Combining the SHAP Method and Machine Learning Algorithm for Desert Type Extraction and Change Analysis on the Qinghai–Tibetan Plateau
<p>Location and geographical overview of the Qinghai–Tibetan plateau.</p> "> Figure 2
<p>Overall classification results of five machine learning algorithms for QTP deserts.</p> "> Figure 3
<p>Comparison of local classification details of different machine learning algorithms. (<b>a</b>) is the typical region containing mainly SD and MS; (<b>b</b>) is the typical region containing mainly GD and SM; (<b>c</b>) is the typical region containing mainly LD and AC; (<b>d</b>) is the typical region with diverse and complex desert types; (<b>e</b>) is the typical region containing mainly GD, RD and Non-desert.</p> "> Figure 4
<p>Global and local importance of SHAP-based classification features. (<b>a</b>) is the global importance; (<b>b</b>–<b>h</b>) are the importance of classification features for different desert types, where (<b>b</b>) is SD, (<b>c</b>) is GD, (<b>d</b>) is SM, (<b>e</b>) is MS, (<b>f</b>) is LD, (<b>g</b>) is RD, and (<b>h</b>) is AC.</p> "> Figure 5
<p>Spatial distribution of QTP desert types in 2000, 2010, and 2020.</p> "> Figure 6
<p>Spatial distribution of changes in QTP deserts during different periods.</p> "> Figure 7
<p>Sankey diagram of QTP desert changes in different periods.</p> "> Figure 8
<p>Spatial distribution of driver factor rating results. Note: See <a href="#app1-remotesensing-16-04414" class="html-app">Appendix A</a> for details of the meaning of vegetation type and soil type codes.</p> "> Figure 9
<p>The q-value of the individual factors. Note: “*” represents <span class="html-italic">p</span> < 0.05.</p> "> Figure 10
<p>Detection results of the interaction between the two factors. Note: “↑” and “↑↑” represent bidirectional enhancement and nonlinear enhancement, respectively.</p> "> Figure A1
<p>The spatial distribution of driving factors.</p> "> Figure A2
<p>The location of the local classification detail regions.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Preprocessing
2.2.1. Remote Sensing Data
2.2.2. Selection of Impact Factors for Desert Change
2.3. Methods
2.3.1. Desert Classification System and Sample Selection
2.3.2. GEE Platform
2.3.3. Machine Learning Classification Algorithms
2.3.4. Selection of Classification Features
2.3.5. Geodetector Model
2.3.6. Model Interpretation
3. Results
3.1. Differences in Classification Performance of Different Machine Learning Algorithms
3.2. Classification Feature Importance Analysis Based on SHAP
3.3. Spatial Distribution and Changes in QTP Deserts
3.4. Analysis of Factors Influencing Changes in QTP Deserts
4. Discussion
4.1. Machine Learning Algorithm Classification Performance
4.2. Impact of Classification Features on Desert Type Identification
4.3. Impact Factors on Desert Change
4.4. Advantages and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Datasets | Years | Months | Number of Images | Path and Row | |
---|---|---|---|---|---|
2000 | LANDSAT/LE07/C02/T1_L2 | 1998–2003 | July and August | 1043 | Path:131–151 Row:32–41 |
2010 | LANDSAT/LE07/C02/T1_L2 | 2007–2013 | 1782 | ||
2020 | LANDSAT/LC08/C02/T1_L2 | 2019–2022 | 1723 |
Desert Type | 2000 | 2010 | 2020 |
---|---|---|---|
SD | 4546 | 4517 | 4598 |
GD | 3505 | 3422 | 3286 |
SM | 297 | 293 | 295 |
MS | 181 | 177 | 165 |
LD | 1189 | 1097 | 1006 |
RD | 2057 | 1950 | 1889 |
AC | 1909 | 1893 | 1869 |
Total | 13,684 | 13,349 | 13,108 |
Spectral Indexes | Formulas |
---|---|
TGSI | TGSI = |
BSI | BSI = |
NDVI | NDVI = |
EVI | EVI = 2.5 × (()) |
MSAVI | MSAVI = |
SI | SI = |
NDSI | NDSI = |
NDWI | NDWI = |
Albedo |
Basis of Assessment | Interaction Type |
