Arctic Sea Ice Surface Temperature Retrieval from FengYun-3A MERSI-I Data
<p>The locations of the AERONET stations (red stars), buoys (yellow stars), and MERSI-I/MODIS images (blue rectangles) in the Arctic. Because of the movement of the buoys, the yellow stars may represent the same buoy at different times. The MERSI-I/ MODIS images are not the complete scenes, and only the overlapping areas between the two sensors are presented.</p> "> Figure 2
<p>Temperature profiles in the snow and sea ice measured by the thermistor string installed in a CRREL buoy device. The colored lines denote the observation times. The dotted line denotes the snow–air interface. The data are from (<b>a</b>) 18 April 2010, and (<b>b</b>) 3 June 2011.</p> "> Figure 3
<p>The flowchart of the developed algorithm for the MERSI-I TIR data.</p> "> Figure 4
<p>Modeled directional emissivity of five ice and snow types at 0–75 emergence angles in the 7–15 μm range. The ice and snow type and corresponding <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>s</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics> </math> values are listed in the subfigures (<b>a</b>–<b>e</b>).</p> "> Figure 5
<p>The ice and snow surface emissivity variation plot with the emergence angle and error in the IST caused by the ice and snow surface emissivity variation. The sea-ice surface type is sun crust (<math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>s</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics> </math> = 0.53).</p> "> Figure 6
<p>The IST retrieval error from using the emissivity of different sea-ice surface types: (<b>a</b>–<b>e</b>) IST retrieval errors caused by using the emissivity values for fine dendrite snow, medium granular snow, coarse grained snow, sun crust snow, and bare glaze ice, respectively.</p> "> Figure 7
<p>Scatter plots of the simulated AWVC and band ratios: (<b>a</b>)–(<b>c</b>) scatter plots of AWVC and band ratios <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>17</mn> </mrow> </msub> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>18</mn> </mrow> </msub> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mn>19</mn> </mrow> </msub> </mrow> </semantics> </math>, respectively. <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math> is the band ratio of band <span class="html-italic">i</span> and band 16 (<span class="html-italic">i</span> = 17, 18, and 19).</p> "> Figure 8
<p>Scatter plots of the predictions and ground truths for four parameters (transmissivity, <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> </mrow> </semantics> </math>, atmospheric upwelling radiance, and downwelling radiance) based on the different fitting equations (linear, affine, and quadratic). The coefficient of determination (R<sup>2</sup>) values of the different scatter plots are listed in the subfigures.</p> "> Figure 9
<p>Scatter plots of the ISTs from buoy data against the retrieved ISTs: (<b>a</b>) proposed algorithm; (<b>b</b>) ISC algorithm; (<b>c</b>) MODIS IST product.</p> "> Figure 10
<p>Comparison with the IST from the IceBridge measurements; (<b>a</b>) locations of the comparison points; (<b>b</b>) comparison between the IST from the proposed algorithm and the IST from the IceBridge measurements; (<b>c</b>) comparison between the IST from the proposed ISC algorithm and the IST from the IceBridge measurements.</p> "> Figure 11
