Quantitative Inversion of Martian Hydrous Minerals Based on LSTM-1DCNN Model
<p>Overview map of the Eberswalde crater on Mars and the study area FRT000060dd. The Eberswalde crater underwent significant post-impact modifications, leaving only the northeastern crater rim intact. The FRT000060dd image is located northwest of the Eberswalde crater. The western part of the crater features a prominent valley where a river connects to the alluvial fan within the image coverage, forming a relatively complete aqueous landform. The base map data are CTX images.</p> "> Figure 2
<p>Technology roadmap.</p> "> Figure 3
<p>LSTM model structure diagram and Bi-LSTM layer structure diagram, where the LSTM layer neuron structure is referenced from Li et al. [<a href="#B32-remotesensing-17-00094" class="html-bibr">32</a>].</p> "> Figure 4
<p>1DCNN structure and data chart.</p> "> Figure 5
<p>Model accuracy, precision, recall, and F1 score trends as <span class="html-italic">T</span><sub>1</sub> changes.</p> "> Figure 6
<p>Qualitative network mineral identification accuracy chart.</p> "> Figure 7
<p>Scatter plot of the test set for multi-batch training of the quantitative network. Panels (<b>a</b>–<b>f</b>) represent the results for 1DCNN training batches of 100, 150, 200, 250, 300, and 350, respectively.</p> "> Figure 8
<p>Box plot of predicted mineral abundance within the FRT000060dd map area.</p> "> Figure 9
<p>Statistical chart of the pixels occupied by major minerals.</p> "> Figure 10
<p>Comparison of model inversion results and CRISM data. (<b>a</b>) A false-color RGB image (red = 2.5295 μm, green = 1.5066 μm, blue = 1.0800 μm). The red arrow indicates the pixel location. In (<b>b</b>), the solid black line represents the orbital spectral curve of the pixel, whereas the dashed black line shows the simulated spectral curve based on the inversion results. The other dashed, colored lines correspond to the end-member spectra. The variations observed in the 1.4–1.55 μm range, marked by the arrow, result from instrumental errors [<a href="#B33-remotesensing-17-00094" class="html-bibr">33</a>], whereas the sharp peaks in the 1.9–2.1 μm range, also marked by an arrow, are due to atmospheric correction related to CO<sub>2</sub> [<a href="#B10-remotesensing-17-00094" class="html-bibr">10</a>].</p> "> Figure 11
<p>The distribution map of hydrous mineral types: (<b>a</b>) hydrous sulfate minerals, which have been highlighted with a red box, (<b>b</b>) hydrous hydroxide minerals, and (<b>c</b>) hydrous silicate minerals. The bottom figure is the gray-scale data for the 1.1652 μm.</p> "> Figure 12
<p>A comparison between mineral abundance inversion results and mineral spectral indices. Panels (<b>a</b>,<b>b</b>) represent the Olivine abundance and Olivine Index. The red rectangular region in Panel (<b>a</b>) represents a potential olivine distribution area. Panel (<b>c</b>) illustrates the scatter plot corresponding to the data presented in Panels (<b>a</b>,<b>b</b>); the Pearson Correlation Coefficient (ρ) between the two variables in Panel (<b>c</b>) is 0.666, indicating a moderately strong positive correlation. Panels (<b>d</b>,<b>e</b>) represent the Pyroxene abundance and Pyroxene Index. Panel (<b>f</b>) illustrates the scatter plot corresponding to the data presented in Panels (<b>d</b>,<b>e</b>); the ρ between the two variables in Panel (<b>f</b>) is 0.335, indicating a certain positive correlation.</p> "> Figure 13
