Snow Cover Variability and Trends over Karakoram, Western Himalaya and Kunlun Mountains During the MODIS Era (2001–2024)
<p>Study area. The border of the MODIS tile is represented with a bold black line and the fourteen subregions with a thin black line. The subregions are named following the acronyms defined in <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>, and the four different colors cluster them into four different groups by means of the PCA discussed in <a href="#sec3dot3-remotesensing-17-00914" class="html-sec">Section 3.3</a>. The color scheme of the labels represents these four groups: Group 1 is yellow, Group 2 is green, Group 3 is red, and Group 4 is blue.</p> "> Figure 2
<p>Orography of the study area, alongside elevation distribution of the fourteen subregions represented by means of the percentage of pixels for each 500 m elevation band. The acronyms of the subregions are defined in <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 3
<p>Total precipitation averaged over the 1991–2020 period using ERA5 data for the study area, alongside monthly precipitation distributions for the fourteen subregions represented by means of the percentage of precipitation with respect to the annual total. The acronyms of the subregions are defined in <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>(<b>a</b>) Average snow-covered days (SCD); (<b>b</b>) average snow onset date (SOD) and (<b>c</b>) average snow end date (SED). The three metrics refer to the 2001–2024 period and are expressed in days. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>Snow-covered days (SCD) distribution with respect to the elevation of all the grid points (black points) and the mean value for each subregion (colored points). The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 6
<p>Difference between the snow-covered days (SCD) of each grid point and the corresponding average SCD value over the whole considered area of points in the same 5 m elevation band. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 7
<p>Quantiles (colored points) of the snow-covered days (SCD) distributions for every 5 m elevation band in the different subregions. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 8
<p>Median (colored points) of the snow-covered days (SCD) distributions for every 5 m elevation band in the different regions. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 9
<p>Additive anomaly series with respect to the whole period of the snow-covered days (SCD—blue line), snow onset date (SOD—orange line), and snow end date (SED—yellow line) over the whole area in the 24-year study period.</p> "> Figure 10
<p>Additive anomaly series with respect to the whole period of the snow-covered days (SCD) in the 24-year study period for the fourteen subregions (thin lines) clustered into 4 groups using PCA. The bold red lines represent the average series within each cluster. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 11
<p>Snow-covered days (SCD) series for each subregion and 1000 m elevation band. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 12
<p>Sen’s slope of the significant SCD trends (<span class="html-italic">p</span>-value < 0.1) for each grid point, expressed in days per decade. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 13
<p>Comparison between SCD (MODIS) and SCE (ERA5-Land) 24-year temporal series for the four groups of regions defined with the PCA (see <a href="#remotesensing-17-00914-f001" class="html-fig">Figure 1</a>).</p> "> Figure 14
<p>Comparison between SCE (ERA5-Land) average anomalies in the study area (blue) and in the latitudinal band 25–45°N (orange) over 1951–2024 and 2001–2024.</p> "> Figure 15
<p>Sen’s slope of the significant SCE (ERA5-Land) trends (<span class="html-italic">p</span>-value < 0.1) for each grid point, expressed in % per decade. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 16
<p>Sen’s slope of the significant temperature (ERA5-Land) trends (<span class="html-italic">p</span>-value < 0.1) for each grid point, expressed in °C per decade. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> "> Figure 17
<p>Sen’s slope of the significant precipitation (ERA5) trends (<span class="html-italic">p</span>-value < 0.1) for each grid point, expressed in mm per decade. The acronyms of the subregions follow the definition of <a href="#remotesensing-17-00914-t001" class="html-table">Table 1</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Snow Cover and Ancillary Data
