Calculating the Optimal Point Cloud Density for Airborne LiDAR Landslide Investigation: An Adaptive Approach
<p>Overview of the study area. (<b>a</b>) The province and its boundaries where the survey area is located; (<b>b</b>) 3D terrain model of the survey area; (<b>c</b>) optical image of the Limushan landslide; (<b>d</b>) characteristic vegetation of the region (trees); (<b>e</b>) shrubs; (<b>f</b>) grassland.</p> "> Figure 2
<p>Work flow chart.</p> "> Figure 3
<p>Data acquisition and processing process (The numbers in the figure indicate the order of the processing steps).</p> "> Figure 4
<p>ICP-NN algorithm framework.</p> "> Figure 5
<p>Location map of micro-topographic features (Region a in the yellow box shows the crack at the back edge of the landslide; region b in the red box shows the right boundary of the landslide; and region c in the blue box shows the gully at the front edge of the landslide).</p> "> Figure 6
<p>Visually interpreted results–DEM comparison chart.</p> "> Figure 7
<p>Quantitative analysis of elevation RMSE.</p> "> Figure 8
<p>Quantitative analysis of elevation RMSE. ** indicates significant differences at <span class="html-italic">p</span> < 0.01.</p> "> Figure 9
<p>Results of terrain complexity calculation. (<b>a</b>) Relatively flat area; (<b>b</b>) area of high terrain complexity.</p> "> Figure 10
<p>Complexity error fitting curve.</p> "> Figure 11
<p>The elevation RMSE curve discrete difference peak-seeking plot (a–d is an enlarged detail view of the last peak on the error curve).</p> "> Figure 12
<p>The TCI error curve discrete difference peak-seeking plot (a–d is an enlarged detail view of the last peak on the error curve).</p> "> Figure 13
<p>Overview of canopy density by 2D canopy height model. (<b>a</b>) Overall vegetation cover in the DOM; (<b>b</b>) canopy density inversion result.</p> "> Figure 14
<p>The loss curve of the trained model.</p> "> Figure 15
<p>Distribution of MPIW under different CLs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Data Acquisition and Pre-Processing
2.2.2. Elevation Quality Evaluation
2.2.3. Terrain Complexity Evaluation Metrics
2.2.4. Discrete-Difference Peak-Seeking Method
2.2.5. Prediction of Collected Point Cloud Density Using Machine Learning Algorithms
- 1.
- Preparation of the Dataset for Training the Neural Network
- 2.
- Considering Uncertainty in Neural Networks
- 3.
- Constructing Prediction Intervals Using ICP-NN
3. Results
3.1. Qualitative Evaluation Results
3.2. Quantitative Evaluation Results
3.3. Error Curve Analysis
3.4. Prediction of Acquisition Point Cloud Density
4. Discussion
4.1. Terrain Complexity
4.2. Discrete-Difference Peak-Seeking
4.3. Applicability of Interval Prediction Algorithm
4.4. Optimal Ground Point Cloud Density for Different Resolution DEMs
5. Conclusions
- Optimal ground point cloud density: Comparative experiments of DEMs constructed with different point cloud densities across various resolutions identified a DEM grid density that satisfies landslide identification requirements while being cost-effective. The optimal ground point cloud densities were determined to be 2.43 pts/m2 (0.2 m resolution), 2.08 pts/m2 (1 m and 0.5 m resolution), and 1.84 pts/m2 (2 m resolution). These values provide useful references for constructing DEMs in Guangxi and regions with similar topography.
- DEM Quality Evaluation Method: A comprehensive DEM quality evaluation method was developed for landslide remote sensing investigations. This method integrates visual interpretation, the RMSE of elevation, and terrain complexity metrics, with an emphasis on preserving micro-topographic features that are critical for accurate landslide interpretation.
- Discrete Difference Peak-Seeking Method: A novel curve optimization technique was introduced, which identifies peaks in the elevation RMSE and terrain complexity error curves by analyzing differences in response values (y) at equal step lengths along the x-axis.