<p>Horizontal and vertical elevation distribution maps of the three types of hydrous minerals. (<b>a</b>) The horizontal distribution of three types of hydrous minerals: hydrous sulfate minerals, hydrous hydroxide minerals, and hydrous silicate minerals. (<b>b</b>,<b>c</b>) The AA’ and BB’ cross-sectional profiles corresponding to (<b>a</b>), respectively, showing the elevation distribution of different minerals along and near the section lines.</p> ">
Abstract
:1. Introduction
2. Data
2.1. End-Member Spectral Data
2.2. Orbital Hyperspectral Data
3. Methods
3.1. Radiative Transfer Model
3.2. Spectral Mixture Model
3.3. LSTM-1DCNN Model
3.3.1. LSTM Network
3.3.2. 1DCNN
4. Results
4.1. LSTM Network Qualitative Training Result
4.2. 1DCNN Quantitative Training Results
4.3. Application of LSTM-1DCNN Network Model in Track Data
5. Discussion
5.1. Mineral Type Identification
5.2. Mineral Abundance Inversion
5.3. Mineral Analysis of Typical Areas
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bishop, J.L.; Loizeau, D.; McKeown, N.K.; Saper, L.; Dyar, M.D.; Des Marais, D.J.; Parente, M.; Murchie, S.L. What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet. Space Sci. 2013, 86, 130–149. [Google Scholar] [CrossRef]
- Bibring, J.-P.; Langevin, Y.; Mustard, J.F.; Poulet, F.O.; Arvidson, R.; Gendrin, A.; Gondet, B.; Mangold, N.; Pinet, P.; Forget, F.; et al. Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science 2006, 312, 400–404. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.K.; Bishop, J.L.; Noe Dobrea, E.Z.; Ehlmann, B.L.; Parente, M.; Mustard, J.F.; Murchie, S.L.; Swayze, G.A.; Bibring, J.P.; Silver, E.A. Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J. Geophys. Res. Planets 2009, 114, E00D10. [Google Scholar] [CrossRef]
- Noe Dobrea, E.Z.; Bishop, J.L.; McKeown, N.K.; Fu, R.; Rossi, C.M.; Michalski, J.R.; Heinlein, C.; Hanus, V.; Poulet, F.; Mustard, R.J.F.; et al. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin. J. Geophys. Res. Planets 2010, 115, E00D19. [Google Scholar] [CrossRef]
- Ruesch, O.; Poulet, F.; Vincendon, M.; Bibring, J.P.; Carter, J.; Erkeling, G.; Gondet, B.; Hiesinger, H.; Ody, A.; Reiss, D. Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. J. Geophys. Res. Planets 2012, 117, E00J13. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Berger, G.; Mangold, N.; Michalski, J.R.; Catling, D.C.; Ruff, S.W.; Chassefière, E.; Niles, P.B.; Chevrier, V.; Poulet, F. Geochemical Consequences of Widespread Clay Mineral Formation in Mars’ Ancient Crust. Space Sci. Rev. 2012, 174, 329–364. [Google Scholar] [CrossRef]
- Poulet, F.; Carter, J.; Bishop, J.L.; Loizeau, D.; Murchie, S.M. Mineral abundances at the final four curiosity study sites and implications for their formation. Icarus 2014, 231, 65–76. [Google Scholar] [CrossRef]
- Sunshine, J.M.; Pieters, C.M. Estimating Modal Abundances from the Spectra of Natural and Laboratory Pyroxene Mixtures Using the Modified Gaussian Model. J. Geophys. Res. Planets 1993, 98, 9075–9087. [Google Scholar] [CrossRef]
- Poulet, F.; Mangold, N.; Loizeau, D.; Bibring, J.P.; Langevin, Y.; Michalski, J.; Gondet, B. Abundance of minerals in the phyllosilicate-rich units on Mars. Astron. Astrophys. 2008, 487, L41–L44. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Mustard, J.F.; Pieters, C.M. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. Solid Earth 1989, 94, 13619–13634. [Google Scholar] [CrossRef]
- Hapke, B. Theory of Reflectance and Emittance Spectroscopy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Liu, Y.; Stachurski, F.; Liu, Z.; Zou, Y. Quantitative assessment of water content and mineral abundances at Gale crater on Mars with orbital observations. Astron. Astrophys. 2020, 637, A79. [Google Scholar] [CrossRef]