<p>Comparison between the spatial maps of the IST from the MERSI-I ISC algorithm and the MODIS IST product over subsections of the Arctic. The two columns on the left are MERSI-I and MODIS IST. The right column presents the scatter plots of the ISTs from the two datasets. The dates of the images are shown in the spatial maps.</p> "> Figure 12
<p>Scatter plots of the retrieved AWVC from MERSI-I and AERONET: (<b>a</b>,<b>b</b>) accuracy verification with and without including R<sub>19</sub>, respectively.</p> ">
Abstract
:1. Introduction
2. Data
2.1. Thermal Infrared (TIR) Data
2.2. Thermodynamic Initial Guess Retrieval (TIGR) Data
2.3. Ground-Based Atmospheric Water Vapor Content (AWVC) Data
2.4. Buoy Data
2.5. MODIS Ice Surface Temperature (IST) Product
2.6. IceBridge IST Measurement
3. Methods
3.1. TIR Radiative Transfer Equation
3.2. Developed ISC Algorithm for MERSI-I
3.3. Directional Emissivity of Ice and Snow
3.4. Retrieval of AWVC
3.5. Fitting Equations for the Atmospheric Radiative Parameters
4. Results
4.1. Validation Using Buoy Measurements
4.2. Validation Using IceBridge Measurements
4.3. Comparison with MODIS IST Maps
5. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Perovich, D.K. Sunlight, clouds, sea ice, albedo, and the radiative budget: The umbrella versus the blanket. Cryosphere 2018, 12, 2159–2165. [Google Scholar] [CrossRef]
- Comiso, J.C. Correlation and trend studies of the sea-ice cover and surface temperatures in the Arctic. Ann. Glaciol. 2002, 34, 420–428. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, 35. [Google Scholar] [CrossRef]
- Screen, J.A.; Francis, J.A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Clim. Chang 2016, 6, 856–860. [Google Scholar] [CrossRef]
- Kumar, A.; Perlwitz, J.; Eischeid, J.; Quan, X.W.; Xu, T.Y.; Zhang, T.; Hoerling, M.; Jha, B.; Wang, W.Q. Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Rasmussen, T.A.S.; Hoyer, J.L.; Ghent, D.; Bulgin, C.E.; Dybkjaer, G.; Ribergaard, M.H.; Nielsen-Englyst, P.; Madsen, K.S. Impact of Assimilation of Sea-Ice Surface Temperatures on a Coupled Ocean and Sea-Ice Model. J. Geophys. Res.-Oceans 2018, 123, 2440–2460. [Google Scholar] [CrossRef]
- Jackson, K.; Wilkinson, J.; Maksym, T.; Meldrum, D.; Beckers, J.; Haas, C.; Mackenzie, D. A novel and low-cost sea ice mass balance buoy. J. Atmos. Ocean. Technol. 2013, 30, 2676–2688. [Google Scholar] [CrossRef]
- Hall, D.K.; Key, J.R.; Casey, K.A.; Riggs, G.A.; Cavalieri, D.J. Sea ice surface temperature product from MODIS. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1076–1087. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Shokr, M.E.; Wang, Z.; Zhang, L. An improved single-channel polar region ice surface temperature retrieval algorithm using Landsat-8 data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8557–8569. [Google Scholar] [CrossRef]
- Key, J.R.; Collins, J.B.; Fowler, C.; Stone, R.S. High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ. 1997, 61, 302–309. [Google Scholar] [CrossRef]
- Fan, P.; Pang, X.; Zhao, X.; Shokr, M.; Lei, R.; Qu, M.; Ji, Q.; Ding, M. Sea ice surface temperature retrieval from Landsat 8/TIRS: Evaluation of five methods against in situ temperature records and MODIS IST in Arctic region. Remote Sens. Environ. 2020, 248, 111975. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Lin, M. The HY-1 satellite and ground system in China. Acta Oceanol. Sin. 2003, 22, 301–308. [Google Scholar]
- Yang, J.; Zhang, P.; Lu, N.; Yang, Z.; Shi, J.; Dong, C. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digit. Earth 2012, 5, 251–265. [Google Scholar] [CrossRef]
