Retrieval and Evaluation of Global Surface Albedo Based on AVHRR GAC Data of the Last 40 Years
<p>Local solar times and solar zenith angles of equator observations for all AVHRR-carrying NOAA and MetOp satellites used to generate GAC43 albedo products as shown in (<b>a</b>,<b>b</b>), respectively. SZA > 90° indicates night conditions.</p> "> Figure 2
<p>Globally distributed sites with homogeneous characteristics and corresponding land cover types defined by the IGBP from the MCD12C1 product. Purple squares located in the desert are used to evaluate temporal stability, while other sites are utilized for direct validations.</p> "> Figure 3
<p>Flowchart for this study.</p> "> Figure 4
<p>The performance of full inversion and full and backup inversion at various IGBP land cover types.</p> "> Figure 5
<p>The performance of the GAC43 albedo with full inversions at various land cover types, where panels (<b>a</b>–<b>h</b>) represent the land cover types of BSV, CRO, DBF, EBF, ENF, GRA, OSH and WSA, respectively. In the plots, the red solid line represents the 1:1 line, and the green dotted line and purple solid lines represent the limits of deviation ±0.02 and ±0.04, respectively.</p> "> Figure 6
<p>Google Earth <sup>TM</sup> images were used to visually illustrate the heterogeneity surrounding selected homogeneous sites representing various land cover types: (<b>a</b>) EBF, (<b>b</b>) BSV, (<b>c</b>) CRO and (<b>d</b>) GRA, as defined by the MCD12C1 IGBP classification. The red circle in each image denotes a radius of 2.5 km.</p> "> Figure 7
<p>Inter-comparison performance among four satellite-based albedo products. The top four subfigures (<b>a</b>–<b>d</b>) show the accuracy of all available matching samples between in situ measurements and estimated albedo values derived from satellite products, while the bottom four subfigures (<b>e</b>–<b>h</b>) give the performance of that using same samples.</p> "> Figure 8
<p>The performance of four satellite-based albedo products using same samples across various land surface types, evaluated in terms of (<b>a</b>) RMSE and (<b>b</b>) bias, respectively. The <span class="html-italic">x</span>-axis represents the land cover type classified as forest, grassland or shrublands, cropland, and desert, and corresponding available samples.</p> "> Figure 9
<p>The temporal performance of four satellite-based albedo products related to in situ measurements, and each subplot represents one case of different land cover surface, including (<b>a</b>) EBF, (<b>b</b>) ENF, (<b>c</b>) DBF, (<b>d</b>) GRA, and (<b>e</b>) CRO, respectively. The grey shaded areas depict situations with snow cover.</p> "> Figure 10
<p>Spatial distributions of GAC43 BSA in July 2013 are shown in subgraph (<b>a</b>), with corresponding differences from (<b>b</b>) CLARA-A3, (<b>c</b>) C3S, and (<b>d</b>) MCD43C3 in the same month, respectively.</p> "> Figure 11
<p>Percentage difference in BSA values between (<b>a</b>) GAC43 and CLARA-A3, (<b>b</b>) GAC43 and C3S, and (<b>c</b>) GAC43 and MCD43C3 in July 2013.</p> "> Figure 12
<p>The scattering plots between GAC43 BSA and (<b>a</b>) CLARA-A3 BSA, (<b>b</b>) C3S BSA, and (<b>c</b>) MCD43C3 BSA using all snow-free monthly pixels in July 2013, where the red lines indicate 1:1.</p> "> Figure 13
