Improving Performance of Uncombined PPP-AR Model with Ambiguity Constraints
<p>The distribution of the IGS sites used in the processing.</p> "> Figure 2
<p>Float position errors and their formal uncertainty of the uncombined models in east (red), north (blue), and up (black) components during the first hour. The shaded area represents the error bar. (<b>a</b>) Triple-Uncomb model, (<b>b</b>) Triple-Uncomb+N1&N2 model, (<b>c</b>) Triple-Uncomb+EWL&WL model.</p> "> Figure 3
<p>Histogram of the values of the ambiguity constraints in two models in experiment GODS, DOY 301, 0:00–4:00. (<b>a</b>) N1&N2 ambiguity constraints, (<b>b</b>) EWL&WL ambiguity constraints.</p> "> Figure 4
<p>Horizontal scatter plot of position errors with RMS values during initial 20 min in all experiments. The blue, orange, and green dots represent float, fixed, and validated fixed solutions, respectively. (<b>a</b>) Dual-IF model, (<b>b</b>) Triple-Uncomb model, (<b>c</b>) Triple-TCAR model, (<b>d</b>) Triple-Uncomb+N1&N2 model, (<b>e</b>) Triple-Uncomb+EWL&WL model.</p> "> Figure 5
<p>Cumulative distribution of the number of the converged experiments according to the horizontal convergence time. The black and red dotted lines denote the 95th and 68th percentile.</p> "> Figure 6
<p>Averaged positioning error over time in horizontal and vertical components during the first hour. Blue, red, yellow, purple, and green lines represent Dual-IF, Triple-Uncomb, Triple-TCAR, Triple-Uncomb+N1&N2, and Triple-Uncomb+EWL&WL models, respectively. Shaded area represents the uncertainty of the solution. Blue horizontal line denotes the convergence level. (<b>a</b>) Horizontal float positioning error, (<b>b</b>) horizontal fixed positioning error, (<b>c</b>) vertical float positioning error, (<b>d</b>) vertical fixed positioning error.</p> "> Figure 7
<p>The averaged convergence time for float and fixed solution among five models. Convergence time statistics align with the results in <a href="#remotesensing-16-04537-f006" class="html-fig">Figure 6</a>. (<b>a</b>) Horizontal component. (<b>b</b>) Vertical component.</p> "> Figure 8
<p>Averaged fixing rate and validated fixing rate for five models for all experiments. The fixing rate and validated fixing rate are both averaged over all experiments.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Classical PPP Models
2.1.1. Dual-IF Model
2.1.2. Triple-TCAR Model
2.1.3. Triple-Uncomb Model
2.2. PPP Models with Ambiguity Constraints
2.2.1. Triple-Uncomb+N1&N2 Model
- Reference Satellite Change
- Conditions to apply N1 and N2 constraints
2.2.2. Triple-Uncomb+EWL&WL Model
3. Data and Processing Strategy
4. Results and Discussion
4.1. On the Ambiguity Constraints in the Uncombined Models
4.2. Initial Positioning Accuracy and Convergence
4.3. Overall Performance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Kouba, J.; Héroux, P. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- Naciri, N.; Bisnath, S. Approaching global instantaneous precise positioning with the dual-and triple-frequency multi-GNSS decoupled clock model. Remote Sens. 2021, 13, 3768. [Google Scholar] [CrossRef]
- Geng, J.; Guo, J.; Meng, X.; Gao, K. Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data. J. Geod. 2020, 94, 6. [Google Scholar] [CrossRef]
- Glaner, M.F. Towards Instantaneous PPP Convergence Using Multiple GNSS Signals. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2022. [Google Scholar] [CrossRef]
- Brack, A.; Männel, B.; Schuh, H. Two-epoch centimeter-level PPP-RTK without external atmospheric corrections using best integer-equivariant estimation. GPS Solut. 2022, 27, 12. [Google Scholar] [CrossRef]