---|---|
q(X1∩X2) < Min(q(X1), q(X2)) | nonlinear weakening |
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) | Single-factor nonlinear weakening |
q(X1∩X2) > Max(q(X1), q(X2)) | bidirectional enhancement |
q(X1∩X2) = q(X1) + q(X2) | independent |
q(X1∩X2) > q(X1) + q(X2) | nonlinear enhancement |
SD | GD | SM | MS | LD | RD | AC | |
---|---|---|---|---|---|---|---|
SD | 1291 | 35 | 0 | 0 | 4 | 5 | 0 |
GD | 47 | 863 | 4 | 0 | 49 | 15 | 13 |
SM | 2 | 27 | 42 | 4 | 3 | 4 | 0 |
MS | 3 | 8 | 2 | 37 | 0 | 1 | 0 |
LD | 11 | 55 | 4 | 0 | 217 | 24 | 1 |
RD | 9 | 32 | 0 | 0 | 17 | 456 | 55 |
AC | 0 | 11 | 0 | 0 | 2 | 53 | 473 |
SD | GD | SM | MS | LD | RD | AC | |
---|---|---|---|---|---|---|---|
SD | 1276 | 45 | 1 | 0 | 8 | 5 | 0 |
GD | 48 | 856 | 3 | 3 | 48 | 19 | 14 |
SM | 2 | 18 | 48 | 5 | 7 | 2 | 0 |
MS | 2 | 5 | 6 | 38 | 0 | 0 | 0 |
LD | 14 | 55 | 7 | 0 | 212 | 21 | 3 |
RD | 5 | 35 | 0 | 1 | 20 | 455 | 53 |
AC | 0 | 9 | 3 | 0 | 2 | 64 | 461 |
SD | GD | SM | MS | LD | RD | AC | |
---|---|---|---|---|---|---|---|
SD | 1218 | 84 | 5 | 3 | 12 | 13 | 0 |
GD | 83 | 794 | 9 | 1 | 62 | 31 | 11 |
SM | 8 | 20 | 43 | 6 | 2 | 3 | 0 |
MS | 2 | 4 | 5 | 40 | 0 | 0 | 0 |
LD | 17 | 69 | 9 | 0 | 185 | 31 | 1 |
RD | 16 | 45 | 2 | 0 | 29 | 416 | 61 |
AC | 0 | 16 | 0 | 0 | 7 | 88 | 428 |
SD | GD | SM | MS | LD | RD | AC | |
---|---|---|---|---|---|---|---|
SD | 1145 | 167 | 1 | 0 | 6 | 16 | 0 |
GD | 143 | 725 | 9 | 6 | 78 | 21 | 9 |
SM | 6 | 38 | 28 | 6 | 4 | 0 | 0 |
MS | 3 | 7 | 9 | 32 | 0 | 0 | 0 |
LD | 44 | 99 | 8 | 3 | 143 | 10 | 5 |
RD | 49 | 76 | 0 | 1 | 27 | 302 | 114 |
AC | 1 | 7 | 0 | 0 | 16 | 90 | 425 |
SD | GD | SM | MS | LD | RD | AC | |
---|---|---|---|---|---|---|---|
SD | 1273 | 49 | 0 | 0 | 0 | 3 | 10 |
GD | 773 | 55 | 0 | 0 | 0 | 5 | 158 |
SM | 63 | 4 | 0 | 0 | 0 | 1 | 14 |
MS | 51 | 0 | 0 | 0 | 0 | 0 | 0 |
LD | 137 | 5 | 0 | 0 | 0 | 1 | 169 |
RD | 314 | 63 | 0 | 0 | 0 | 10 | 182 |
AC | 14 | 14 | 0 | 0 | 0 | 11 | 500 |
Number | Meaning |
---|---|
1 | Needleleaf forests |
2 | Alpine vegetation |
3 | Cultivated vegetation |
4 | Needleleaf and Broadleaf mixed forests |
5 | Broadleaf forests |
6 | Scrubs |
7 | Deserts |
8 | Steppes |
9 | Grasslands |
10 | Meadows |
11 | Marshes |
Number | Meaning |
---|---|
1 | Alpine soil |
2 | Ferroalloysite soil |
3 | Calcic soil |
4 | Saline-alkali soil |
5 | Desert soil |
6 | Leached soil |
7 | Hydromorphic soil |
8 | Arid soil |
9 | Semi-leached soil |
10 | Semi-hydromorphic soil |
11 | Primary soil |
12 | Anthropogenic soil |
References
- China Scientific and Technical Nomenclature Review Committee. Geographic Terminology, 2nd ed.; Science Press: Beijing, China, 2007. [Google Scholar]
- Yang, F.X.; Gui, D.W.; Yue, J.; Lei, J.Q.; Zhang, Z.W. A discussion on classification system of desert in arid land. J. Arid Land Resour. Environ. 2015, 29, 145–151. [Google Scholar]
- Khan, A.A.; Ruby, T.; Naz, N.; Rafay, M. Desert ecosystem management: A sustainable and wise use. In Ecosystem Functions and Management: Theory and Practice; Springer: Cham, Switzerland, 2017; pp. 85–99. [Google Scholar]
- Cheng, L.L.; Que, X.E.; Yang, L.; Yao, X.L.; Lu, Q. China’s desert ecosystem: Functions rising and services enhancing. Bull. Chin. Acad. Sci. 2020, 35, 690–698. [Google Scholar]
- Wu, S.; Liu, L.; Li, D.; Zhang, W.; Liu, K.; Shen, J.; Zhang, L. Global desert expansion during the 21st century: Patterns, predictors and signals. Land Degrad. Dev. 2023, 34, 377–388. [Google Scholar] [CrossRef]
- Chen, H.; Costanza, R. Valuation and management of desert ecosystems and their services. Ecosyst. Serv. 2024, 66, 101607. [Google Scholar] [CrossRef]