- ICP-NN Algorithm for Point Cloud Density Prediction: Using the optimal ground point cloud densities obtained from this study, along with factors such as elevation difference, slope, and canopy density, the ICP-NN algorithm was employed to predict the required acquisition point cloud densities. The width of the prediction intervals ranged from approximately 36 pts/m2 to 70 pts/m2, depending on the chosen confidence level.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Sun, T.; Xu, M.Y.; Dong, X.J.; Pan, X. Application of airborne LiDAR technology in geological hazard investigation in mountainous area with dense vegetation. Bull. Surv. Mapp. 2021, 0, 90–97. [Google Scholar] [CrossRef]
- Dong, X.J.; Deng, B.; Yuan, F.Y.; Fu, X.; Zhang, W.J.; Ju, Y.Z.; Ren, X.H. Application of Aerial Remote Sensing in Geological Hazards: Current Situation and Prospects. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 1897–1913. [Google Scholar] [CrossRef]
- Bonnell, R.; Mcgrath, D.; Tarricone, J.; Marshall, H.-P.; Bump, E.; Duncan, C.; Kampf, S.; Lou, Y.; Olsen-Mikitowicz, A.; Sears, M.; et al. Evaluating L-band InSAR Snow Water Equivalent Retrievals with Repeat Ground-Penetrating Radar and Terrestrial Lidar Surveys in Northern Colorado. Cryosphere 2024, 18, 3765–3785. [Google Scholar] [CrossRef]
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; et al. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Phan, A.T.T.; Phan, Q.T.; Nguyen, A.K.V. Extracting Ground Points and Generating Digital Elevation Model (DEM) from Point Clouds. In ICSCEA 2021, Proceedings of the Second International Conference on Sustainable Civil Engineering and Architecture, Ho Chi Minh City, Vietnam, 30 October 2021; Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2023; Volume 268, pp. 589–596. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Agüera-Puntas, M.; Martínez-Carricondo, P.; Mancini, F.; Carvajal, F. Effects of point cloud density, interpolation method and grid size on derived Digital Terrain Model accuracy at micro topography level. Int. J. Remote Sens. 2020, 41, 8281–8299. [Google Scholar] [CrossRef]
- Bula, J.; Derron, M.H.; Mariethoz, G. Dense point cloud acquisition with a low-cost Velodyne VLP-16. Geosci. Instrum. Methods Data Syst. 2020, 9, 385–396. [Google Scholar] [CrossRef]
- Wang, D.J.; Chen, B.; Sun, J.H. Study on the effects of point density on DEM accuracy of airborne LiDAR. Bull. Surv. Mapp. 2022, 140–114, 169. [Google Scholar] [CrossRef]
- Razak, K.A.; Straatsma, M.W.; van Westen, C.J.; Malet, J.P.; de Jong, S.M. Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology 2011, 126, 186–200. [Google Scholar] [CrossRef]
- Liu, C.; Sun, W.; Wu, H. Determination of complexity factor and its relationship with accuracy of representation for DEM terrain. Geo-Spat. Inf. Sci. 2010, 13, 249–256. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.C.; Wu, Z.H.; Liu, S.T.; Liu, Y. Using terrestrial LiDAR to accurately measure the microgeomorphologic geometry of active fault: A case study of fault scarp on the Maoyaba fault zone. J. Geomech. 2021, 27, 63–72. [Google Scholar] [CrossRef]
- Onukwugha, E.; Bergtold, J.; Jain, R. A Primer on Marginal Effects—Part I: Theory and Formulae. PharmacoEconomics 2015, 33, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Fukahata, Y.; Nishitani, A.; Matsu’ura, M. Geodetic data inversion using ABIC to estimate slip history during one earthquake cycle with viscoelastic slip-response functions. Geophys. J. Int. 2004, 156, 140–153. [Google Scholar] [CrossRef]