- Tao, J.; Chen, G.; Guo, J.; Zhang, Q.; Liu, S.; Zhao, Q. Toward BDS/Galileo/GPS/QZSS triple-frequency PPP instantaneous integer ambiguity resolutions without atmosphere corrections. GPS Solut. 2022, 26, 127. [Google Scholar] [CrossRef]
- Strasser, S.; Mayer-Gürr, T.; Zehentner, N. Processing of GNSS constellations and ground station networks using the raw observation approach. J. Geod. 2019, 93, 1045–1057. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, P.; Zha, J.; Liu, T. PPP–RTK functional models formulated with undifferenced and uncombined GNSS observations. Satell. Navig. 2022, 3, 3. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Li, P. Improving the performance of Galileo uncombined precise point positioning ambiguity resolution using triple-frequency observations. Remote Sens. 2019, 11, 341. [Google Scholar] [CrossRef]
- Liu, Y.; Mikhaylov, N.; Hugentobler, U.; Duan, B. Triple-frequency PPP-AR model comparison from the user perspective: Combined and uncombined models. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, PLANS, Monterey, CA, USA, 24–27 April 2023; pp. 867–874. [Google Scholar] [CrossRef]
- Aggrey, J.; Bisnath, S. Improving GNSS PPP convergence: The case of atmospheric-constrained, multi-GNSS PPP-AR. Sensors 2019, 19, 587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Z.; Ge, M.; Niu, X.; Huang, L.; Tu, R.; Li, X. On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations. Sensors 2013, 13, 15708–15725. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Gendt, G.; Rothacher, M.; Changhong, S.; Liu, J. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Laurichesse, D.; Mercier, F.; Berthias, J.P.; Broca, P.; Cerri, L. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navig. J. Inst. Navig. 2009, 56, 135–149. [Google Scholar] [CrossRef]
- Collins, P. Isolating and estimating undifferenced GPS integer ambiguities. In Proceedings of the Institute of Navigation, National Technical Meeting, San Diego, CA, USA, 28–30 January 2008; Volume 2, pp. 720–732. [Google Scholar]
- Banville, S.; Geng, J.; Loyer, S.; Schaer, S.; Springer, T.; Strasser, S. On the interoperability of IGS products for precise point positioning with ambiguity resolution. J. Geod. 2020, 94, 10. [Google Scholar] [CrossRef]
- Hatch, R.; Jung, J.; Enge, P.; Pervan, B. Civilian GPS: The Benefits of Three Frequencies. GPS Solut. 2000, 3, 1–9. [Google Scholar] [CrossRef]
- Vollath, U.; Birnbach, S.; Landau, L.; Fraile-Ordoñez, J.M.; Martí-Neira, M. Analysis of Three-Carrier Ambiguity Resolution Technique for Precise Relative Positioning in GNSS-2. Navigation 1999, 46, 13–23. [Google Scholar] [CrossRef]
- Geng, J.; Bock, Y. Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J. Geod. 2013, 87, 449–460. [Google Scholar] [CrossRef]
- Zhao, Q.; Dai, Z.; Hu, Z.; Sun, B.; Shi, C.; Liu, J. Three-carrier ambiguity resolution using the modified TCAR method. GPS Solut. 2015, 19, 589–599. [Google Scholar] [CrossRef]
- Li, T.; Wang, J.; Laurichesse, D. Modeling and quality control for reliable precise point positioning integer ambiguity resolution with GNSS modernization. GPS Solut. 2014, 18, 429–442. [Google Scholar] [CrossRef]
- Schaer, S.; Villiger, A.; Arnold, D.; Dach, R.; Jäggi, A.; Prange, L. New ambiguity-fixed IGS clock analysis products at CODE. In Proceedings of the International GNSS Service Workshop, Wuhan, China, 29 October–2 November 2018. [Google Scholar]
- Villiger, A.; Schaer, S.; Dach, R.; Prange, L.; Susnik, A.; Jäggi, A. Determination of GNSS pseudo-absolute code biases and their long-term combination. J. Geod. 2019, 93, 1487–1500. [Google Scholar] [CrossRef]
