Lidar Data. IEEE Trans. Intell. Transp. Syst. (ITS) 2020, 22, 6942–6953. [Google Scholar] [CrossRef]
- Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Wang, N.; Shi, C.; Guo, R.; Lu, H.; Zheng, Z.; Chen, X. InsMOS: Instance-Aware Moving Object Segmentation in LiDAR Data. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 7598–7605. [Google Scholar]
- Cheng, J.; Zeng, K.; Huang, Z.; Tang, X.; Wu, J.; Zhang, C.; Chen, X.; Fan, R. MF-MOS: A Motion-Focused Model for Moving Object Segmentation. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 12499–12505. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Z.; Ren, D.; Du, B.; Chang, L.; Wan, J. Unsupervised multi-branch network with high-frequency enhancement for image dehazing. Pattern Recognit. 2024, 156, 110763. [Google Scholar] [CrossRef]
- Li, Y.; Liu, B. Improved edge detection algorithm for canny operator. In Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; Volume 10, pp. 1–5. [Google Scholar]
- Li, X.; Chang, Q.; Li, Y.; Miyazaki, J. Multi-directional Sobel operator kernel on GPUs. arXiv 2023, arXiv:abs/2305.00515. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Juefei-Xu, F.; Boddeti, V.N.; Savvides, M. Local Binary Convolutional Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4284–4293. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, C.; Wang, Z.; Qin, Y.; Su, Z.; Li, X.; Zhou, F.; Zhao, G. Searching Central Difference Convolutional Networks for Face Anti-Spoofing. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5294–5304. [Google Scholar]
- Yu, Z.; Qin, Y.; Zhao, H.; Li, X.; Zhao, G. Dual-Cross Central Difference Network for Face Anti-Spoofing. In Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 19–27 August 2021. [Google Scholar]
- Su, Z.; Liu, W.; Yu, Z.; Hu, D.; Liao, Q.; Tian, Q.; Pietikäinen, M.; Liu, L. Pixel Difference Networks for Efficient Edge Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 5097–5107. [Google Scholar]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G.W. Understanding Convolution for Semantic Segmentation. arXiv 2017, arXiv:1702.08502. [Google Scholar]
- Fan, L.; Xiong, X.; Wang, F.; Wang, N.; Zhang, Z. RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 2898–2907. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.M.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Mohapatra, S.; Hodaei, M.; Yogamani, S.K.; Milz, S.; Mäder, P.; Gotzig, H.; Simon, M.; Rashed, H. LiMoSeg: Real-time Bird’s Eye View based LiDAR Motion Segmentation. arXiv 2021, arXiv:2111.04875. [Google Scholar]
Method | Validation (Seq 08) | Test (Seq 11–21) |
---|---|---|
LiMoSeg [56] | 52.6 | ∖ |
Cylinder3D [32] | 66.3 | 61.22 |
LMNet, v1 [20] | 56.4 | 56.9 |
LMNet, v2 [20] | 64.4 | 51.3 |
MotionSeg3D, v1 [21] | 66.4 | 60.9 |
MotionSeg3D, v2 [21] | 70.2 | 62.5 |
Ours | 73.6 | 65.2 |
Models | Validation | Test | |||
---|---|---|---|---|---|
Full Model * | 73.5 | 64.9 | 0.0 | 0.0 | 0.0 |
w/o DPDC | 70.2 | 61.4 | 3.3 | 3.7 | 3.5 |
w/o Bayesian Filtering | 70.8 | 62.0 | 2.7 | 2.9 | 2.8 |
w/o | 71.6 | 62.4 | 1.9 | 2.5 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Zhu, B.; Sun, J. Gradient Enhancement Techniques and Motion Consistency Constraints for Moving Object Segmentation in 3D LiDAR Point Clouds. Remote Sens. 2025, 17, 195. https://doi.org/10.3390/rs17020195
Tang F, Zhu B, Sun J. Gradient Enhancement Techniques and Motion Consistency Constraints for Moving Object Segmentation in 3D LiDAR Point Clouds. Remote Sensing. 2025; 17(2):195. https://doi.org/10.3390/rs17020195
Chicago/Turabian StyleTang, Fangzhou, Bocheng Zhu, and Junren Sun. 2025. "Gradient Enhancement Techniques and Motion Consistency Constraints for Moving Object Segmentation in 3D LiDAR Point Clouds" Remote Sensing 17, no. 2: 195. https://doi.org/10.3390/rs17020195
APA StyleTang, F., Zhu, B., & Sun, J. (2025). Gradient Enhancement Techniques and Motion Consistency Constraints for Moving Object Segmentation in 3D LiDAR Point Clouds. Remote Sensing, 17(2), 195. https://doi.org/10.3390/rs17020195