<p>The monthly BSA for the four satellite-based products across various land cover types in July 2013, where panels (<b>a</b>–<b>i</b>) represent the land cover types of CRO, DBF, DNF, EBF, ENF, GRA, MF, SAV and WSA, respectively. In the plots, the bottom values of each albedo product are the median of all corresponding land cover estimates. The top values match available samples.</p> "> Figure 14
<p>Monthly BSA from GAC43, MCD43C3, C3S, and CALRA-A3 at three randomly selected PICS sites: (<b>a</b>) Arabia 2, 20.19°N, 51.63°E; (<b>b</b>) Libya 3, 23.22°N, 23.23°E; and (<b>c</b>) Sudan 1, 22.11°N, 28.11°E, all characterized by BSV land surfaces as defined by IGBP.</p> "> Figure 15
<p>Box plots of the slope per decade for GAC43, CLARA-A3, C3S, and MCD43C3 at all PICS sites, where (<b>a</b>–<b>d</b>) represent the corresponding statistics during 1982–1990, 1991–2000, 2001–2010 and 2011–2020, respectively, and three dashed grey lines represent the 75%, 50%, and 25% quantiles. Red dotted lines indicate the horizontal line where slope is 0.</p> "> Figure 16
<p>Percentage of full inversions for the years 2004, 2008, 2012, and 2016 based on GAC43 (<b>top</b>) and MCD43A3 (<b>bottom</b>).</p> "> Figure 17
<p>Percentage of full inversions of GAC43 at various continents from 1979 to 2020.</p> "> Figure A1
<p>Spatial distributions of GAC43 BSA in July 2004 are shown in subgraph (<b>a</b>), with corresponding differences from (<b>b</b>) CLARA-A3, (<b>c</b>) C3S, and (<b>d</b>) MCD43C3 in the same month, respectively.</p> "> Figure A2
<p>Spatial distributions of GAC43 BSA in July 2008 are shown in subgraph (<b>a</b>), with corresponding differences from (<b>b</b>) CLARA-A3, (<b>c</b>) C3S, and (<b>d</b>) MCD43C3 in the same month, respectively.</p> "> Figure A3
<p>Spatial distributions of GAC43 BSA in July 2012 are shown in subgraph (<b>a</b>), with corresponding differences from (<b>b</b>) CLARA-A3, (<b>c</b>) C3S, and (<b>d</b>) MCD43C3 in the same month, respectively.</p> "> Figure A4
<p>Spatial distributions of GAC43 BSA in July 2016 are shown in subgraph (<b>a</b>), with corresponding differences from (<b>b</b>) CLARA-A3, (<b>c</b>) C3S, and (<b>d</b>) MCD43C3 in the same month, respectively.</p> "> Figure A5
<p>Percentages of full inversions for the years between 1979 and 2020 based on GAC43 data record.</p> ">
Abstract
:1. Introduction
2. Data and Pre-Processing
2.1. AVHRR GAC
2.2. Ancillary Data
2.2.1. ERA5 Meteorological Data
2.2.2. MERRA-2 AOD Data
2.3. Global BRDF/Albedo Satellite Products
2.3.1. CLARA-A3 Albedo Data
2.3.2. C3S Data
2.3.3. MODIS BRDF/Albedo Data
2.4. In Situ Measurement
3. Algorithm Description
3.1. Method Overview
3.2. Atmospheric Correction
3.3. BRDF Inversion
3.4. Albedo Computation
3.5. Evaluation Metrics
4. Results
4.1. Validation at Site Scale
4.2. Spatial Performance
4.3. GAC43 BRDF/Albedo Inversion Quality
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bright, R.M.; Zhao, K.; Jackson, R.B.; Cherubini, F. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Change Biol. 2015, 21, 3246–3266. [Google Scholar] [CrossRef]
- Liang, S. A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 136–145. [Google Scholar] [CrossRef]
- Mira, M.; Weiss, M.; Baret, F.; Courault, D.; Hagolle, O.; Gallego-Elvira, B.; Olioso, A. The MODIS (collection V006) BRDF/albedo product MCD43D: Temporal course evaluated over agricultural landscape. Remote Sens. Environ. 2015, 170, 216–228. [Google Scholar] [CrossRef]