- Xiong, W.; Yu, C.; Chen, W.; Nie, Y.S.; Tan, K. Coulomb Stress Influence of 2010 YuShu Earthquake on 2016 Zaduo Earthquake:Earthquake and Seismic Hazard Assessment on Surrounding Area. J. Geod. Geodyn. 2018, 38, 338–343. [Google Scholar] [CrossRef]
- Yang, Y.H.; Tsai, M.C.; Hu, J.C.; Aurelio, M.A.; Hashimoto, M.; Escudero, J.A.P.; Su, Z.; Chen, Q. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault. Geophys. Res. Lett. 2018, 45, 2659–2668. [Google Scholar] [CrossRef]
- Petras, V.; Petrasova, A.; McCarter, J.B.; Mitasova, H.; Meentemeyer, R.K. Point Density Variations in Airborne Lidar Point Clouds. Sensors 2023, 23, 1593. [Google Scholar] [CrossRef]
- Poux, F.; Neuville, R.; Van Wersch, L.; Nys, G.A.; Billen, R. 3D Point Clouds in Archaeology: Advances in Acquisition, Processing and Knowledge Integration Applied to Quasi-Planar Objects. Geosciences 2017, 7, 96. [Google Scholar] [CrossRef]
- Jakovljevic, G.; Govedarica, M.; Alvarez-Taboada, F.; Pajic, V. Accuracy assessment of deep learning based classification of LiDAR and UAV points clouds for DTM creation and flood risk mapping. Geosciences 2019, 9, 323. [Google Scholar] [CrossRef]
- Zhou, M.; Li, C.G.; Li, Z.; Yu, Z. Effect of UAV-LiDAR Point Density on Estimation Accuracy of Forest Inventory Attributes. For. Res. 2024, 37, 39–47. [Google Scholar] [CrossRef]
- National Administration of Surveying, Mapping and Geoinformation of China. Technical Specifications for Airborne LiDAR Data Acquisition (CHT 8024-2011); NASG: Beijing, China, 2011. [Google Scholar]
- Geospatial Information Authority of Japan. Public Survey Manual for UAVs (Draft); GSI: Tsukuba, Japan, 2016. [Google Scholar]
- United States Geological Survey. Lidar Base Specification; USGS: Reston, VA, USA, 2024. [Google Scholar]
- Krzywinski, M.; Altman, N. Points of significance: Power and sample size. Nat. Methods 2013, 10, 1139. [Google Scholar] [CrossRef]
- Lohani, B.; Ghosh, S. Airborne LiDAR Technology: A Review of Data Collection and Processing Systems. Proc. Natl. Acad. Sci. India Sect. A—Phys. Sci. 2017, 87, 567–579. [Google Scholar] [CrossRef]
- Bei, Y.X.; Chen, C.F.; Wang, X.; Sun, Y.N.; He, Q.X.; Li, K.Y. Effects of Airborne LiDAR Point Cloud Density and Interpolation Methods on the Accuracy of DEM and Surface Roughness. J. Geo-Inf. Sci. 2023, 25, 265–276. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Lerma, J.L. A new methodology to estimate the discrete-return point density on airborne lidar surveys. Int. J. Remote Sens. 2014, 35, 1496–1510. [Google Scholar] [CrossRef]
- Lu, H.X.; Liu, X.J.; Tang, G.A. Terrain Complexity Assessment Based on Multivariate Analysis. J. Mt. Sci. 2012, 30, 616–621. [Google Scholar] [CrossRef]
- Wu, F.; Liao, Z.Y.; He, N.; Liu, C.; Wu, Q.J.; Mo, Y.F.; Pan, X.Y.; Jiang, Y.J.; Li, C.L.; Huang, X.; et al. Airborne LiDAR for Geological Hazard Investigation in Mountainous Areas with Dense Vegetation on Point Cloud Density Optimization. Geomat. Inf. Sci. Wuhan Univ. 2023, 1–11. [Google Scholar] [CrossRef]
- Weisburd, D.; Britt, C.; Wilson, D.B.; Wooditch, A. Measuring Association for Scaled Data: Pearson’s Correlation Coefficient. Basic Stat. Criminol. Crim. Justice 2020, 479–530. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A modified critic method to estimate the objective weights of decision criteria. Symmetry 2021, 13, 973. [Google Scholar] [CrossRef]