- Ye, X.; Liu, J.; Lin, M.; Ding, J.; Zou, B.; Song, Q.; Teng, Y. Evaluation of sea surface temperatures derived from the HY-1D satellite. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 654–665. [Google Scholar] [CrossRef]
- Tang, B.; Shao, K.; Li, Z.; Wu, H.; Nerry, F.; Zhou, G. Estimation and validation of land surface temperatures from Chinese second-generation polar-orbit FY-3A VIRR data. Remote Sens. 2015, 7, 3250–3273. [Google Scholar] [CrossRef]
- Liu, M.; Merchant, C.; Embury, O.; Liu, J.; Song, Q.; Guan, L. Retrieval of sea surface temperature from HY-1B COCTS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Bi, Y.; Yang, Z.; Zhang, P.; Sun, Y.; Bai, W.; Du, Q.; Yang, G.; Chen, J.; Liao, M. An introduction to China FY3 radio occultation mission and its measurement simulation. Adv. Space Res. 2012, 49, 1191–1197. [Google Scholar] [CrossRef]
- Pan, H.; Cui, Z.; Hu, X.; Zhu, X. Systematic geolocation errors of FengYun-3D MERSI-II. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res.-Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Hori, M.; Aoki, T.; Tanikawa, T.; Motoyoshi, H.; Hachikubo, A.; Sugiura, K.; Yasunari, T.J.; Eide, H.; Storvold, R.; Nakajima, Y.; et al. In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sens. Environ. 2006, 100, 486–502. [Google Scholar] [CrossRef]
- Keck, T.; Preusker, R.; Fischer, J. Retrieving snow and ice characteristics by remotely sensed emissivity using the multi-view brightness temperature within 8 μm to 14 μm. Remote Sens. Environ. 2017, 201, 181–195. [Google Scholar] [CrossRef]
- Hori, M.; Aoki, T.; Tanikawa, T.; Hachikubo, A.; Sugiura, K.; Kuchiki, K.; Niwano, M. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window. Appl. Opt. 2013, 52, 7243–7255. [Google Scholar] [CrossRef]
- Sobrino, J.; Kharraz, J.; Li, Z. Surface temperature and water vapour retrieval from MODIS data. Int. J. Remote Sens. 2003, 24, 5161–5182. [Google Scholar] [CrossRef]
- Bian, J.; Chen, H.; Vömel, H.; Duan, Y.; Xuan, Y.; Lv, D. Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Adv. Atmos. Sci. 2011, 28, 139–146. [Google Scholar] [CrossRef]
- Savtchenko, A.; Ouzounov, D.; Ahmad, S.; Acker, J.; Leptoukh, G.; Koziana, J.; Nickless, D. Terra and Aqua MODIS products available from NASA GES DAAC. Adv. Space Res. 2004, 34, 710–714. [Google Scholar] [CrossRef]
- Zhou, L.; Fan, L.; Shi, C. Evaluation and Analysis of Remotely Sensed Water Vapor from the NASA VIIRS/SNPP Product in Mainland China Using GPS Data. Remote Sens. 2023, 15, 1528. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Gao, B.C. Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 871–884. [Google Scholar] [CrossRef]
- Sun, L.; Guo, M.; Zhu, J.; Hu, X.; Song, Q. FY-3A/MERSI, ocean color algorithm, products and demonstrative applications. Acta Oceanol. Sin. 2013, 32, 75–81. [Google Scholar] [CrossRef]
- Chevallier, F.; Chédin, A.; Chéruy, F.; Morcrette, J.J. TIGR-like atmospheric-profile databases for accurate radiative-flux computation. Q. J. R. Meteorol. Soc. 2000, 126, 777–785. [Google Scholar]
- Martins, V.S.; Lyapustin, A.; Wang, Y.; Giles, D.M.; Smirnov, A.; Slutsker, I.; Korkin, S. Global validation of columnar water vapor derived from EOS MODIS-MAIAC algorithm against the ground-based AERONET observations. Atmos. Res. 2019, 225, 181–192. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Chen, Q.; Zeng, Z.; Liu, H.; Wang, Y.; Zheng, Y.; Sun, T.; Liao, T.; Wang, H.; et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos. Res. 2017, 197, 461–473. [Google Scholar] [CrossRef]