- Hollmann, R.; Merchant, C.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; De Leeuw, G.; Forsberg, R. The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Rotenberg, E.; Yakir, D. Contribution of semi-arid forests to the climate system. Science 2010, 327, 451–454. [Google Scholar] [CrossRef]
- Bird, D.N.; Kunda, M.; Mayer, A.; Schlamadinger, B.; Canella, L.; Johnston, M. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects. Biogeosciences Discuss. 2008, 5, 1511–1543. [Google Scholar]
- Dickinson, R.E. Land Surface Processes and Climate—Surface Albedos and Energy Balance. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1983; Volume 25, pp. 305–353. [Google Scholar]
- Betts, R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 2000, 408, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Bayat, B.; Camacho, F.; Nickeson, J.; Cosh, M.; Bolten, J.; Vereecken, H.; Montzka, C. Toward operational validation systems for global satellite-based terrestrial essential climate variables. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102240. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Sun, Q.; Shuai, Y.; Román, M.O. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ. 2018, 207, 50–64. [Google Scholar] [CrossRef]
- Peng, J.; Yu, P.; Yu, Y.; Jia, A.; Wang, D.; Wang, H.; Wang, Z. An evaluation of the NOAA global daily gap-filled VIIRS surface albedo. Remote Sens. Environ. 2023, 298, 113822. [Google Scholar] [CrossRef]
- Riihelä, A.; Jääskeläinen, E.; Kallio-Myers, V. Four decades of global surface albedo estimates in the third edition of the CM SAF cLoud, Albedo and surface Radiation (CLARA) climate data record. Earth Syst. Sci. Data 2024, 16, 1007–1028. [Google Scholar] [CrossRef]
- Lellouch, G.; Carrer, D.; Vincent, C.; Pardé, M.; Frietas, S.C.; Trigo, I.F. Evaluation of two global land surface albedo datasets distributed by the copernicus climate change service and the EUMETSAT LSA-SAF. Remote Sens. 2020, 12, 1888. [Google Scholar] [CrossRef]
- Sánchez-Zapero, J.; Camacho, F.; Martínez-Sánchez, E.; Lacaze, R.; Carrer, D.; Pinault, F.; Benhadj, I.; Muñoz-Sabater, J. Quality assessment of PROBA-V surface Albedo V1 for the continuity of the copernicus climate change service. Remote Sens. 2020, 12, 2596. [Google Scholar] [CrossRef]
- Sánchez-Zapero, J.; Camacho, F.; Martínez-Sánchez, E.; Gorroño, J.; León-Tavares, J.; Benhadj, I.; Toté, C.; Swinnen, E.; Muñoz-Sabater, J. Global estimates of surface albedo from Sentinel-3 OLCI and SLSTR data for Copernicus Climate Change Service: Algorithm and preliminary validation. Remote Sens. Environ. 2023, 287, 113460. [Google Scholar] [CrossRef]
- Karlsson, K.-G.; Stengel, M.; Meirink, J.F.; Riihelä, A.; Trentmann, J.; Akkermans, T.; Stein, D.; Devasthale, A.; Eliasson, S.; Johansson, E. CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023. Earth Syst. Sci. Data Discuss. 2023, 2023, 4901–4926. [Google Scholar] [CrossRef]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J. Geometrical Considerations and Nomenclature for Reflectance; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1977; Volume 160. [Google Scholar]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. Atmos. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Jin, Y.; Gao, F.; Schaaf, C.B.; Li, X.; Strahler, A.H.; Bruegge, C.J.; Martonchik, J.V. Improving MODIS surface BRDF/albedo retrieval with MISR multiangle observations. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1593–1604. [Google Scholar]