- Liu, G.; Guo, F.; Wang, J.; Du, M.; Qu, L. Triple-frequency GPS un-differenced and uncombined PPP ambiguity resolution using observable-specific satellite signal biases. Remote Sens. 2020, 12, 2310. [Google Scholar] [CrossRef]
- Li, B.; Mi, J.; Zhu, H.; Gu, S.; Xu, Y.; Wang, H.; Yang, L.; Chen, Y.; Pang, Y. BDS-3/GPS/Galileo OSB Estimation and PPP-AR Positioning Analysis of Different Positioning Models. Remote Sens. 2022, 14, 4207. [Google Scholar] [CrossRef]
- Duan, B.; Hugentobler, U.; Montenbruck, O.; Steigenberger, P. Performance of Galileo satellite products determined from multi-frequency measurements. J. Geod. 2023, 97, 32. [Google Scholar] [CrossRef]
- Hatch, R. The synergism of GPS code and carrier measurements. In Proceedings of the International Geodetic Symposium on Satellite Doppler Positioning, Las Cruces, NM, USA, 8–12 February 1982; pp. 1213–1231. [Google Scholar]
- Melbourne, W. The case for ranging in GPS-based geodetic systems. In Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 403–412. [Google Scholar]
- Wübbena, G. Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements. In Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 373–386. [Google Scholar]
- Guo, F.; Zhang, X.; Wang, J.; Ren, X. Modeling and assessment of triple-frequency BDS precise point positioning. J. Geod. 2016, 90, 1223–1235. [Google Scholar] [CrossRef]
- Liu, Y.; Hugentobler, U.; Duan, B.; Mikhaylov, N.; Simon, J. Receiver Bias Estimation Strategy in the Uncombined Triple-Frequency PPP-AR Model. In Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+), Denver, CO, USA, 11–15 September 2023; pp. 2570–2580. [Google Scholar] [CrossRef]
- Duan, B.; Hugentobler, U.; Selmke, I.; Wang, N. Estimating ambiguity fixed satellite orbit, integer clock and daily bias products for GPS L1/L2, L1/L5 and Galileo E1/E5a, E1/E5b signals. J. Geod. 2021, 95, 44. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hugentobler, U.; Dach, R.; Steigenberger, P.; Hauschild, A. Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut. 2012, 16, 303–313. [Google Scholar] [CrossRef]
- Geng, J.; Zhang, Q.; Li, G.; Liu, J.; Liu, D. Observable-specific phase biases of Wuhan multi-GNSS experiment analysis center’s rapid satellite products. Satell. Navig. 2022, 3, 23. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS conventions. 2010. Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main. Available online: https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36.pdf (accessed on 23 November 2024).
- Wu, J.T.; Wu, S.C.; Hajj, G.; Bertiger, W.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. Manuscr. Geod. 1993, 18, 91–98. [Google Scholar] [CrossRef]
- Kouba, J. A Guide to Using International GNSS Service (IGS) Products. IGS Website. 2015. Available online: https://files.igs.org/pub/resource/pubs/UsingIGSProductsVer21_cor.pdf (accessed on 23 November 2024).
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef]
- Glaner, M.F.; Weber, R. An open-source software package for Precise Point Positioning: raPPPid. GPS Solut. 2023, 27, 174. [Google Scholar] [CrossRef]
- Bahadur, B.; Nohutcu, M. PPPH: A MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solut. 2018, 22, 113. [Google Scholar] [CrossRef]
- Chang, X.W.; Yang, X.; Zhou, T. MLAMBDA: A modified LAMBDA method for integer ambiguity determination. In Proceedings of the 61st Annual Meeting of The Institute of Navigation, Cambridge, MA, USA, 27–29 June 2005; pp. 1086–1097. [Google Scholar]
- Chang, X.; Xie, X.; Ghassemi, T. MLAMBDA: MATLAB package for integer least squares ambiguity determination. May 2016. Available online: https://www.cs.mcgill.ca/~chang/software/MLAMBDA_User_Guide.pdf (accessed on 23 November 2024).
