Regional Soil Moisture Estimation Leveraging Multi-Source Data Fusion and Automated Machine Learning
<p>Study area and distribution of sampling sites. Triangular markers indicate the locations of soil moisture (SM) sampling points. (<b>a</b>) Location of Henan Province, China; (<b>b</b>) Digital Elevation Model (DEM) of Henan Province and the location of the study area in Henan Province; (<b>c</b>) DEM of the study area; (<b>d</b>) Land cover classification map of the study area and the locations of sampling points.</p> "> Figure 2
<p>Flowchart showing overall methodology for soil moisture (SM) estimation.</p> "> Figure 3
<p>Statistical distribution of the full dataset, training set, and testing set.</p> "> Figure 4
<p>Statistical indicators of soil moisture estimation accuracy under six input scenarios, including <span class="html-italic">R</span>, <span class="html-italic">RMSE</span>, and <span class="html-italic">RRMSE</span>.</p> "> Figure 5
<p>Box plot illustrating the error distribution of the three AutoML algorithms under different scenarios.</p> "> Figure 6
<p>Scatter plot of the prediction results from three AutoML algorithms using SC6 (MS + TIR + auxiliary) as the input variables.</p> "> Figure 7
<p>Spatial and temporal distribution maps of soil moisture (SM).</p> "> Figure 8
<p>Distribution maps of soil moisture (SM) estimation using AutoGluon, TPOT, and H2O AutoML for 21 March 2015 and 3 April 2015. The first column represents 21 March 2015, and the second column represents 3 April 2015.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.2.1. Remote Sensing Data
2.2.2. Auxiliary Data
2.2.3. Ground Measurement Data
2.2.4. Data Preprocessing
2.3. Methods
2.3.1. Feature Extraction
2.3.2. Machine Learning Models
- TPOT model
- AutoGluon model
- H2O AutoML model
2.3.3. Evaluation Strategy and Metrics
3. Results
3.1. Descriptive Statistics
3.2. SM Estimation Accuracy Under Different Input Scenarios
3.3. Comparison of TPOT, AutoGluon, and H2O AutoML
3.4. Spatiotemporal Distribution of SM
4. Discussion
5. Conclusions
- (1)
- The integration of multispectral, thermal infrared, and auxiliary data achieved the highest SM estimation accuracy among the six scenarios, underscoring the pivotal role of multi-source data fusion in enhancing predictive performance;
- (2)
- Among the three AutoML methods, AutoGluon outperformed TPOT and H2O AutoML, exhibiting superior predictive accuracy and model stability;
- (3)
- The optimal SM estimation was achieved using a combination of multispectral, thermal infrared, and auxiliary data with the AutoGluon method, yielding an R of 0.822, RMSE of 0.038 cm3/cm3, and RRMSE of 16.46%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 3–161. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.; Ducharne, A.; Kerr, Y.; de Rosnay, P.; de Jeu, R.; Govind, A.; Al-Bitar, A.; Albergel, C.; Muñoz-Sabater, J.; et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to land data assimilation system estimates. Remote Sens. Environ. 2014, 149, 181–195. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the-art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Lintner, B.R.; Berg, A.M.; Zhang, Y.; Keenan, T.F.; Cook, B.I.; Hagemann, S.; Seneviratne, S.I.; Gentine, P. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Chang. 2021, 11, 38–44. [Google Scholar] [CrossRef]
- Li, Z.-L.; Leng, P.; Zhou, C.; Chen, K.-S.; Zhou, F.-C.; Shang, G.-F. Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future. Earth-Sci. Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS-derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Gu, Z.; Zhu, T.; Jiao, X.; Xu, J.; Qi, Z. Neural network soil moisture model for irrigation scheduling. Comput. Electron. Agric. 2021, 180, 105801. [Google Scholar] [CrossRef]