- Liu, Y.; Glotch, T.D.; Scudder, N.A.; Kraner, M.L.; Condus, T.; Arvidson, R.E.; Guinness, E.A.; Wolff, M.J.; Smith, M.D. End-member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars. J. Geophys. Res. Planets 2016, 121, 2004–2036. [Google Scholar] [CrossRef]
- Liu, Y.; Goudge, T.A.; Catalano, J.G.; Wang, A. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars. Icarus 2018, 302, 62–79. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Sparse Unmixing of Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2014–2039. [Google Scholar] [CrossRef]
- Combe, J.P.; Le Mouélic, S.; Sotin, C.; Gendrin, A.; Mustard, J.F.; Le Deit, L.; Launeau, P.; Bibring, J.P.; Gondet, B.; Langevin, Y.; et al. Analysis of OMEGA/Mars Express data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM): Methodology and first results. Planet. Space Sci. 2008, 56, 951–975. [Google Scholar] [CrossRef]
- Mouélic, S.L.; Sarago, V.; Combe, J.-P.; Massé, M.; Bourgeois, O.; Mangold, N.; Bibring, J.-P.; Gondet, B.; Langevin, Y.; Sotin, C. Global Mapping of Minerals on Mars with OMEGA Hyperspectral Data: Results of a Linear Unmixing Approach. In Proceedings of the 40th Lunar and Planetary Science Conference, Woodlands, TX, USA, 23–27 March 2009. [Google Scholar]
- Zhang, X.; Shuai, T.; Lin, H. Abundance retrieval of hydrous minerals around the mars science laboratory landing site. Planet. Space Sci. 2016, 121, 76–82. [Google Scholar]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, X. Retrieving the hydrous minerals on Mars by sparse unmixing and the Hapke model using MRO/CRISM data. Icarus 2017, 288, 160–171. [Google Scholar] [CrossRef]
- Lin, H.; Mustard, J.F.; Zhang, X. A methodology for quantitative analysis of hydrated minerals on Mars with large endmember library using CRISM near-infrared data. Planet. Space Sci. 2019, 165, 124–136. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F.; Bibring, J.-P.; Mangold, N.; Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. J. Geophys. Res. Planets 2013, 118, 831–858. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.; Zhang, L.; Yang, L.; Bian, L.; Luo, Z.; Wang, J. TCCU-Net: Transformer and CNN Collaborative Unmixing Network for Hyperspectral image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8073–8089. [Google Scholar] [CrossRef]
- Wang, B.; Yao, H.; Song, D.; Zhang, J.; Gao, H. SSF-Net: A Spatial–Spectral Features Integrated Autoencoder Network for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1781–1794. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Q.; Xiao, L. IVIU-Net: Implicit Variable Iterative Unrolling Network for Hyperspectral Sparse Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1756–1770. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Y.; Li, B. SISLU-Net: Spatial Information-Assisted Spectral Information Learning Unmixing Network for Hyperspectral Images. Remote Sens. 2023, 15, 817. [Google Scholar] [CrossRef]
- Poulet, F.; Mangold, N.; Platevoet, B.; Bardintzeff, J.M.; Sautter, V.; Mustard, J.F.; Bibring, J.P.; Pinet, P.; Langevin, Y.; Gondet, B.; et al. Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. Icarus 2009, 201, 84–101. [Google Scholar] [CrossRef]
- Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. Solid Earth 1981, 86, 3039–3054. [Google Scholar] [CrossRef]
- Fraeman, A.A.; Arvidson, R.E.; Murchie, S.L.; Rivkin, A.; Bibring, J.P.; Choo, T.H.; Gondet, B.; Humm, D.; Kuzmin, R.O.; Manaud, N.; et al. Analysis of disk-resolved OMEGA and CRISM spectral observations of Phobos and Deimos. J. Geophys. Res. Planets 2012, 117, E00J15. [Google Scholar] [CrossRef]