- Feng, Q.; Chang, Z.Q.; Xi, H.Y.; Su, Y.H.; Wen, X.H.; Zhu, M.; Zhang, J.T.; Zhang, C.Q. Response to Global Change in the Ecologically Fragile and Desert Region of China-Mongolia Based on Carbon and Nitrogen Cycles. Adv. Earth Sci. 2022, 37, 1101. [Google Scholar]
- Liu, H.L.; Willems, P.; Bao, A.M.; Wang, L.; Chen, X. Effect of climate change on the vulnerability of a socio-ecological system in an arid area. Glob. Planet Chang. 2016, 137, 1–9. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, G.J.; Mu, X.M.; Lan, Z.F.; Jiao, J.Y.; An, S.S.; Wu, Y.Q.; Mi-Ping, P.Q. Integrated assessments of land degradation on the Qinghai-Tibet plateau. Ecol. Indic. 2023, 147, 109945. [Google Scholar] [CrossRef]
- Department of Economic and Social Affairs. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Huang, J.P.; Zhang, G.L.; Zhang, Y.T.; Guan, X.D.; Wei, Y.; Guo, R.X. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Sterk, G.; Stoorvogel, J.J. Desertification–Scientific Versus Political Realities. Land 2020, 9, 156. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Gao, G.L.; Qin, S.G.; Yu, M.H.; Ding, G.D. Desertification detection and the evaluation indicators: A review. J. Arid Land Resour. Environ. 2019, 33, 81–87. [Google Scholar]
- Li, S.; Dong, Y.X.; Dong, G.R. Sandy Desertification Problem and Sustainable Development in Qinghai-Tibet Plateau; China Tibetology Publishing House: Beijing, China, 2001. [Google Scholar]
- Zhang, C.L.; Li, Q.; Shen, Y.P.; Zhou, N.; Wang, X.S.; Li, J.; Jia, W.R. Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images. Sci. Total Environ. 2018, 619, 1648–1659. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Managing fragile ecosystems: Combating desertification and drought. In Agenda 21; A/CONF.151/4 (Part II); United Nations: Rio de Janeiro, Brazil, 1992; pp. 46–66. [Google Scholar]
- Wang, X.M.; Geng, X.; Liu, B.; Cai, D.W.; Li, D.F.; Xiao, F.Y.; Zhu, B.Q.; Hua, T.; Lu, R.J.; Liu, F. Desert ecosystems in China: Past, present, and future. Earth Sci. Rev. 2022, 234, 104206. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E. The application of ensemble techniques for land-cover classification in arid lands. Int. J. Remote Sens. 2015, 36, 5613–5636. [Google Scholar] [CrossRef]
- Song, Y.B.; Zheng, H.W.; Chen, X.; Bao, A.M.; Lei, J.Q.; Xu, W.Q.; Luo, G.P.; Guan, Q. Desertification Extraction Based on a Microwave Backscattering Contribution Decomposition Model at the Dry Bottom of the Aral Sea. Remote Sens. 2021, 13, 4850. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Yin, H.Y.; Qian, D.F.; Zhou, Y.Z. A Preliminary Study on the Classification System of Desert in Alpine Region—Taking Duilongdeqing District as an Example. J. Plateau Agric. 2019, 3, 2096–4781. [Google Scholar]
- Kupidura, P. The comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery. Remote Sens. 2019, 11, 1233. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.Y.; Xian, G.; Yin, D.M.; Lu, Y.; Zou, S.Y.; Erickson, T.A. A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Shetty, S. Analysis of Machine Learning Classifiers for LULC Classification on Google Earth Engine. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 5, 206–215. [Google Scholar] [CrossRef]
- Fu, B.L.; Liang, Y.Y.; Lao, Z.N.; Sun, X.D.; Li, S.Z.; He, H.C.; Sun, W.W.; Fan, D.L. Quantifying scattering characteristics of mangrove species from Optuna-based optimal machine learning classification using multi-scale feature selection and SAR image time series. Int. J. Appl. Earth Obs. 2023, 122, 103446. [Google Scholar] [CrossRef]
- Chen, H.F.; Yang, L.P.; Wu, Q.S. Enhancing land cover mapping and monitoring: An interactive and explainable machine learning approach using Google Earth Engine. Remote Sens. 2023, 15, 4585. [Google Scholar] [CrossRef]