- Wen, J.; Dou, B.; You, D.; Tang, Y.; Xiao, Q.; Liu, Q.; Qinhuo, L. Forward a small-timescale BRDF/albedo by multisensor combined BRDF inversion model. IEEE Trans. Geosci. Remote Sens. 2016, 55, 683–697. [Google Scholar] [CrossRef]
- Sütterlin, M.; Schaaf, C.; Stöckli, R.; Sun, Q.; Hüsler, F.; Neuhaus, C.; Wunderle, S. Albedo and reflectance anisotropy retrieval from AVHRR operated onboard NOAA and MetOp satellites: Algorithm performance and accuracy assessment for Europe. Remote Sens. Environ. 2015, 168, 163–176. [Google Scholar] [CrossRef]
- Barnsley, M.; Strahler, A.; Morris, K.; Muller, J.P. Sampling the surface bidirectional reflectance distribution function (BRDF): 1. Evaluation of current and future satellite sensors. Remote Sens. Rev. 1994, 8, 271–311. [Google Scholar] [CrossRef]
- Maignan, F.; Bréon, F.-M.; Lacaze, R. Bidirectional reflectance of Earth targets: Evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot. Remote Sens. Environ. 2004, 90, 210–220. [Google Scholar] [CrossRef]
- Wu, X.; Naegeli, K.; Wunderle, S. Geometric accuracy assessment of coarse-resolution satellite datasets: A study based on AVHRR GAC data at the sub-pixel level. Earth Syst. Sci. Data 2020, 12, 539–553. [Google Scholar] [CrossRef]
- Raspaud, M.; Hoese, D.; Dybbroe, A.; Lahtinen, P.; Devasthale, A.; Itkin, M.; Hamann, U.; Rasmussen, L.Ø.; Nielsen, E.S.; Leppelt, T. PyTroll: An open-source, community-driven python framework to process earth observation satellite data. Bull. Am. Meteorol. Soc. 2018, 99, 1329–1336. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Straka, W.C., III; Molling, C.C.; Sullivan, J.T.; Wu, X. Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens. 2010, 31, 6493–6517. [Google Scholar] [CrossRef]
- Karlsson, K.-G.; Johansson, E.; Håkansson, N.; Sedlar, J.; Eliasson, S. Probabilistic cloud masking for the generation of CM SAF cloud climate data records from AVHRR and SEVIRI sensors. Remote Sens. 2020, 12, 713. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Meng, X.; Guo, H.; Cheng, J.; Yao, B. Can the ERA5 reanalysis product improve the atmospheric correction accuracy of Landsat series thermal infrared data? IEEE Geosci. Remote Sens. Lett. 2022, 19, 7506805. [Google Scholar] [CrossRef]
- Zhang, Z.; Lou, Y.; Zhang, W.; Wang, H.; Zhou, Y.; Bai, J. Assessment of ERA-Interim and ERA5 reanalysis data on atmospheric corrections for InSAR. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102822. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Meng, Y.; Zhou, J.; Wang, Z.; Tang, W.; Ma, J.; Zhang, T.; Long, Z. Retrieval of nighttime aerosol optical depth by simultaneous consideration of artificial and natural light sources. Sci. Total Environ. 2023, 896, 166354. [Google Scholar] [CrossRef] [PubMed]
- Gueymard, C.A.; Yang, D. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos. Environ. 2020, 225, 117216. [Google Scholar] [CrossRef]
- Su, X.; Huang, Y.; Wang, L.; Cao, M.; Feng, L. Validation and diurnal variation evaluation of MERRA-2 multiple aerosol properties on a global scale. Atmos. Environ. 2023, 311, 120019. [Google Scholar] [CrossRef]
- Bakatsoula, V.D.; Korras-Carraca, M.-B.; Hatzianastassiou, N.; Matsoukas, C. A comparison of atmospheric aerosol absorption properties from the MERRA-2 reanalysis with AERONET. Atmos. Environ. 2023, 311, 119997. [Google Scholar] [CrossRef]
- Strahler, A.H.; Muller, J.; Lucht, W.; Schaaf, C.; Tsang, T.; Gao, F.; Li, X.; Lewis, P.; Barnsley, M.J. MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0. MODIS Doc. 1999, 23, 42–47. [Google Scholar]