2.3. Cloud Cover and Gap Filtering
2.4. Calculation of Snow Cover Metrics
3. Results
3.1. Snow Cover Metrics over the Study Area
3.2. Spatial Variability in the Snow Cover
3.3. Interannual Variability in Snow Cover Metrics and Trend Analysis
4. Discussion
4.1. Spatial Variability
4.2. Temporal Variability and Meteorological Variables
4.3. Comparison with Previous Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896.
- Kunkel, K.E.; Robinson, D.A.; Champion, S.; Yin, X.; Estilow, T.; Frankson, R.M. Trends and Extremes in Northern Hemisphere Snow Characteristics. Curr. Clim. Change Rep. 2016, 2, 65–73. [Google Scholar] [CrossRef]
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Changes in Snow, Ice and Frozen Ground. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.D., Qin, M., Manning, Z., Chen, M., Marquis, K.B., Averyt, M., Tignor, H.L., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Vaughan, D.G.; Comiso, J.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J.; et al. Observations: Cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Zemp, M.; Roer, I.; Kääb, A.; Hoelzle, M.; Paul, F.; Haeberli, W. Global Glacier Changes: Facts and Figures. In World Glacier Monitoring Service; UNEP—UN Environment Programme: Nairobi, Kenya, 2008. [Google Scholar]
- Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative Forcing and Albedo Feedback from the Northern Hemisphere Cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [Google Scholar] [CrossRef]
- Barnett, T.P.; Dümenil, L.; Schlese, U.; Roeckner, E.; Latif, M. The Effect of Eurasian Snow Cover on Regional and Global Climate Variations. J. Atmos. Sci. 1989, 46, 661–686. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.S.; Clague, J.J.; Vuille, M.; Buytaert, W.; Cayan, D.R.; Greenwood, G.; et al. Toward Mountains without Permanent Snow and Ice. Earths Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating Snow-Cover Trends from Space. Nat. Clim. Change 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Notarnicola, C. Hotspots of Snow Cover Changes in Global Mountain Regions over 2000–2018. Remote Sens Environ. 2020, 243, 111781. [Google Scholar] [CrossRef]
- Matiu, M.; Crespi, A.; Bertoldi, G.; Carmagnola, C.M.; Marty, C.; Morin, S.; Schöner, W.; Cat Berro, D.; Chiogna, G.; De Gregorio, L.; et al. Observed Snow Depth Trends in the European Alps: 1971 to 2019. Cryosphere 2021, 15, 1343–1382. [Google Scholar] [CrossRef]
- Salzmann, N.; Huggel, C.; Rohrer, M.; Stoffel, M. Data and Knowledge Gaps in Glacier, Snow and Related Runoff Research—A Climate Change Adaptation Perspective. J. Hydrol. 2014, 518, 225–234. [Google Scholar] [CrossRef]
- National Research Council. Division on Earth and Life Studies; Board on Atmospheric Sciences and Climate; Committee on Climate Data Records from NOAA Operational Satellites. In Climate Data Records from Environmental Satellites; National Academies Press: Washington, DC, USA, 2004.
- Harrison, A.R.; Lucas, R.M. Multi-Spectral Classification of Snow Using NOAA AVHRR Imagery. Int. J. Remote Sens. 1989, 10, 907–916. [Google Scholar] [CrossRef]
- Dietz, A.; Conrad, C.; Kuenzer, C.; Gesell, G.; Dech, S. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sens. 2014, 6, 12752–12775. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; de Jong, S.M.; Bierkens, M.F.P. Large-Scale Monitoring of Snow Cover and Runoff Simulation in Himalayan River Basins Using Remote Sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Akyürek, Z.; Arda Şorman, A.; Şensoy, A.; Ünal Şorman, A. Using MODIS Snow Cover Maps in Modeling Snowmelt Runoff Process in the Eastern Part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Solomonson, V. NASA MODAPS SIPS MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid. Available online: https://data.nasa.gov/dataset/MODIS-Terra-Snow-Cover-Daily-L3-Global-500m-SIN-Gr/ih6z-662z/about_data (accessed on 27 February 2025).