- Stojić, A.; Stanić, N.; Vuković, G.; Stanišić, S.; Perišić, M.; Šoštarić, A.; Lazić, L. Explainable extreme gradient boosting tree-based prediction of toluene, ethylbenzene and xylene wet deposition. Sci. Total Environ. 2019, 653, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Shafizadeh-Moghadam, H.; Khazaei, M.; Alavipanah, S.K.; Weng, Q. Google Earth Engine for large-scale land use and land cover mapping: An object-based classification approach using spectral, textural and topographical factors. GISci. Remote Sens. 2021, 58, 914–928. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Zhang, Y.; Fu, B.L.; Sun, X.D.; Yao, H.; Zhang, S.R.; Wu, Y.; Kuang, H.Y.; Deng, T.F. Effects of multi-growth periods UAV images on classifying karst wetland vegetation communities using object-based optimization stacking algorithm. Remote Sens. 2023, 15, 4003. [Google Scholar] [CrossRef]
- Meng, X.Y.; Li, S.Y.; Akhmadi, K.; He, P.X.; Dong, G.P. Trends, turning points, and driving forces of desertification in global arid land based on the segmental trend method and SHAP model. GISci. Remote Sens. 2024, 61, 2367806. [Google Scholar] [CrossRef]
- Feng, K.D.; Mao, D.H.; Zhen, J.N.; Pu, H.G.; Yan, H.Q.; Wang, M.; Wang, D.R.; Xiang, H.X.; Ren, Y.X.; Luo, L.; et al. Potential of Sample Migration and Explainable Machine Learning Model for Monitoring Spatiotemporal Changes of Wetland Plant Communities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 9894. [Google Scholar] [CrossRef]
- Zhou, Y.A.; Wu, W.; Wang, H.; Zhang, X.; Yang, C.; Liu, H.B. Identification of soil texture classes under vegetation cover based on Sentinel-2 data with SVM and SHAP techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3758–3770. [Google Scholar] [CrossRef]
- Antonini, A.S.; Tanzola, J.; Asiain, L.; Ferracutti, G.R.; Castro, S.M.; Bjerg, E.A.; Ganuza, M.L. Machine Learning model interpretability using SHAP values: Application to Igneous Rock Classification task. Appl. Comput. Geosci. 2024, 23, 100178. [Google Scholar] [CrossRef]
- Hosseiny, B.; Abdi, A.M.; Jamali, S. Urban land use and land cover classification with interpretable machine learning—A case study using Sentinel-2 and auxiliary data. Remote Sens Appl. 2022, 28, 100843. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.M.; Luo, T.X.; Xu, B.Q. Third pole environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Olsson, L.; Eklundh, L.; Ardö, J. A recent greening of the Sahel—Trends, patterns and potential causes. J. Arid Environ. 2005, 63, 556–566. [Google Scholar] [CrossRef]
- Yang, Z.W.; Gao, X.; Lei, J.Q.; Meng, X.Y.; Zhou, N. Analysis of spatiotemporal changes and driving factors of desertification in the Africa Sahel. Catena 2022, 213, 106213. [Google Scholar] [CrossRef]
- Feng, Q.; Ma, H.; Jiang, X.M.; Wang, X.; Cao, S. What has caused desertification in China? Sci. Rep. 2015, 5, 15998. [Google Scholar] [CrossRef] [PubMed]
- Al-Blooshi, L.S.; Issa, S.; Ksiksi, T. Assessing the environmental impact of climate change on desert ecosystems: A review. Adv. Ecol. Res. 2020, 5, 27–52. [Google Scholar]
- Zhang, C.X.; Wang, X.M.; Li, J.C.; Hua, T. Identifying the effect of climate change on desertification in northern China via trend analysis of potential evapotranspiration and precipitation. Ecol. Indic. 2020, 112, 106141. [Google Scholar] [CrossRef]
- Zhao, H.L. Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J. Arid Environ. 2005, 62, 309–319. [Google Scholar] [CrossRef]
- Xu, D.Y.; Li, C.L.; Song, X.; Ren, H.Y. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. Catena 2014, 123, 11–22. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. Environ. 2017, 197, 43–57. [Google Scholar] [CrossRef]