- Chrysoulakis, N.; Mitraka, Z.; Gorelick, N. Exploiting satellite observations for global surface albedo trends monitoring. Theor. Appl. Climatol. 2019, 137, 1171–1179. [Google Scholar] [CrossRef]
- Jääskeläinen, E.; Manninen, T.; Tamminen, J.; Laine, M. The Aerosol Index and Land Cover Class Based Atmospheric Correction Aerosol Optical Depth Time Series 1982–2014 for the SMAC Algorithm. Remote Sens. 2017, 9, 1095. [Google Scholar] [CrossRef]
- Wu, A.; Li, Z.; Cihlar, J. Effects of land cover type and greenness on advanced very high resolution radiometer bidirectional reflectances: Analysis and removal. J. Geophys. Res. Atmos. 1995, 100, 9179–9192. [Google Scholar] [CrossRef]
- Briegleb, B.; Minnis, P.; Ramanathan, V.; Harrison, E. Comparison of regional clear-sky albedos inferred from satellite observations and model computations. J. Clim. Appl. Meteorol. 1986, 25, 214–226. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Leon-Tavares, J.; Smets, B.; Claes, P.; De Coca, F.C.; Sanchez-Zapero, J. Surface albedo and toc-r 300 m products from PROBA-V instrument in the framework of Copernicus Global Land Service. Remote Sens. Environ. 2018, 215, 57–73. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of a conifer forest canopy. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 906–919. [Google Scholar]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Augustine, J.A.; DeLuisi, J.J.; Long, C.N. SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Am. Meteorol. Soc. 2000, 81, 2341–2358. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. USGS Rest. VA USA 2018, 1, 18. [Google Scholar]
- Sánchez-Zapero, J.; Martínez-Sánchez, E.; Camacho, F.; Wang, Z.; Carrer, D.; Schaaf, C.; García-Haro, F.J.; Nickeson, J.; Cosh, M. Surface ALbedo VALidation (SALVAL) Platform: Towards CEOS LPV Validation Stage 4—Application to Three Global Albedo Climate Data Records. Remote Sens. 2023, 15, 1081. [Google Scholar] [CrossRef]
- Cescatti, A.; Marcolla, B.; Vannan, S.K.S.; Pan, J.Y.; Román, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E.; Matteucci, G. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Qu, Y.; Liu, N.; Liu, S.; Tang, H.; Liang, S. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 2013, 6, 69–95. [Google Scholar] [CrossRef]
- Jia, A.; Wang, D.; Liang, S.; Peng, J.; Yu, Y. Global daily actual and snow-free blue-sky land surface albedo climatology from 20-year MODIS products. J. Geophys. Res. Atmos. 2022, 127, e2021JD035987. [Google Scholar] [CrossRef]
- Qin, W.; Fang, H.; Wang, L.; Wei, J.; Zhang, M.; Su, X.; Bilal, M.; Liang, X. MODIS high-resolution MAIAC aerosol product: Global validation and analysis. Atmos. Environ. 2021, 264, 118684. [Google Scholar] [CrossRef]
- Román, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef]
- Loew, A.; Bennartz, R.; Fell, F.; Lattanzio, A.; Doutriaux-Boucher, M.; Schulz, J. A database of global reference sites to support validation of satellite surface albedo datasets (SAVS 1.0). Earth Syst. Sci. Data 2016, 8, 425–438. [Google Scholar] [CrossRef]
- Rahman, H.; Dedieu, G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Remote Sens. 1994, 15, 123–143. [Google Scholar] [CrossRef]