- Hall, D.K.; Riggs, G.A. Accuracy Assessment of the MODIS Snow Products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Coll, J.; Li, X. Comprehensive Accuracy Assessment of MODIS Daily Snow Cover Products and Gap Filling Methods. ISPRS J. Photogramm. Remote Sens. 2018, 144, 435–452. [Google Scholar] [CrossRef]
- Parajka, J.; Holko, L.; Kostka, Z.; Blöschl, G. MODIS Snow Cover Mapping Accuracy in a Small Mountain Catchment—Comparison between Open and Forest Sites. Hydrol. Earth Syst. Sci. 2012, 16, 2365–2377. [Google Scholar] [CrossRef]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 2: Validation. Remote Sens. 2013, 5, 1568–1587. [Google Scholar] [CrossRef]
- Hewitt, K. The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef]
- Winiger, M.; Gumpert, M.; Yamout, H. Karakorum–Hindukush–Western Himalaya: Assessing High-altitude Water Resources. Hydrol. Process. 2005, 19, 2329–2338. [Google Scholar] [CrossRef]
- Akhtar, M.; Ahmad, N.; Booij, M.J. The Impact of Climate Change on the Water Resources of Hindukush–Karakorum–Himalaya Region under Different Glacier Coverage Scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Kahlown, M.A.; Raoof, A.; Zubair, M.; Kemper, W.D. Water Use Efficiency and Economic Feasibility of Growing Rice and Wheat with Sprinkler Irrigation in the Indus Basin of Pakistan. Agric. Water Manag. 2007, 87, 292–298. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Joshi, P.K.; Ingram, J.S.I.; Gupta, R.K. Adapting Food Systems of the Indo-Gangetic Plains to Global Environmental Change: Key Information Needs to Improve Policy Formulation. Environ. Sci. Policy 2004, 7, 487–498. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Minora, U.; Bocchiola, D.; D’Agata, C.; Maragno, D.; Mayer, C.; Lambrecht, A.; Vuillermoz, E.; Senese, A.; Compostella, C.; Smiraglia, C.; et al. Glacier Area Stability in the Central Karakoram National Park (Pakistan) in 2001–2010. Prog. Phys. Geogr. Earth Environ. 2016, 40, 629–660. [Google Scholar] [CrossRef]
- Li, J.; Sun, M.; Yao, X.; Duan, H.; Zhang, C.; Wang, S.; Niu, S.; Yan, X. A Review of Karakoram Glacier Anomalies in High Mountains Asia. Water 2023, 15, 3215. [Google Scholar] [CrossRef]
- Notarnicola, C. Observing Snow Cover and Water Resource Changes in the High Mountain Asia Region in Comparison with Global Mountain Trends over 2000–2018. Remote Sens. 2020, 12, 3913. [Google Scholar] [CrossRef]
- Atif, I.; Iqbal, J.; Mahboob, M. Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin. Atmosphere 2018, 9, 162. [Google Scholar] [CrossRef]
- Hussain, D.; Kuo, C.-Y.; Hameed, A.; Tseng, K.-H.; Jan, B.; Abbas, N.; Kao, H.-C.; Lan, W.-H.; Imani, M. Spaceborne Satellite for Snow Cover and Hydrological Characteristic of the Gilgit River Basin, Hindukush–Karakoram Mountains, Pakistan. Sensors 2019, 19, 531. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Rahman, G.; Ali, K.S.; Lee, B.G. Spatio-Temporal Snow Cover Change in the Early Twenty-First Century Using Improved MODIS Dataset: A Case Study of District Hunza, Pakistan. Clim. Dyn. 2023, 60, 3417–3433. [Google Scholar] [CrossRef]
- Thapa, A.; Muhammad, S. Contemporary Snow Changes in the Karakoram Region Attributed to Improved MODIS Data between 2003 and 2018. Water 2020, 12, 2681. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, L.; Menenti, M.; Zhou, J.; Ren, S. Glacier Area and Snow Cover Changes in the Range System Surrounding Tarim from 2000 to 2020 Using Google Earth Engine. Remote Sens. 2021, 13, 5117. [Google Scholar] [CrossRef]
- Choudhury, A.; Yadav, A.C.; Bonafoni, S. A Response of Snow Cover to the Climate in the Northwest Himalaya (NWH) Using Satellite Products. Remote Sens. 2021, 13, 655. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, S.; Zhu, Y.; Wu, K.; Xie, F.; Saifullah, M. Spatiotemporal Heterogeneity of Snow Cover in the Central and Western Karakoram Mountains Based on a Refined MODIS Product during 2002–2018. Atmos. Res. 2021, 250, 105402. [Google Scholar] [CrossRef]
- Ackroyd, C.; Skiles, S.M.; Rittger, K.; Meyer, J. Trends in Snow Cover Duration Across River Basins in High Mountain Asia From Daily Gap-Filled MODIS Fractional Snow Covered Area. Front. Earth Sci. 2021, 9, 713145. [Google Scholar] [CrossRef]
- Dharpure, J.K.; Goswami, A.; Patel, A.; Kulkarni, A.V. Snehmani Assessment of Snow Cover Variability and Its Sensitivity to Hydrometeorological Factors in the Karakoram and Himalayan Region. Hydrol. Sci. J. 2021, 66, 2198–2215. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite Observed Spatiotemporal Variability of Snow Cover and Snow Phenology over High Mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.; Dong, L.; Wang, S.; Yu, B.; Wu, J.; Zheng, Z.; Huang, Y. Temperature-Dominated Spatiotemporal Variability in Snow Phenology on the Tibetan Plateau from 2002 to 2022. Cryosphere 2024, 18, 1817–1834. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Z.; Deng, G.; Hu, G.; You, Y.; Zhao, Y. Landsat Satellites Observed Dynamics of Snowline Altitude at the End of the Melting Season, Himalayas, 1991–2022. Remote Sens. 2023, 15, 2534. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Deng, G.; Wang, X.; Jiang, Z.; Sang, G. Spatiotemporal Variation of Snowline Altitude at the End of Melting Season across High Mountain Asia, Using MODIS Snow Cover Product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; ERA5-Land Hourly Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview (accessed on 27 February 2025).