- Liu, Q.F.; Zhang, Q.; Yan, Y.Z.; Zhang, X.F.; Niu, J.M.; Svenning, J.C. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). J. Clean Prod. 2020, 268, 122241. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Y.; Luo, P.; Wang, X.; Li, H.; Lin, P. Desertification in western Hainan Island, China (1959 to 2003). Land Degrad. Dev. 2007, 18, 473–485. [Google Scholar] [CrossRef]
- Zhi, Y.; Liu, S.L.; Wang, T.; Duan, H.C.; Kang, W.P. Quantifying the impact of natural and human activity factors on desertification in the Qinghai-Tibetan Plateau. Catena 2024, 246, 108392. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Zhai, X.H.; Li, S.; Wang, Y.H.; Xie, J.L.; Yan, C.Z. The continuing decrease of sandy desert and sandy land in northern China in the latest 10 years. Ecol. Indic. 2023, 154, 110699. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Li, W.H.; Zhou, X.M. Ecosystems of Qinghai-Xizang (Tibetan) Plateau and Approach for Their Sustainable Management; Guangdong Science and Technology Press: Guangzhou, China, 1998. [Google Scholar]
- Chen, F.H.; Wang, Y.F.; Zhen, X.L.; Sun, J. Environmental impacts and response strategies on the Qinghai-Tibet Plateau under global change. China Tibetol. 2021, 21, e28. [Google Scholar]
- Li, M.; Zhang, X.Z.; He, Y.T.; Niu, B.; Wu, J.S. Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau. PeerJ 2020, 8, e8513. [Google Scholar] [CrossRef]
- United Nations Convention to Combat Desertification (UNCCD). United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification Particularly in Africa: Text with Annexes; UNEP: Nairobi, Kenya, 1994. [Google Scholar]
- UNEP. World Atlas of Desertification; Edward Arnold: London, UK, 1992. [Google Scholar]
- Zhao, H.Y.; Yan, C.Z.; Li, S.; Wang, Y.H. Remote sensing monitoring of aeolian desertification and quantitative analysis of its driving force in the Yellow River Basin during 2000–2020. J. Desert Res. 2023, 43, 127–137. [Google Scholar]
- Zhang, J.H.; Feng, Z.M.; Jiang, L.G. Progress on studies of land use/land cover classification systems. Resour. Sci. 2011, 33, 1195–1203. [Google Scholar]
- Li, C.X.; Ma, Z.Y.; Wang, L.Y.; Yu, W.J.; Tan, D.L.; Gao, B.B.; Feng, Q.L.; Guo, H.; Zhao, Y.Y. Improving the accuracy of land cover mapping by distributing training samples. Remote Sens. 2021, 13, 4594. [Google Scholar] [CrossRef]
- Mbatha, N.; Xulu, S. Time series analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of recent intense drought. Climate 2018, 6, 95. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A global analysis and future trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. 2006. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data. Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Ustuner, M.; Balik Sanli, F. Polarimetric target decompositions and light gradient boosting machine for crop classification: A comparative evaluation. ISPRS Int. J. Geo-Inf. 2019, 8, 97. [Google Scholar] [CrossRef]
- Huang, C.Q.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Electron. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Yang, X.Y. Parameterizing support vector machines for land cover classification. Photogramm. Eng. Remote Sens. 2011, 77, 27–37. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Martin, B. Instance-Based Learning: Nearest Neighbour with Generalization; University of Waikato: Hamilton, New Zealand, 1995. [Google Scholar]