- Manninen, T.; Jääskeläinen, E.; Siljamo, N.; Riihelä, A.; Karlsson, K.-G. Cloud-probability-based estimation of black-sky surface albedo from AVHRR data. Atmos. Meas. Tech. 2022, 15, 879–893. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Shuai, Y.; Schaaf, C.B.; Strahler, A.H.; Liu, J.; Jiao, Z. Quality assessment of BRDF/albedo retrievals in MODIS operational system. Geophys. Res. Lett. 2008, 35, L05407. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S.; Schaaf, C.L.; Strahler, A.H. Evaluation of Moderate Resolution Imaging Spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites. J. Geophys. Res. Atmos. 2010, 115, D17107. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I. Evaluation of MODIS and NOAA AVHRR vegetation indices with in situ measurements in a semi-arid environment. Int. J. Remote Sens. 2005, 26, 2561–2594. [Google Scholar] [CrossRef]
- He, K.; Ignatov, A.; Kihai, Y.; Cao, C.; Stroup, J. Sensor Stability for SST (3S): Toward improved long-term characterization of AVHRR thermal bands. Remote Sens. 2016, 8, 346. [Google Scholar] [CrossRef]
Site | Lat (°N) | Lon (°S) | Network | IGBP | STNDVImax | STNDVImin | STDEM |
---|---|---|---|---|---|---|---|
AU-Tum | −35.66 | 148.15 | FLUXNET | EBF | 2.39 | 5.53 | 1.72 |
AU-Wac | −37.43 | 145.19 | FLUXNET | EBF | 1.30 | 1.17 | 1.69 |
CA-NS6 | 55.92 | −98.96 | FLUXNET | OSH | 2.11 | 2.62 | 2.64 |
CA-Oas | 53.63 | −106.20 | FLUXNET | DBF | 13.60 | 1.93 | 4.35 |
CA-SF3 | 54.09 | −106.01 | FLUXNET | ENF | 1.65 | 2.18 | 8.33 |
DE-Geb | 51.10 | 10.91 | FLUXNET | CRO | 15.40 | \ | 2.60 |
DE-Hai | 51.08 | 10.45 | FLUXNET | DBF | 5.65 | 5.87 | 1.05 |
DE-Kli | 50.89 | 13.52 | FLUXNET | CRO | 1.47 | 1.62 | 0.0023 |
FI-Hyy | 61.85 | 24.30 | FLUXNET | ENF | \ | 2.87 | 1.85 |
FR-Pue | 43.74 | 3.60 | FLUXNET | EBF | \ | \ | 2.06 |
IT-Col | 41.85 | 13.59 | FLUXNET | DBF | \ | 7.80 | 2.53 |
RU-Che | 68.61 | 161.34 | FLUXNET | MF | 0.53 | \ | 6.11 |
SF_DRA | 36.63 | −116.02 | SURFRAD | BSV | 0.62 | 1.31 | 1.77 |
SF_FPK | 48.31 | −105.10 | SURFRAD | GRA | 10.70 | 2.79 | 4.05 |
SF_GCM | 34.25 | −89.87 | SURFRAD | GRA | 4.09 | \ | 0.00043 |
SF_PSU | 40.72 | −77.93 | SURFRAD | CRO | 2.91 | 2.28 | 7.89 |
SF_SXF | 43.73 | −96.62 | SURFRAD | OSH | 5.55 | \ | 2.13 |
SF_TBL | 40.13 | −105.24 | SURFRAD | GRA | \ | 7.78 × 10−6 | 2.03 |
US-ARM | 36.61 | −97.49 | FLUXNET | CRO | 2.08 | 1.88 | 2.28 |
US-Ivo | 68.49 | −155.75 | FLUXNET | WET | \ | 1.03 | 2.42 |
US-MMS | 39.32 | −86.41 | FLUXNET | DBF | 3.41 | 1.37 | 2.40 |
US-Me2 | 44.45 | −121.56 | FLUXNET | ENF | \ | 2.96 | 2.24 |
US-Ne2 | 41.16 | −96.47 | FLUXNET | CRO | 1.65 | 1.47 | 1.76 |
US-SRM | 31.82 | −110.87 | FLUXNET | WSA | 3.27 | 0.16 | 3.06 |
US-WCr | 45.81 | −90.08 | FLUXNET | DBF | 1.51 | 3.51 | 0.00027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Xiao, X.; Neuhaus, C.; Wunderle, S. Retrieval and Evaluation of Global Surface Albedo Based on AVHRR GAC Data of the Last 40 Years. Remote Sens. 2025, 17, 117. https://doi.org/10.3390/rs17010117
Li S, Xiao X, Neuhaus C, Wunderle S. Retrieval and Evaluation of Global Surface Albedo Based on AVHRR GAC Data of the Last 40 Years. Remote Sensing. 2025; 17(1):117. https://doi.org/10.3390/rs17010117
Chicago/Turabian StyleLi, Shaopeng, Xiongxin Xiao, Christoph Neuhaus, and Stefan Wunderle. 2025. "Retrieval and Evaluation of Global Surface Albedo Based on AVHRR GAC Data of the Last 40 Years" Remote Sensing 17, no. 1: 117. https://doi.org/10.3390/rs17010117
APA StyleLi, S., Xiao, X., Neuhaus, C., & Wunderle, S. (2025). Retrieval and Evaluation of Global Surface Albedo Based on AVHRR GAC Data of the Last 40 Years. Remote Sensing, 17(1), 117. https://doi.org/10.3390/rs17010117