- Tang, Y.H. A Thin Method Based on Local Terrain Complexity Index for LiDAR Bare Earth Surface Point Cloud; Southwest Jiaotong University: Chengdu, China, 2019. [Google Scholar] [CrossRef]
- Michael, A.L.; Warren, B.C.; Geoffrey, G.P.; David, J.H. Lidar Remote Sensing for Ecosystem Studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience 2002, 52, 19–30. [Google Scholar] [CrossRef]
- Venier, L.A.; Swystun, T.; Mazerolle, M.J.; Kreutzweiser, D.P.; Wainio-Keizer, K.L.; McIlwrick, K.A.; Woods, M.E.; Wang, X. Modelling vegetation understory cover using LiDAR metrics. PLoS ONE 2019, 14, e0220096. [Google Scholar] [CrossRef]
- Đuka, A.; Tomljanović, K.; Franjević, M.; Janeš, D.; Žarković, I.; Papa, I. Application and Accuracy of Unmanned Aerial Survey Imagery after Salvage Logging in Different Terrain Conditions. Forests 2022, 13, 2054. [Google Scholar] [CrossRef]
- Aryal, R.R.; Latifi, H.; Heurich, M.; Hahn, M. Impact of slope, aspect, and habitat-type on LiDAR-derived digital terrain models in a near natural, heterogeneous temperate forest. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 243–255. [Google Scholar] [CrossRef]
- Zhao, X.; Yue, C.R.; Li, C.G.; Gu, L.; Zhang, G.F. Estimation of Forest Canopy Density based on Airborne LiDAR Point Cloud Data. Remote Sens. Technol. Appl. 2020, 35, 1136–1145. [Google Scholar]
- Soja, M.J.; Persson, H.; Ulander, L.M.H. Estimation of forest height and canopy density from a single InSAR correlation coefficient. IEEE Geosci. Remote Sens. Lett. 2015, 12, 646–650. [Google Scholar] [CrossRef]
- Song, L.; Fan, J.; Chen, D.R.; Zhou, D.X. Approximation of Nonlinear Functionals Using Deep ReLU Networks. J. Fourier Anal. Appl. 2023, 29, 1–23. [Google Scholar] [CrossRef]
- Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R.; et al. A survey of uncertainty in deep neural networks. Artif. Intell. Rev. 2023, 56, 1513–1589. [Google Scholar] [CrossRef]
- Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On Calibration of Modern Neural Networks. In Proceedings of the 34th International Conference on Machine Learning, PMLR 70, Sydney, Australia, 6–11 August 2017; pp. 1321–1330. [Google Scholar]
- Wilson, A.G.; Izmailov, P. Bayesian Deep Learning and a Probabilistic Perspective of Generalization. Adv. Neural Inf. Process. Syst. 2020, 33, 4697–4708. [Google Scholar] [CrossRef]
- Deruyttere, T.; Milewski, V.; Moens, M.F. Giving commands to a self-driving car: How to deal with uncertain situations? Eng. Appl. Artif. Intell. 2021, 103, 104257. [Google Scholar] [CrossRef]
- Hansen, K.B.; Borch, C. The absorption and multiplication of uncertainty in machine-learning-driven finance. Br. J. Sociol. 2021, 72, 1015–1029. [Google Scholar] [CrossRef]
- Sousa, M. Inductive Conformal Prediction: A Straightforward Introduction with Examples in Python. arXiv 2022, arXiv:2206.11810. [Google Scholar]
- Papadopoulos, H.; Proedrou, K.; Vovk, V.; Gammerman, A. Inductive Confidence Machines for Regression. In Machine Learning: ECML 2002; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2430, pp. 345–356. [Google Scholar] [CrossRef]
- Johansson, U.; Boström, H.; Löfström, T.; Linusson, H. Regression conformal prediction with random forests. Mach. Learn. 2014, 97, 155–176. [Google Scholar] [CrossRef]