- Borno, M.A.; Chang, X.W.; Xie, X.H. On ’decorrelation’ in solving integer least-squares problems for ambiguity determination. Surv. Rev. 2014, 46, 37–49. [Google Scholar] [CrossRef]
- Teunissen, P.J. Success probability of integer GPS ambiguity rounding and bootstrapping. J. Geod. 1998, 72, 606–612. [Google Scholar] [CrossRef]
- Teunissen, P.J. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J. Geod. 1995, 70, 65–82. [Google Scholar] [CrossRef]
- Kouba, J.; Lahaye, F.; Tétreault, P. Precise Point Positioning. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, P.J., Montenbruck, O., Eds.; Springer Handbooks: Springer, Cham, 2017. [Google Scholar] [CrossRef]
Model | Description |
---|---|
Dual-IF | Dual-frequency measurements with IF combination |
Triple-TCAR | Triple-frequency measurements with IF combination |
Triple-Uncomb | Raw triple-frequency measurements |
Triple-Uncomb+N1&N2 | Raw triple-frequency measurements with N1 and N2 ambiguity constraints |
Triple-Uncomb+EWL&WL | Raw triple-frequency measurements with EWL and WL ambiguity constraints |
Parameters | Strategies |
---|---|
Signals | GPS L1/L2/L51, Galileo E1/E5a/E5b 1 |
Elevation cutoff angle | 7° |
Receiver coordinates | Static: estimated as constants |
Receiver clock offsets | Estimated as white noise |
Receiver hardware code bias | Estimated as time-constant term |
Ionospheric delays 2 | Estimated as white noise |
Tropospheric delays | VMF3 (Vienna Mapping Functions 3), residual zenith wet delay is estimated [5,39,40] |
System time difference | Estimated with random walk process [41] |
Ambiguities | Estimated as time-constant for each satellite arc |
Weighting strategy | Elevation-dependent weighting: with 0.3 and 0.002 m for code measurement and carrier phase measurement |
Reference coordinates | IGS weekly combined SINEX solution |
(a) | (b) | (c) | (d) | (e) | |
---|---|---|---|---|---|
% of fixed solution | 63.9 | 57.9 | 65.3 | 63.5 | 69.2 |
% of validated fixed solution | 60.3 | 57.9 | 62.5 | 62.7 | 65.5 |
Model | Average RMS Position Error (cm) | |||||
---|---|---|---|---|---|---|
Float | Fix | |||||
2D | Up | 3D | 2D | Up | 3D | |
Dual-IF | 0.9 | 1.4 | 1.7 | 0.7 | 1.4 | 1.6 |
Triple-Uncomb | 0.9 | 1.4 | 1.7 | 0.6 | 1.3 | 1.5 |
Triple-TCAR | 0.9 | 1.4 | 1.7 | 0.7 | 1.3 | 1.6 |
Triple-Uncomb+N1&N2 | 0.5 | 1.2 | 1.3 | 0.5 | 1.2 | 1.3 |
Triple-Uncomb+EWL&WL | 0.9 | 1.4 | 1.7 | 0.5 | 1.2 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Hugentobler, U.; Duan, B. Improving Performance of Uncombined PPP-AR Model with Ambiguity Constraints. Remote Sens. 2024, 16, 4537. https://doi.org/10.3390/rs16234537
Liu Y, Hugentobler U, Duan B. Improving Performance of Uncombined PPP-AR Model with Ambiguity Constraints. Remote Sensing. 2024; 16(23):4537. https://doi.org/10.3390/rs16234537
Chicago/Turabian StyleLiu, Yichen, Urs Hugentobler, and Bingbing Duan. 2024. "Improving Performance of Uncombined PPP-AR Model with Ambiguity Constraints" Remote Sensing 16, no. 23: 4537. https://doi.org/10.3390/rs16234537
APA StyleLiu, Y., Hugentobler, U., & Duan, B. (2024). Improving Performance of Uncombined PPP-AR Model with Ambiguity Constraints. Remote Sensing, 16(23), 4537. https://doi.org/10.3390/rs16234537