- Perovich, D.; Richter-Menge, J.; Polashenski, C.; Elder, B.; Arbetter, T.; Brennick, O. Sea ice mass balance observations from the North Pole Environmental Observatory. Geophys. Res. Lett. 2014, 41, 2019–2025. [Google Scholar] [CrossRef]
- Liao, Z.; Cheng, B.; Zhao, J.; Vihma, T.; Jackson, K.; Yang, Q.; Yang, Y.; Zhang, L.; Li, Z.; Qiu, Y.; et al. Snow depth and ice thickness derived from SIMBA ice mass balance buoy data using an automated algorithm. Int. J. Digit. Earth 2019, 8, 962–979. [Google Scholar] [CrossRef]
- Scambos, T.A.; Haran, T.M.; Massom, R.; Langhorne, P.; Squire, V. Validation of AVHRR and MODIS ice surface temperature products using in situ radiometers. Ann. Glaciol. 2006, 44, 345–351. [Google Scholar] [CrossRef]
- Shuman, C.A.; Hall, D.K.; DiGirolamo, N.E.; Mefford, T.K.; Schnaubelt, M.J. Comparison of near-surface air temperatures and MODIS ice-surface temperatures at Summit, Greenland (2008–2013). J. Appl. Meteorol. Climatol. 2014, 53, 2171–2180. [Google Scholar] [CrossRef]
- Song, L.; Wu, Y.; Gong, J.; Fan, P.; Zheng, X.; Zhao, X. Improvement of Ice Surface Temperature Retrieval by Integrating Landsat 8/TIRS and Operation IceBridge Observations. Remote Sens. 2023, 15, 4577. [Google Scholar] [CrossRef]
- Abbasi, B.; Qin, Z.; Du, W.; Fan, J.; Zhao, C.; Hang, Q.; Zhao, S.; Li, S. An Algorithm to Retrieve Total Precipitable Water Vapor in the Atmosphere from FengYun 3D Medium Resolution Spectral Imager 2 (FY-3D MERSI-2) Data. Remote Sens. 2020, 12, 3469. [Google Scholar] [CrossRef]
- Sobrino, J.; Coll, C.; Caselles, V. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sens. Environ. 1991, 38, 19–34. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L.; Zheng, Z.; Zhang, Y.; Sun, L.; Ding, L.; Huang, X. FY-3A multi-detector radiometric calibration for infrared band of medium resolution spectral imager. Opt. Precis. Eng. 2010, 18, 1972–1980. [Google Scholar]
Band | Wavelength (μm) | Spatial Resolution (m) | Bandwidth (μm) |
---|---|---|---|
MERSI-I band 5 | 11.25 | 250 | 2.50 |
MERSI-I band 16 | 0.865 | 1000 | 0.02 |
MERSI-I band 17 | 0.905 | 1000 | 0.02 |
MERSI-I band 18 | 0.94 | 1000 | 0.02 |
MERSI-I band 19 | 0.98 | 1000 | 0.02 |
MODIS band 31 | 11.03 | 1000 | 0.50 |
MODIS band 32 | 12.02 | 1000 | 0.50 |
Landsat-8 band 10 | 10.90 | 100 | 0.60 |
No. | IST(K) | AWVC (g·cm−2) | IST Errors (K) for Different AWVC Values | ||||
---|---|---|---|---|---|---|---|
150% | 120% | 100% | 80% | 50% | |||
1 | 243.45 | 0.23 | −0.26 | −0.06 | 0.06 | 0.16 | 0.3 |
2 | 250.25 | 0.32 | −0.38 | −0.12 | 0.03 | 0.17 | 0.37 |
3 | 258.45 | 0.54 | −0.57 | −0.13 | 0.08 | 0.25 | 0.53 |
4 | 264.15 | 0.87 | −2.69 | −1.01 | −0.58 | −0.37 | −0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, T.; Wang, Z.; Shokr, M.; Yuan, M.; Yuan, Q.; Wu, S. Arctic Sea Ice Surface Temperature Retrieval from FengYun-3A MERSI-I Data. Remote Sens. 2024, 16, 4599. https://doi.org/10.3390/rs16234599
Li Y, Liu T, Wang Z, Shokr M, Yuan M, Yuan Q, Wu S. Arctic Sea Ice Surface Temperature Retrieval from FengYun-3A MERSI-I Data. Remote Sensing. 2024; 16(23):4599. https://doi.org/10.3390/rs16234599
Chicago/Turabian StyleLi, Yachao, Tingting Liu, Zemin Wang, Mohammed Shokr, Menglin Yuan, Qiangqiang Yuan, and Shiyu Wu. 2024. "Arctic Sea Ice Surface Temperature Retrieval from FengYun-3A MERSI-I Data" Remote Sensing 16, no. 23: 4599. https://doi.org/10.3390/rs16234599
APA StyleLi, Y., Liu, T., Wang, Z., Shokr, M., Yuan, M., Yuan, Q., & Wu, S. (2024). Arctic Sea Ice Surface Temperature Retrieval from FengYun-3A MERSI-I Data. Remote Sensing, 16(23), 4599. https://doi.org/10.3390/rs16234599