- Ge, G.; Shi, Z.J.; Zhu, Y.J.; Yang, X.H.; Hao, Y.G. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Capolupo, A.; Monterisi, C.; Caporusso, G.; Tarantino, E. Extracting land cover data using GEE: A review of the classification indices. In Proceedings of the Computational Science and Its Applications–ICCSA 2020: 20th International Conference, Cagliari, Italy, 1–4 July 2020; Proceedings, Part IV 20. Springer International Publishing: Cham, Switzerland; pp. 782–796. [Google Scholar]
- Lu, R.J.; Liu, S.L.; Kang, W.P.; Feng, K.; Guo, Z.C.; Zhi, Y. Combining the GEE platform and machine learning algorithm for desert information extraction. J. Desert Res. 2023, 43, 60–70. [Google Scholar]
- Abida, K.; Barbouchi, M.; Boudabbous, K.; Toukabri, W.; Saad, K.; Bousnina, H.; Sahli Chahed, T. Sentinel-2 data for land use mapping: Comparing different supervised classifications in semi-arid areas. Agriculture 2022, 12, 1429. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Kawauchi, H.; Fuse, T. Shap-based interpretable object detection method for satellite imagery. Remote Sens. 2022, 14, 1970. [Google Scholar] [CrossRef]
- Pizarro, S.E.; Pricope, N.G.; Vargas-Machuca, D.; Huanca, O.; Ñaupari, J. Mapping land cover types for highland Andean ecosystems in Peru using google earth engine. Remote Sens. 2022, 14, 1562. [Google Scholar] [CrossRef]
- Yang, Y.P.; Yang, D.; Wang, X.F.; Zhang, Z.; Nawaz, Z. Testing accuracy of land cover classification algorithms in the qilian mountains based on gee cloud platform. Remote Sens. 2021, 13, 5064. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Zhang, S.C. Challenges in KNN classification. IEEE Trans. Knowl. Data Eng. 2021, 34, 4663–4675. [Google Scholar] [CrossRef]
- Peng, W.F.; Kuang, T.T.; Tao, S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Hakdaoui, S.; Emran, A.; Pradhan, B.; Qninba, A.; Balla, T.E.; Mfondoum, A.H.N.; Lee, C.W.; Alamri, A.M. Assessing the changes in the moisture/dryness of water cavity surfaces in imlili sebkha in southwestern morocco by using machine learning classification in google earth engine. Remote Sens. 2020, 12, 131. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, G.X.; Zhao, R.; Ding, X.L.; Fu, H.Q. ML based approach for inverting penetration depth of SAR signals over large desert areas. Remote Sens. Environ. 2023, 295, 113643. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Fu, L.Y.; Sharma, R.P.; Lei, Y.C.; Guo, J.P. A hybrid approach of combining random forest with texture analysis and VDVI for desert vegetation mapping Based on UAV RGB Data. Remote Sens. 2021, 13, 1891. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Wang, X.M.; Li, X.B.; Cai, D.W.; Lou, J.P.; Li, D.F.; Liu, F. Salinification and salt transports under aeolian processes in potential desertification regions of China. Sci. Total Environ. 2021, 782, 146832. [Google Scholar] [CrossRef]
- Wu, W.C. The generalized difference vegetation index (GDVI) for dryland characterization. Remote Sens. 2014, 6, 1211–1233. [Google Scholar] [CrossRef]
- Guo, B.; Yang, F.; Fan, Y.W.; Zang, W.Q. The dominant driving factors of rocky desertification and their variations in typical mountainous karst areas of Southwest China in the context of global change. Catena 2023, 220, 106674. [Google Scholar] [CrossRef]
- Meng, X.Y.; Gao, X.; Li, S.Y.; Lei, J.Q. Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.X.; Wu, Y.Q.; Hou, M. Desertification affecting the Tibetan Plateau between 1971–2015: Viewed from a climate perspective. Land Degrad. Dev. 2020, 31, 1956–1968. [Google Scholar] [CrossRef]