- Champagne, C.; White, J.; Berg, A.; Belair, S.; Carrera, M. Impact of soil moisture data characteristics on the sensitivity to crop yields under drought and excess moisture conditions. Remote Sens. 2019, 11, 372. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Shi, C.; Xie, Z.; Qian, H.; Liang, M.; Yang, X. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, L20401. [Google Scholar] [CrossRef]
- Kim, S.; Liu, Y.Y.; Johnson, F.M.; Parinussa, R.M.; Sharma, A. A global comparison of alternate AMSR2 soil moisture products: Why do they differ? Remote Sens. Environ. 2015, 161, 43–62. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Peng, J.; Tanguy, M.; Robinson, E.; Pinnington, E.; Evans, J.G.; Cooper, E.; Hannaford, J.; Blyth, E.; Dadson, S. Estimation and evaluation of high-resolution soil moisture from merged model and Earth observation data in the Great Britain. Remote Sens. Environ. 2021, 264, 112610. [Google Scholar] [CrossRef]
- Filgueiras, R.; Frappart, F.; Tavares, P.; Papa, F. Retrieval of high-resolution soil moisture through combination of Sentinel-1 and Sentinel-2 data. Remote Sens. 2020, 12, 2303. [Google Scholar] [CrossRef]
- Babaeian, E.; Sidike, P.; Newcomb, M.S.; Maimaitijiang, M.; White, S.A.; Demieville, J.; Ward, R.W.; Sadeghi, M.; LeBauer, D.S.; Jones, S.B.; et al. A new optical remote sensing technique for high-resolution mapping of soil moisture. Front. Big Data 2019, 2, 37. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Du, X.; Zhang, Z. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 2450. [Google Scholar] [CrossRef]
- Schnur, M.T.; Xie, H.; Wang, X. Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern USA. Ecol. Inform. 2010, 5, 400–409. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Han, Y.; Bai, X.; Shao, W.; Wang, J. Retrieval of soil moisture by integrating Sentinel-1A and MODIS data over agricultural fields. Water 2020, 12, 1726. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.; Batchily, K. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [Google Scholar] [CrossRef]
- Hunt, E.R.; Yilmaz, M.T. Evaluation of Vegetation Supply Water Index (VSWI) derived from MODIS satellite data. J. Hydrol. 2007, 345, 119–130. [Google Scholar]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Z.; Zhang, J.; Wang, Q. A study on the complex and nonlinear relationship between soil moisture and remote sensing indices. J. Geophys. Res. Atmos. 2018, 123, 5123–5136. [Google Scholar]
- Jia, X.; Zhao, L.; Chen, Z.; Wang, R. Machine learning applications in soil moisture estimation: Tackling nonlinear relationships using advanced algorithms. Remote Sens. 2020, 12, 686. [Google Scholar]
- Özerdem, M.S.; Yıldız, Ö.; Kaya, Ş.; Kaplan, O. Utilizing machine learning techniques for the estimation of soil moisture based on remote sensing data. Comput. Electron. Agric. 2017, 142, 90–100. [Google Scholar]
- Cheng, M.; Li, B.; Jiao, X.; Huang, X.; Fan, H.; Lin, R.; Liu, K. Using multimodal remote sensing data to estimate regional-scale soil moisture content: A case study of Beijing, China. Agric. Water Manag. 2022, 260, 107298. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Zhu, Z.; Ma, H.; He, T. Soil moisture content retrieval from Landsat 8 data using ensemble learning. ISPRS J. Photogramm. Remote Sens. 2022, 185, 32–47. [Google Scholar] [CrossRef]
- Cao, J.; Liu, F.; Zhao, J.; Yu, X.; Cheng, M.; Wang, Q. Application of stacking ensemble learning for enhancing soil moisture prediction using remote sensing data. Remote Sens. 2021, 13, 412. [Google Scholar]
- Cui, X.; Liu, X.; Zhang, Z.; Gao, J.; Zhao, W. A stacking ensemble framework for robust agricultural yield prediction: Integrating multiple machine learning models. Comput. Electron. Agric. 2021, 180, 105856. [Google Scholar]
- He, Y.; Zhao, Y.; Zhang, F.; Ma, W.; Yang, X. Ensemble learning-based methods for improving soil property estimation: A focus on stacking algorithms. Geoderma 2021, 385, 114874. [Google Scholar]