- Hewitt, K. Glaciers of the Karakoram Himalaya. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Berlin, Germany, 2011; pp. 429–436. [Google Scholar]
- Young, G.; Hewitt, K. Hydrology Research in the Upper Indus Basin, Karakora, Himalaya, Pakistan. Hydrol. Mt. Area 1990, 190, 139–152. [Google Scholar]
- Mayewski, P.A.; Jeschke, P.A. Himalayan and Trans-Himalayan Glacier Fluctuations Since AD 1812. Arct. Alp. Res. 1979, 11, 267–287. [Google Scholar] [CrossRef]
- Hewitt, K. Glacier Change, Concentration, and Elevation Effects in the Karakoram Himalaya, Upper Indus Basin. Mt. Res. Dev. 2011, 31, 188–200. [Google Scholar] [CrossRef]
- Chatterjee, S.P.; Bishop, B.C. Himalayas; Encyclopedia Britannica: Chicago, IL, USA, 2021. [Google Scholar]
- Rees, H.G.; Collins, D.N. Regional Differences in Response of Flow in Glacier-fed Himalayan Rivers to Climatic Warming. Hydrol. Process. 2006, 20, 2157–2169. [Google Scholar] [CrossRef]
- Wylie, T.V.; Shakabpa, T.W.D.; Falkenheim, V.C.; Richardson, H.E. Tibet; Encyclopedia Britannica: Chicago, IL, USA, 2025. [Google Scholar]
- Wang, X.; Pang, G.; Yang, M. Precipitation over the Tibetan Plateau during Recent Decades: A Review Based on Observations and Simulations. Int. J. Climatol. 2018, 38, 1116–1131. [Google Scholar] [CrossRef]
- Xia, Z.; Chen, Y.; Zhang, X.; Li, Z.; Fang, G.; Zhu, C.; Li, Y.; Li, J.; Xia, Q.; Liang, Q. Precipitation Changes on the Northern Slope of the Kunlun Mountains in the Past 42 Years. Water 2024, 16, 1203. [Google Scholar] [CrossRef]
- Tao, H.; Gemmer, M.; Bai, Y.; Su, B.; Mao, W. Trends of Streamflow in the Tarim River Basin during the Past 50years: Human Impact or Climate Change? J. Hydrol. 2011, 400, 1–9. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Z.; Fu, G.; Chen, Y. Trends of Major Hydroclimatic Variables in the Tarim River Basin during the Past 50 Years. J. Arid Environ. 2010, 74, 256–267. [Google Scholar] [CrossRef]
- Wang, X.; Tolksdorf, V.; Otto, M.; Scherer, D. WRF-based Dynamical Downscaling of ERA5 Reanalysis Data for High Mountain Asia: Towards a New Version of the High Asia Refined Analysis. Int. J. Climatol. 2021, 41, 743–762. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Development of the Aqua MODIS NDSI Fractional Snow Cover Algorithm and Validation Results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1747–1756. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The MODIS Cloud Products: Algorithms and Examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2017, 55, 502–525. [Google Scholar] [CrossRef] [PubMed]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–4, 71–76. [Google Scholar] [CrossRef]
- Tran, H.; Nguyen, P.; Ombadi, M.; Hsu, K.; Sorooshian, S.; Qing, X. A Cloud-Free MODIS Snow Cover Dataset for the Contiguous United States from 2000 to 2017. Sci. Data 2019, 6, 180300. [Google Scholar] [CrossRef]
- Maskey, S.; Uhlenbrook, S.; Ojha, S. An Analysis of Snow Cover Changes in the Himalayan Region Using MODIS Snow Products and In-Situ Temperature Data. Clim. Change 2011, 108, 391–400. [Google Scholar] [CrossRef]