- Li, F.; Ren, G.; Lee, J. Multi-step wind speed prediction based on turbulence intensity and hybrid deep neural networks. Energy Convers. Manag. 2019, 186, 306–322. [Google Scholar] [CrossRef]
- Langevin, Y.; Bibring, J.P.; Montmessin, F.; Forget, F.; Vincendon, M.; Douté, S.; Poulet, F.; Gondet, B. Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express. J. Geophys. Res. Planets 2007, 112, E08S12. [Google Scholar] [CrossRef]
- Mustard, J.F.; Murchie, S.L.; Pelkey, S.M. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 2008, 454, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Ehlmann, B.L.; Mustard, J.F.; Swayze, G.A.; Clark, R.N.; Bishop, J.L.; Poulet, F.; Marais, D.J.D.; Roach, L.H.; Milliken, R.E.; Wray, J.J.; et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. Planets 2009, 114, E00D08. [Google Scholar] [CrossRef]
- Lin, H.; Tarnas, J.D.; Mustard, J.F.; Zhang, X.; Wei, Y.; Wan, W.; Klein, F.; Kellner, J.R. Dynamic aperture factor analysis/target transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data. Icarus 2021, 355, 114168. [Google Scholar] [CrossRef]
- Thomas, N.H.; Bandfield, J.L. Identification and refinement of martian surface mineralogy using factor analysis and target transformation of near-infrared spectroscopic data. Icarus 2017, 291, 124–135. [Google Scholar] [CrossRef]
- Saranathan, A.M.; Parente, M. Adversarial feature learning for improved mineral mapping of CRISM data. Icarus 2021, 355, 114107. [Google Scholar] [CrossRef]
- Kodikara, G.R.L.; McHenry, L.J.; van der Meer, F.D. Application of deep learning and spectral deconvolution for estimating mineral abundances of zeolite, Mg-sulfate and montmorillonite mixtures and its implications for Mars. Planet. Space Sci. 2022, 223, 105579. [Google Scholar] [CrossRef]
- Hazen, R.M.; Downs, R.T.; Morrison, S.M.; Tutolo, B.M.; Blake, D.F.; Bristow, T.F.; Chipera, S.J.; McSween, H.Y.; Ming, D.; Morris, R.V.; et al. On the Diversity and Formation Modes of Martian Minerals. J. Geophys. Res. Planets 2023, 128, e2023JE007865. [Google Scholar] [CrossRef]
- Jin, M.; Ding, X.; Han, H.; Pang, J.; Wang, Y. An improved method combining Fisher transformation and multiple endmember spectral mixture analysis for lunar mineral abundance quantification using spectral data. Icarus 2022, 380, 115008. [Google Scholar] [CrossRef]
- Viviano, C.E.; Seelos, F.P.; Murchie, S.L.; Kahn, E.G.; Seelos, K.D.; Taylor, H.W.; Taylor, K.; Ehlmann, B.L.; Wiseman, S.M.; Mustard, J.F.; et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res. Planets 2014, 119, 1403–1431. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Lin, H. Retrieval of Mineral Abundances of the Delta Region in Eberswalde, Mars. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 171–176. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S. Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars. Science 2003, 302, 1931–1934. [Google Scholar] [CrossRef]
- Heard, A.W.; Dauphas, N.; Guilbaud, R.; Rouxel, O.J.; Butler, I.B.; Nie, N.X.; Bekker, A. Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation. Science 2020, 370, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Manning, C.V.; McKay, C.P.; Zahnle, K.J. Nitrates on Mars: Evidence from the 15/14N isotopic ratio. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 10–14 December 2007; p. P13D-1556. [Google Scholar]
- Sefton-Nash, E.; Catling, D.C.; Wood, S.E.; Grindrod, P.M.; Teanby, N.A. Topographic, spectral and thermal inertia analysis of interior layered deposits in Iani Chaos, Mars. Icarus 2012, 221, 20–42. [Google Scholar] [CrossRef]