- Tao, S.; Zhang, X.; Feng, R.; Qi, W.; Wang, Y.; Shrestha, B. Retrieving soil moisture from grape growing areas using multi-feature and stacking-based ensemble learning modeling. Comput. Electron. Agric. 2023, 204, 107537. [Google Scholar] [CrossRef]
- Das, B.; Rathore, P.; Roy, D.; Chakraborty, D.; Jatav, R.S.; Sethi, D.; Kumar, P. Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies. Catena 2022, 217, 106485. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R.; Save, H.; Rateb, A. Reconstruction of GRACE total water storage through automated machine learning. Water Resour. Res. 2021, 57, e2020WR028666. [Google Scholar] [CrossRef]
- Erickson, N.; Mueller, J.; Ulbricht, M.; Loveland, D.; Muehlbauer, M.; Daruwala, R.; Karnin, Z. AutoGluon-Tabular: Robust and accurate AutoML for structured data. arXiv 2020, arXiv:2003.06505. [Google Scholar]
- Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a tree-based pipeline optimization tool for automating data science. In Proceedings of the GECCO’16: Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016; ACM: New York, NY, USA, 2016; pp. 485–492. [Google Scholar]
- Jin, H.; Song, Q.; Hu, X. Auto-Keras: An efficient neural architecture search system. In Proceedings of the KDD ’19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; ACM: New York, NY, USA, 2019; pp. 1946–1956. [Google Scholar]
- LeDell, E.; Poirier, S. H2O AutoML: Scalable automatic machine learning. arXiv 2020, arXiv:2006.11468. [Google Scholar]
- Xu, R.Z.; Cao, J.S.; Ye, T.; Wang, S.N.; Luo, J.Y.; Ni, B.J.; Fang, F. Automated machine learning-based prediction of microplastics induced impacts on methane production in anaerobic digestion. Water Res. 2022, 223, 118975. [Google Scholar] [CrossRef]
- Chen, H.; Wang, T.; Zhang, Y.; Bai, Y.; Chen, X. Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification. Geosci. Model Dev. 2023, 16, 5685–5701. [Google Scholar] [CrossRef]
- Li, S.; Han, Y.; Li, C.; Wang, J. A novel framework for multi-layer soil moisture estimation with high spatio-temporal resolution based on data fusion and automated machine learning. Agric. Water Manag. 2024, 306, 109173. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. Atmos. 2008, 113, D23. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, J.; Ma, J.; Wang, Z.; Ding, L.; Zhang, X.; Zhang, X. TRIMS LST: A daily 1 km all-weather land surface temperature dataset for China’s landmass and surrounding areas (2000–2022). Earth Syst. Sci. Data 2024, 16, 387–419. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.L.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.L.; Song, X.; Zhang, G.L. Mapping high-resolution national soil information grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Flynn, K.C.; Gowda, P.H.; Wagle, P.; Ma, S.F.; Kakani, V.G.; Steiner, J.L. The potential of active and passive remote sensing to detect frequent harvesting of alfalfa. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 13. [Google Scholar] [CrossRef]
- Long, D.; Bai, L.; Yan, L.; Zhang, C.; Yang, W.; Lei, H.; Quan, J.; Meng, X.; Shi, C. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution. Remote Sens. Environ. 2019, 233, 111364. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Wu, Y.; Wang, W. Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN). Sci. Total Environ. 2023, 876, 162558. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Cui, N.; Zhou, J.; Xue, J.; Wang, Z.; Wu, Z.; Wang, M.; Deng, Q. Digital Mapping of Root-Zone Soil Moisture Using UAV-Based Multispectral Data in a Kiwifruit Orchard of Northwest China. Remote Sens. 2023, 15, 646. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Zhang, W.; Yang, Y.; Gong, D.; Liu, Q.; Zhao, L. Estimation of soil moisture in drip-irrigated citrus orchards using multi-modal UAV remote sensing. Agric. Water Manag. 2024, 302, 108972. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Mishra, A.K. Multi-layer high-resolution soil moisture estimation using machine learning over the United States. Remote Sens. Environ. 2021, 266, 112706. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Wang, C.; Chen, N. Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau. ISPRS J. Photogramm. Remote Sens. 2023, 197, 346–363. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