- Li, X.; Jing, Y.; Shen, H.; Zhang, L. The Recent Developments in Cloud Removal Approaches of MODIS Snow Cover Product. Hydrol. Earth Syst. Sci. 2019, 23, 2401–2416. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Dong, C.; Shao, D.; Wang, X. Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia. Remote Sens. 2024, 16, 192. [Google Scholar] [CrossRef]
- Gafurov, A.; Bárdossy, A. Cloud Removal Methodology from MODIS Snow Cover Product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef]
- Fugazza, D.; Manara, V.; Senese, A.; Diolaiuti, G.; Maugeri, M. Snow Cover Variability in the Greater Alpine Region in the MODIS Era (2000–2019). Remote Sens. 2021, 13, 2945. [Google Scholar] [CrossRef]
- Dietz, A.J.; Wohner, C.; Kuenzer, C. European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sens. 2012, 4, 2432–2454. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal Combination of MODIS Images—Potential for Snow Cover Mapping. Water Resour. Res. 2008, 44, W03406. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H. New Methods for Studying the Spatiotemporal Variation of Snow Cover Based on Combination Products of MODIS Terra and Aqua. J. Hydrol. 2009, 371, 192–200. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology; Springer: Berlin, Germany, 1992; pp. 345–381. [Google Scholar]
- Sneyers, R. Über Den Einsatz von Statistischen Methoden Zum Objektiven Nachweis von Klimaschwankungen. Meteorol. Z. 1992, 1, 247–256. [Google Scholar] [CrossRef]
- Ma, X.; Lin, K.; Sun, X.; Luo, L.; Ma, N.; Zha, H.; Zhang, L.; Tang, S.; Tang, Z.; Zhang, H. Investigating Climatic Drivers of Snow Phenology by Considering Key-Substage Heterogeneity. J. Hydrol. 2024, 645, 132215. [Google Scholar] [CrossRef]
- Kouki, K.; Luojus, K.; Riihelä, A. Evaluation of Snow Cover Properties in ERA5 and ERA5-Land with Several Satellite-Based Datasets in the Northern Hemisphere in Spring 1982–2018. Cryosphere 2023, 17, 5007–5026. [Google Scholar] [CrossRef]
- Urraca, R.; Gobron, N. Temporal Stability of Long-Term Satellite and Reanalysis Products to Monitor Snow Cover Trends. Cryosphere 2023, 17, 1023–1052. [Google Scholar] [CrossRef]
- Yan, S.; Chen, Y.; Hou, Y.; Liu, K.; Li, X.; Xing, Y.; Wu, D.; Cui, J.; Zhou, Y.; Pu, W.; et al. Which Global Reanalysis Dataset Has Better Representativeness in Snow Cover on the Tibetan Plateau? Cryosphere 2024, 18, 4089–4109. [Google Scholar] [CrossRef]
- Hüsler, F.; Jonas, T.; Riffler, M.; Musial, J.P.; Wunderle, S. A Satellite-Based Snow Cover Climatology (1985–2011) for the European Alps Derived from AVHRR Data. Cryosphere 2014, 8, 73–90. [Google Scholar] [CrossRef]
- Malmros, J.K.; Mernild, S.H.; Wilson, R.; Tagesson, T.; Fensholt, R. Snow Cover and Snow Albedo Changes in the Central Andes of Chile and Argentina from Daily MODIS Observations (2000–2016). Remote Sens. Environ. 2018, 209, 240–252. [Google Scholar] [CrossRef]
Name and Acronym | Extension [km2] | Average Elevation [m. a.s.l.] | Elevation Range [m. a.s.l.] | Averaged Yearly Cumulated Precipitation Value [mm] | Month with Min. Precipitation [mm] | Month with Max. Precipitation [mm] |
---|---|---|---|---|---|---|
Ganges-Himalayas (GH) | 62,143 | 1974 | 170–7641 | 1260 | November (16) | July (308) |