Number | Name | Chemical Formula | Mineral Types | Spectrum Number |
---|---|---|---|---|
1 | Alunite | KAl3(SO4)2(OH)6 | Hydrated Sulfate | 6 |
2 | Bassanite | CaSO4·0.5H2O | Hydrated Sulfate | 1 |
3 | Copiapite | (Fe2+)6(Fe3+)2(SO4)4(OH)2·20H2O | Hydrous Sulfate | 8 |
4 | Gypsum | CaSO4·2H2O | Hydrous Sulfate | 2 |
5 | Halotrichite | FeAl2(SO4)4·22H2O | Hydrous Sulfate | 2 |
6 | Jarosite | KFe3(OH)6(SO4)2 | Hydrated Sulfate | 5 |
7 | Kieserite | MgSO4·H2O | Hydrated Sulfate | 2 |
8 | Letovicite | (NH4)HSO4 | Ammonium Sulfate | 2 |
9 | Mascagnite | (NH4)2SO4 | Ammonium Sulfate | 2 |
10 | PolyHydratedMagnesiumSulfate | MgSO4·7H2O | Hydrated Sulfate | 1 |
11 | Analcime | NaAlSi2O6·H2O | Hydrated Silicate | 1 |
12 | Beidellite | (Al,Fe3+)2(Si,Al)4O10(OH)2·nH2O | Hydrous Silicate | 8 |
13 | Chlorite | (Mg,Fe2+)5Al(Si3Al)O10(OH)8 | Hydrous Silicate | 5 |
14 | Clinopyroxene | (Ca,Na)(Mg,Fe,Al)(Si,Al)2O6 | Silicate | 11 |
15 | Epidote | Ca2Al3(SiO4)3(OH) | Hydrated Silicate | 3 |
16 | Halloysite | Al2Si2O5(OH)4·nH2O | Hydrated Silicate | 5 |
17 | Illite | K < 1 (Al, R2+)2 [(Si,Al) Si3O10] [OH]2 ·nH2O | Hydrated Silicate | 5 |
18 | Kaolinite | Al2Si2O5(OH)4 | Hydrated Silicate | 6 |
19 | Margarite | KAl3(AlSi3O10)(OH)2 | Silicate | 1 |
20 | Maskelynite | NaAlSi3O8 | Silicate | 2 |
21 | Montmorillonite | (Na,Ca)0.5(Al,Mg)2Si4O10(OH)2·nH2O | Hydrated Silicate | 6 |
22 | Muscovite | KAl2(AlSi3O10)(OH)2 | Hydrated Silicate | 5 |
23 | Nontronite | (Fe3+,Al)2(Si,Al)4O10(OH)2·nH2O | Hydrated Silicate | 3 |
24 | Olivine | (Mg,Fe)2SiO4 | Silicate | 10 |
25 | Fayalite | Mg < Fe (Mg,Fe)SiO4 | Silicate | 1 |
26 | Forsterite | Mg > Fe (Mg,Fe)SiO4 | Silicate | 1 |
27 | Opal | SiO2·nH2O | Hydrated Silicate | 5 |
28 | Orthopyroxene | (Mg,Fe)2Si2O6 | Silicate | 9 |
29 | Plagioclase | (Na,Ca)(Si,Al)4O8 | Silicate | 9 |
30 | Prehnite | Ca2Al(AlSi3O10)(OH)2 | Hydrous Silicate | 1 |
31 | Saponite | (Na,Ca)0.5(Mg,Fe)3(Si4O10)(OH)2·nH2O | Hydrated Silicate | 6 |
32 | Serpentine | Mg3Si2O5(OH)4 | Hydrous Silicates | 4 |
33 | Talc | Mg3Si4O10(OH)2 | Hydrated Silicate | 3 |
34 | Tremolite | Ca2(Mg,Fe)5Si8O22(OH)2 | Hydrated Silicate | 2 |
35 | Vermiculite | (Mg,Fe,Al)3(Al,Si)4O10(OH)2·4H2O | Hydrated Silicate | 4 |
36 | Calcite | CaCO3 | Evaporite | 9 |
37 | Chloride | (NH4)Cl | Evaporite | 1 |
38 | Magnesite | MgCO3 | Evaporite | 13 |
39 | MagnesiumSulphate | MgSO4 | Evaporite | 1 |
40 | Perchlorate | R2+(ClO4)2 | Evaporite | 5 |
41 | Siderite | FeCO3 | Evaporite | 4 |
42 | Diaspore | AlO(OH) | Aluminum Hydroxide | 8 |
43 | Goethite | FeO(OH) | Iron Hydroxide | 5 |
44 | Akaganeite | FeO(OH,Cl) | Iron Oxide | 1 |
45 | Hematite | Fe2O3 | Iron Oxide | 1 |
46 | H2OIce | H2O | Oxide | 1 |
47 | dust | Unknown | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Jin, M.; Liu, X.; Yang, Z.; Hou, Z.; Ding, X. Quantitative Inversion of Martian Hydrous Minerals Based on LSTM-1DCNN Model. Remote Sens. 2025, 17, 94. https://doi.org/10.3390/rs17010094
Liu X, Jin M, Liu X, Yang Z, Hou Z, Ding X. Quantitative Inversion of Martian Hydrous Minerals Based on LSTM-1DCNN Model. Remote Sensing. 2025; 17(1):94. https://doi.org/10.3390/rs17010094
Chicago/Turabian StyleLiu, Xinbao, Ming Jin, Xiangnan Liu, Zhiming Yang, Zengqian Hou, and Xiaozhong Ding. 2025. "Quantitative Inversion of Martian Hydrous Minerals Based on LSTM-1DCNN Model" Remote Sensing 17, no. 1: 94. https://doi.org/10.3390/rs17010094
APA StyleLiu, X., Jin, M., Liu, X., Yang, Z., Hou, Z., & Ding, X. (2025). Quantitative Inversion of Martian Hydrous Minerals Based on LSTM-1DCNN Model. Remote Sensing, 17(1), 94. https://doi.org/10.3390/rs17010094