- Habtezion, N.; Tahmasebi Nasab, M.; Chu, X. How does DEM resolution affect microtopographic characteristics, hydrologic connectivity, and modelling of hydrologic processes? Water Resour. Res. 2016, 30, 4870–4892. [Google Scholar] [CrossRef]
- Sela, S.; Svoray, T.; Assouline, S. Soil water content variability at the hillslope scale: Impact of surface sealing. Water Resour. Res. 2012, 48, W03522. [Google Scholar] [CrossRef]
- Huang, X.; Shi, Z.H.; Zhu, H.D.; Zhang, H.Y.; Ai, L.; Yin, W. Soil moisture dynamics within soil profiles and associated environmental controls. Catena 2016, 136, 189–196. [Google Scholar] [CrossRef]
- Yinglan, A.; Wang, G.; Hu, P.; Lai, X.; Xue, B.; Fang, Q. Root-zone soil moisture estimation based on remote sensing data and deep learning. Environ. Res. 2022, 212, 113278. [Google Scholar]
Catalog | Input Variable | Formula | Reference |
---|---|---|---|
Multispectral | Normalized difference vegetation index (NDVI) | [21] | |
Enhanced vegetation index (EVI) | [23] | ||
Shortwave infrared water stress index (SIWSI) | [24] | ||
Thermal | Land surface temperature (LST) | [46] | |
Vegetation supply water index (VSWI) | [25] | ||
Temperature vegetation dryness index (TVDI) | [26] | ||
Auxiliary | Digital elevation model (DEM) | [48] | |
Sand | [49] | ||
Silt | [49] | ||
Clay | [49] |
Scenario | Input Parameter | AutoML Framework |
---|---|---|
SC1 | Multispectral | TPOT, AutoGluon, and H2O AutoML |
SC2 | Thermal infrared | TPOT, AutoGluon, and H2O AutoML |
SC3 | Multispectral + Thermal infrared | TPOT, AutoGluon, and H2O AutoML |
SC4 | Multispectral+ Auxiliary | TPOT, AutoGluon, and H2O AutoML |
SC5 | Thermal infrared + Auxiliary | TPOT, AutoGluon, and H2O AutoML |
SC6 | Multispectral + Thermal infrared + Auxiliary | TPOT, AutoGluon, and H2O AutoML |
Scenario | TPOT | AutoGluon | H2O AutoML | ||||||
---|---|---|---|---|---|---|---|---|---|
R | RMSE | RRMSE | R | RMSE | RRMSE | R | RMSE | RRMSE | |
SC1 | 0.640 | 0.049 | 20.86 | 0.625 | 0.053 | 22.85 | 0.657 | 0.051 | 21.77 |
SC2 | 0.546 | 0.053 | 22.83 | 0.563 | 0.053 | 22.89 | 0.563 | 0.055 | 23.67 |
SC3 | 0.675 | 0.049 | 20.85 | 0.752 | 0.045 | 19.20 | 0.676 | 0.047 | 19.97 |
SC4 | 0.726 | 0.044 | 18.82 | 0.781 | 0.043 | 18.36 | 0.706 | 0.045 | 19.36 |
SC5 | 0.703 | 0.045 | 19.25 | 0.760 | 0.043 | 18.52 | 0.761 | 0.043 | 18.34 |
SC6 | 0.737 | 0.043 | 18.25 | 0.822 | 0.038 | 16.46 | 0.795 | 0.039 | 16.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhu, P.; Song, N.; Li, C.; Wang, J. Regional Soil Moisture Estimation Leveraging Multi-Source Data Fusion and Automated Machine Learning. Remote Sens. 2025, 17, 837. https://doi.org/10.3390/rs17050837
Li S, Zhu P, Song N, Li C, Wang J. Regional Soil Moisture Estimation Leveraging Multi-Source Data Fusion and Automated Machine Learning. Remote Sensing. 2025; 17(5):837. https://doi.org/10.3390/rs17050837
Chicago/Turabian StyleLi, Shenglin, Pengyuan Zhu, Ni Song, Caixia Li, and Jinglei Wang. 2025. "Regional Soil Moisture Estimation Leveraging Multi-Source Data Fusion and Automated Machine Learning" Remote Sensing 17, no. 5: 837. https://doi.org/10.3390/rs17050837
APA StyleLi, S., Zhu, P., Song, N., Li, C., & Wang, J. (2025). Regional Soil Moisture Estimation Leveraging Multi-Source Data Fusion and Automated Machine Learning. Remote Sensing, 17(5), 837. https://doi.org/10.3390/rs17050837