- Duan, H.C.; Xue, X.; Wang, T.; Kang, W.P.; Liao, J.; Liu, S.L. Spatial and temporal differences in alpine meadow, alpine steppe and all vegetation of the Qinghai-Tibetan Plateau and their responses to climate change. Remote Sens. 2021, 13, 669. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Wan, Y.F.; Li, Y.; Qin, X.B.; JiangCun, W.; Xu, H.M. Spatial and temporal pattern of alpine grassland condition and its response to human activities in Northern Tibet, China. Rangeland J. 2010, 32, 165–173. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.J.; Zhu, J.T.; Liu, Y.J.; Zu, J.X.; Zhang, J. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Fu, B.J.; Ouyang, Z.Y.; Shi, P.; Fan, J.; Wang, X.D.; Zhang, H.; Zhao, W.W.; Wu, F. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier. Bull. Chin. Acad. Sci. 2021, 36, 1298–1306. [Google Scholar]
- Sun, H.L.; Zheng, D.; Yao, T.D.; Zhang, Y. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Shao, H.Y.; Sun, X.F.; Wang, H.X.; Zhang, H.X.; Xiang, Z.Y.; Tan, R.; Chen, X.Y.; Xian, W.; Qi, J.G. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability. Environ. Impact Assess. Rev. 2016, 56, 155–167. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.L.; Wang, F.F.; Liu, H.; Liu, Y.X.; Wang, Q.B.; Zhao, Y.F. Effect of ecological restoration projects on carbon footprint in a grassland ecosystem on the Qinghai-Tibet Plateau. Land Degrad. Dev. 2023, 34, 5824–5834. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.J.; Wang, H.Y.; Jiang, J.; Zhang, J.C. Multiple ecological effects and their drivers of ecological restoration programmes in the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 2023, 34, 1415–1429. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Dai, E. Vegetation cover dynamics and its constraint effect on ecosystem services on the Qinghai-Tibet Plateau under ecological restoration projects. J. Environ. Manag. 2024, 356, 120535. [Google Scholar] [CrossRef] [PubMed]
Factor Type | Factor | Year | Unit | Spatial Resolution | Data Sources |
---|---|---|---|---|---|
Terrain | elevation | - | (m) | 30 m | National Aeronautics and Space Administration |
slope | (°) | ||||
aspect | (°) | ||||
Environment | vegetation type | 2001 | 1:1 Million | Data Center for Resources and Environmental Sciences ChineseAcademy of Sciences (https://www.resdc.cn/, accessed on 29 September 2024) | |
soil type | 1995 | ||||
Climate | precipitation | 2000–2020 | (mm) | 1 km | National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn, accessed on 28 March 2023) |
temperature | 2000–2020 | (°C) | |||
wind speed | 2000–2020 | (m/s) | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn, accessed on 27 August 2024) | ||
potential evapotranspiration | 2000–2020 | (mm) | National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn, accessed on 28 March 2023) | ||
Human activity | population density | 2000/2005/2010/2015/2019 | (people/km2) | 1 km | Data Center for Resources and Environmental Sciences ChineseAcademy of Sciences (https://www.resdc.cn/, accessed on 26 May 2022) |
actual livestock carrying capacity | 2000–2019 | (MU/km2) | National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn, accessed on 28 September 2024) | ||
human footprint | 2000–2020 | Urban Environmental Monitoring and Modeling (UEMM) Team from the School of Land Science and Technology, China Agricultural University |
Desert Type | Surface Characterization | Landsat8 Image | DJ4 Image |
---|---|---|---|
Sandy desert (SD) | The surface is sand-covered and dominated by sandy shrub/semi-shrub communities, mainly consisting of gently accreting sands, dunes, and scrubby sands | ||
Gravel desert (GD) | Gravel-covered surface, dominated by shrubby, semi-shrubby, or arid herbaceous communities, predominantly alluvial floodplains, and wind-swept Gobi with a high content of various gravels | ||
Salt crust or Mild saline desert (SM) | High topsoil salinity with white salt crusts on the surface, a small amount of mild saline phenomenon with white salt crystals around rivers and lakes | ||