Indus-Himalayas (IH) | 313,434 | 1550 | 111–7037 | 905 | October (23) | July (179) |
Northern Himalayas (NH) | 47,608 | 4643 | 2285–6916 | 573 | October (20) | August (68) |
Northern Transhimalayas (NT) | 35,207 | 5030 | 3605–6679 | 305 | November (6) | August (78) |
Southern Transhimalayas (ST) | 25,087 | 5068 | 4220–6445 | 334 | November (4) | August (97) |
South Western Tibetan Plateau (SWTP) | 50,231 | 4976 | 4344–6577 | 321 | November (2) | August (99) |
North Western Tibetan Plateau (NWTP) | 88,002 | 5130 | 4625–6880 | 371 | December (4) | August (85) |
Western Karakoram (WK) | 40,327 | 3612 | 278–8564 | 1021 | October (50) | June (111) |
Eastern Karakoram (EK) | 31,244 | 5078 | 2287–7593 | 508 | October (21) | August (62) |
Northern Karakoram (NK) | 32,099 | 4788 | 1860–8260 | 469 | November (15) | August (85) |
Altyn Tagh (AT) | 126,556 | 2196 | 770–6280 | 163 | November (4) | June (31) |
Eastern Taklamakan (ET) | 177,078 | 2196 | 906–6891 | 131 | November (3) | June (24) |
Central Kunluns (CK) | 103,580 | 3623 | 1051–7051 | 265 | December (4) | August (53) |
Western Taklamakan (WT) | 102,761 | 1644 | 1049–6316 | 174 | December (3) | August (32) |
All | 1,235,357 | 2818 | 111–8564 |
Region | Mean Elevation [m a.s.l.] | SCD (Days) | SOD (Day) | SED (Day) |
---|---|---|---|---|
GH | 1974 | 48 ± 1 | 101 ± 1 | 148 ± 1 |
IH | 1550 | 41 ± 1 | 102 ± 1 | 143 ± 1 |
NH | 4643 | 136 ± 3 | 71 ± 2 | 206 ± 2 |
NT | 5030 | 58 ± 3 | 97 ± 2 | 154 ± 2 |
ST | 5068 | 35 ± 3 | 106 ± 1 | 140 ± 2 |
SWTP | 4976 | 27 ± 3 | 106 ± 2 | 132 ± 1 |
NWTP | 5130 | 39 ± 4 | 100 ± 3 | 139 ± 1 |
WK | 3612 | 162 ± 2 | 57 ± 2 | 219 ± 2 |
EK | 5078 | 184 ± 3 | 53 ± 2 | 236 ± 2 |
NK | 4788 | 125 ± 2 | 75 ± 1 | 199 ± 2 |
AT | 2196 | 19 ± 1 | 107 ± 1 | 126 ± 1 |
ET | 2196 | 14 ± 1 | 110 ± 1 | 125 ± 1 |
CK | 3623 | 53 ± 1 | 99 ± 1 | 151 ± 1 |
WT | 1644 | 14 ± 2 | 110 ± 1 | 124 ± 1 |
All | 46 ±1 | 100 ± 1 | 146 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almagioni, C.D.; Manara, V.; Diolaiuti, G.A.; Maugeri, M.; Spezza, A.; Fugazza, D. Snow Cover Variability and Trends over Karakoram, Western Himalaya and Kunlun Mountains During the MODIS Era (2001–2024). Remote Sens. 2025, 17, 914. https://doi.org/10.3390/rs17050914
Almagioni CD, Manara V, Diolaiuti GA, Maugeri M, Spezza A, Fugazza D. Snow Cover Variability and Trends over Karakoram, Western Himalaya and Kunlun Mountains During the MODIS Era (2001–2024). Remote Sensing. 2025; 17(5):914. https://doi.org/10.3390/rs17050914
Chicago/Turabian StyleAlmagioni, Cecilia Delia, Veronica Manara, Guglielmina Adele Diolaiuti, Maurizio Maugeri, Alessia Spezza, and Davide Fugazza. 2025. "Snow Cover Variability and Trends over Karakoram, Western Himalaya and Kunlun Mountains During the MODIS Era (2001–2024)" Remote Sensing 17, no. 5: 914. https://doi.org/10.3390/rs17050914
APA StyleAlmagioni, C. D., Manara, V., Diolaiuti, G. A., Maugeri, M., Spezza, A., & Fugazza, D. (2025). Snow Cover Variability and Trends over Karakoram, Western Himalaya and Kunlun Mountains During the MODIS Era (2001–2024). Remote Sensing, 17(5), 914. https://doi.org/10.3390/rs17050914