- Zhang, L. Study on Spatial Pattern of Loess Landforms Based on Analysis of Core Topographic Factors; Nanjing Normal University: Nanjing, China, 2013. [Google Scholar]
- Tang, G.A.; Yang, X. An Experimental Course on Spatial Analysis in ArcGIS Geographic Information System; Science Press: Beijing, China, 2012. [Google Scholar]
- Li, X.S.; Zhang, S.L.; Wang, Y.H. Quantitative Study of Construction Land Increase Limit Year in the Economic Transition Stage in China. J. Nat. Resour. 2011, 26, 1085–1095. [Google Scholar]
- Li, X.S.; Qu, F.T.; Chen, Y.S. Hypothesis and Validation on the Logistic Curve of Economic Development and Urban Sprawl--Based on the Investigation of the Typical Cities in East China. J. Nat. Resour. 2012, 27, 713–722. [Google Scholar]
- Wang, F.; Zhou, X. Population Structure, Urbanization and CO2 Emission: An Empirical Study Base on Cross-country Panel Data. Chin. J. Popul. Sci. 2012, 2, 47–56, 111. [Google Scholar]
- Chen, B.S.; Sima, J.S.; Zhao, G.Z.; Dong, X.J.; Lei, W.Q.; Chen, T.X.; He, Q.L. Optimal Point Density of Airborne LiDAR Data Collection for Hazards in Mountainous Areas. Geomat. Inf. Sci. Wuhan Univ. 2024, 1–14. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, Z.Y.; Peterson, J.; Chandra, S. The effect of LiDAR data density on DEM accuracy. MODSIM07-Land, Water and Environmental Management: Integrated Systems for Sustainability, Proceedings. 2007. Available online: https://api.semanticscholar.org/CorpusID:18995152 (accessed on 3 December 2024).
Name of Specifications | Published Units | Collect Point Cloud Density Requirements |
---|---|---|
Lidar Base Specification | The United States Geological Survey (USGS) | QL: Quality level QL0: ≥8.0 pls/m2; QL1: ≥8.0 pls/m2; QL2: ≥2.0 pls/m2; QL3: ≥0.5 pls/m2 |
Drone Public Survey Handbook | The Geospatial Information Authority of Japan (GSI) | Low vegetated areas:10~100 pts/m2 Highly vegetated areas:20~200 pts/m2 |
Specification for data acquisition of airborne LiDAR | National Administration of Surveying, Mapping and Geoinformation | 1:500 scale: ≥16 pls/m2; 1:1000 scale: ≥4 pls/m2; 1:2000 scale: ≥1 pls/m2; 1:5000 scale: ≥1 pls/m2; 1:10,000 scale: ≥0.25 pls/m2; |
Terrain Factor | ||||
---|---|---|---|---|
SOS | 0.104 | 1.093 | 0.114 | 0.5816 |
TPI | 0.075 | 1.093 | 0.082 | 0.4184 |
CL | MPIW | PICP | MPIW (100–250) | PICP (100–250) |
0.5 | 36.00 | 0.497 | 28.56 | 0.506 |
0.6 | 43.73 | 0.601 | 34.98 | 0.598 |
0.7 | 52.34 | 0.705 | 42.09 | 0.689 |
0.8 | 61.62 | 0.798 | 50.80 | 0.796 |
0.9 | 70.33 | 0.899 | 60.47 | 0.911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Dong, X.; He, Q. Calculating the Optimal Point Cloud Density for Airborne LiDAR Landslide Investigation: An Adaptive Approach. Remote Sens. 2024, 16, 4563. https://doi.org/10.3390/rs16234563
Liao Z, Dong X, He Q. Calculating the Optimal Point Cloud Density for Airborne LiDAR Landslide Investigation: An Adaptive Approach. Remote Sensing. 2024; 16(23):4563. https://doi.org/10.3390/rs16234563
Chicago/Turabian StyleLiao, Zeyuan, Xiujun Dong, and Qiulin He. 2024. "Calculating the Optimal Point Cloud Density for Airborne LiDAR Landslide Investigation: An Adaptive Approach" Remote Sensing 16, no. 23: 4563. https://doi.org/10.3390/rs16234563
APA StyleLiao, Z., Dong, X., & He, Q. (2024). Calculating the Optimal Point Cloud Density for Airborne LiDAR Landslide Investigation: An Adaptive Approach. Remote Sensing, 16(23), 4563. https://doi.org/10.3390/rs16234563