Moderate and Severe saline desert (MS) | Surface saline aggregation, formed and developed over a long period of time, with hard black salt crusts or crystals distributed on the surface and sparse or bare vegetation | ||
Loamy desert (LD) | Surface soil cover, dominated by shrub and semi-shrub communities, mostly distributed in loess and river alluvial (flood) accumulation areas | ||
Rocky desert (RD) | The surface is dominated by bedrock and rock debris, with poorly developed soils and rugged terrain, dominated by arid and hyper-arid shrub communities | ||
Alpine cold desert (AC) | High-altitude frigid zone with little or no surface vegetation, some areas with alpine mat or ice-marginal vegetation |
Feature Type | Feature Name |
---|---|
Spectral bands | , , , , , |
Spectral indexes | TGSI, BSI, NDVI, EVI, MSAVI, Albedo, SI, NDSI, NDWI |
Radar features | VV, VH |
Terrain features | Elevation, Slope |
Texture features | Gray-Level Co-occurrence Matrix (GLCM) |
RF | GTB | CART | KNN | SVM | |
---|---|---|---|---|---|
OA | 87.11% | 86.26% | 80.56% | 72.18% | 47.38 |
Kappa | 0.83 | 0.82 | 0.75 | 0.63 | 0.27 |
SD | GD | SM | MS | LD | RD | AC | ||
---|---|---|---|---|---|---|---|---|
RF | PA | 94.72% | 83.71% | 80.77% | 90.24% | 74.32% | 81.72% | 87.57% |
UA | 96.70% | 87.08% | 51.22% | 72.55% | 69.55% | 80.14% | 87.76% | |
GTB | PA | 94.73% | 83.68% | 70.59% | 80.85% | 71.38% | 80.39% | 86.82% |
UA | 95.58% | 86.38% | 58.54% | 74.51% | 67.95% | 79.96% | 85.53% | |
CART | PA | 90.63% | 76.94% | 58.90% | 80.00% | 62.29% | 71.48% | 85.43% |
UA | 91.24% | 80.12% | 52.44% | 78.43% | 59.29% | 73.11% | 79.41% | |
KNN | PA | 82.31% | 64.79% | 50.91% | 66.67% | 52.19% | 68.79% | 76.85% |
UA | 85.77% | 73.16% | 34.15% | 62.75% | 45.84% | 53.08% | 78.85% | |
SVM | PA | 48.50% | 28.95% | 0 | 0 | 0 | 32.26% | 48.40% |
UA | 95.36% | 5.55% | 0 | 0 | 0 | 1.76% | 92.76% |
Desert Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Percentage | Area (km2) | Percentage | Area (km2) | Percentage | |
SD | 33,154.17 | 1.19% | 31,932.52 | 1.15% | 25,291.25 | 0.91% |
GD | 220,350.54 | 7.91% | 198,217.35 | 7.11% | 173,921.76 | 6.24% |
SM | 20,315.61 | 0.73% | 23,777.04 | 0.85% | 24,025.67 | 0.86% |
MS | 17,426.58 | 0.63% | 15,735.47 | 0.56% | 14,485.88 | 0.52% |
LD | 115,894.56 | 4.16% | 114,263.61 | 4.10% | 98,674.19 | 3.54% |
RD | 170,438.61 | 6.12% | 171,920.68 | 6.17% | 172,043.15 | 6.17% |
AC | 219,667.10 | 7.88% | 221,756.54 | 7.96% | 221,849.80 | 7.96% |
Total | 797,247.17 | 28.62% | 777,603.21 | 27.90% | 730,291.70 | 26.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, R.; Liu, S.; Duan, H.; Kang, W.; Zhi, Y. Combining the SHAP Method and Machine Learning Algorithm for Desert Type Extraction and Change Analysis on the Qinghai–Tibetan Plateau. Remote Sens. 2024, 16, 4414. https://doi.org/10.3390/rs16234414
Lu R, Liu S, Duan H, Kang W, Zhi Y. Combining the SHAP Method and Machine Learning Algorithm for Desert Type Extraction and Change Analysis on the Qinghai–Tibetan Plateau. Remote Sensing. 2024; 16(23):4414. https://doi.org/10.3390/rs16234414
Chicago/Turabian StyleLu, Ruijie, Shulin Liu, Hanchen Duan, Wenping Kang, and Ying Zhi. 2024. "Combining the SHAP Method and Machine Learning Algorithm for Desert Type Extraction and Change Analysis on the Qinghai–Tibetan Plateau" Remote Sensing 16, no. 23: 4414. https://doi.org/10.3390/rs16234414
APA StyleLu, R., Liu, S., Duan, H., Kang, W., & Zhi, Y. (2024). Combining the SHAP Method and Machine Learning Algorithm for Desert Type Extraction and Change Analysis on the Qinghai–Tibetan Plateau. Remote Sensing, 16(23), 4414. https://doi.org/10.3390/rs16234414