High-Resolution Remotely Sensed Evidence Shows Solar Thermal Power Plant Increases Grassland Growth on the Tibetan Plateau
"> Figure 1
<p>Study area. (<b>a</b>) Geolocation and true color composite image of the Gonghe solar thermal power plant, captured by GF-2 with a spatial resolution of 0.8 m. Detailed representations of the Gonghe solar thermal power plant are provided in subfigures (<b>b</b>–<b>d</b>), with their respective locations indicated within the main figure (<b>a</b>).</p> "> Figure 2
<p>Workflow of the study. The primary steps include data preprocessing, land cover classification, fractional vegetation cover (FVC) data preparation, FVC reconstruction, and assessment of FVC impacts within the Gonghe solar thermal power plant.</p> "> Figure 3
<p>Confusion matrices of soft voting classification in this study. Subfigure (<b>a</b>) illustrates the confusion matrix for the training samples, while subfigure (<b>b</b>) presents the confusion matrix for the validation samples. The f1_score and the kappa value for the validation samples are detailed in the accompanying text.</p> "> Figure 4
<p>Soft voting classification results of the Gonghe solar thermal power plant. The classification results are detailed in subfigures (<b>b</b>–<b>d</b>), with their respective positions indicated in the main figure (<b>a</b>). Areas classified as bare land and impervious surfaces are represented in brown, reflecting mirrors in white, and grassland in green.</p> "> Figure 5
<p>FVC reconstruction results of the Gonghe solar thermal power plant in 2020. The detailed results of the FVC reconstruction are presented in subfigures (<b>b</b>–<b>d</b>), with their respective locations indicated in the main figure (<b>a</b>).</p> "> Figure 6
<p>Spatial distribution of the FVC difference and ΔFVC of the Gonghe solar thermal power plant between 2017 and 2020. Subfigure (<b>a</b>) illustrates the spatial distribution of FVC differences along with the boundaries of the mirror field and control region. Subfigure (<b>b</b>) presents boxplots that depict the FVC differences observed in the mirror field and control region, with the ΔFVC values and the significance of the two-sample <span class="html-italic">t</span>-test detailed in the accompanying text.</p> "> Figure 7
<p>Distribution of the FVC difference of the Gonghe solar thermal power plant in the ring regions around the central tower and the power plant between 2017 and 2020. Subfigure (<b>a</b>) depicts the spatial arrangement of the rings, which include the power plant rings (Ring<sub>p</sub>) and the control region rings (Ring<sub>c</sub>). The control region rings are spaced at 100 m intervals, extending from 0 to 500 m beyond the boundaries of the Gonghe solar thermal power plant. Subfigure (<b>b</b>) illustrates the average FVC differences for each ring, with the standard deviations represented by the shaded area of the plot.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Reflecting Mirror Extraction Algorithm
2.3.2. FVC Reconstruction
2.3.3. Assessment of the FVC Impact
3. Results
3.1. Reflecting Mirror Extraction
3.2. Reconstruction of FVC
3.3. Impacts of Solar Thermal Station on FVC
4. Discussion
4.1. The Impact of Solar Power Plants on Vegetation
4.2. Processes of Solar Power Plant Vegetation Impacts
4.3. Limitation and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-Zero Emissions Energy Systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [PubMed]
- Ember Yearly Electricity Data 2024. Available online: https://ember-energy.org/data/yearly-electricity-data/ (accessed on 12 November 2024).
- Liu, Z.; Guan, D.; Moore, S.; Lee, H.; Su, J.; Zhang, Q. Climate Policy: Steps to China’s Carbon Peak. Nature 2015, 522, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, J.; Lin, Y.; Si, Y.; Huang, C.; Yang, J.; Huang, B.; Li, W. Present Situation and Future Prospect of Renewable Energy in China. Renew. Sustain. Energy Rev. 2017, 76, 865–871. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wang, Y.; Wang, J.; Chang, R.; He, G.; Tang, W.; Gao, Z.; Li, J.; Liu, C.; et al. Optimizing Wind/Solar Combinations at Finer Scales to Mitigate Renewable Energy Variability in China. Renew. Sustain. Energy Rev. 2020, 132, 110151. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C.Y. A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications. Appl. Energy 2013, 104, 538–553. [Google Scholar] [CrossRef]
- Palacios, A.; Barreneche, C.; Navarro, M.E.; Ding, Y. Thermal Energy Storage Technologies for Concentrated Solar Power—A Review from a Materials Perspective. Renew. Energy 2020, 156, 1244–1265. [Google Scholar] [CrossRef]
- Weiss, W.; Spörk-Dür, M. Solar Heat Worldwide 2024; Institute for Sustainable Technologies: Gleisdorf, Austria, 2024. [Google Scholar]
- Li, Y.; Kalnay, E.; Motesharrei, S.; Rivas, J.; Kucharski, F.; Kirk-Davidoff, D.; Bach, E.; Zeng, N. Climate Model Shows Large-Scale Wind and Solar Farms in the Sahara Increase Rain and Vegetation. Science 2018, 361, 1019–1022. [Google Scholar] [CrossRef]
- McKuin, B.; Zumkehr, A.; Ta, J.; Bales, R.; Viers, J.H.; Pathak, T.; Campbell, J.E. Energy and Water Co-Benefits from Covering Canals with Solar Panels. Nat. Sustain. 2021, 4, 609–617. [Google Scholar] [CrossRef]
- Kannenberg, S.A.; Sturchio, M.A.; Venturas, M.D.; Knapp, A.K. Grassland Carbon-Water Cycling Is Minimally Impacted by a Photovoltaic Array. Commun. Earth Environ. 2023, 4, 238. [Google Scholar] [CrossRef]
- Chang, R.; Luo, Y.; Zhu, R. Simulated Local Climatic Impacts of Large-Scale Photovoltaics over the Barren Area of Qinghai, China. Renew. Energy 2020, 145, 478–489. [Google Scholar] [CrossRef]
- Armstrong, A.; Waldron, S.; Whitaker, J.; Ostle, N.J. Wind Farm and Solar Park Effects on Plant-Soil Carbon Cycling: Uncertain Impacts of Changes in Ground-Level Microclimate. Glob. Chang. Biol. 2014, 20, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Huang, X. Satellite-Observed Changes of Surface Spectral Reflectances Due to Solar Farming and the Implication for Radiation Budget. Environ. Res. Lett. 2020, 15, 114047. [Google Scholar] [CrossRef]
- Li, G.; Hernandez, R.R.; Blackburn, G.A.; Davies, G.; Hunt, M.; Whyatt, J.D.; Armstrong, A. Ground-Mounted Photovoltaic Solar Parks Promote Land Surface Cool Islands in Arid Ecosystems. Renew. Sustain. Energy Transit. 2021, 1, 100008. [Google Scholar]
- Zhang, X.; Xu, M. Assessing the Effects of Photovoltaic Powerplants on Surface Temperature Using Remote Sensing Techniques. Remote Sens. 2020, 12, 1825. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Luo, Y.; Yang, L.; Li, P.; Jin, X.; Jiang, J.; Liu, R.; Gao, X. A Comparative Study on the Surface Radiation Characteristics of Photovoltaic Power Plant in the Gobi Desert. Renew. Energy 2022, 182, 764–771. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Qin, Y.; Bach, E. A Global Assessment of the Effects of Solar Farms on Albedo, Vegetation, and Land Surface Temperature Using Remote Sensing. Sol. Energy 2024, 268, 112198. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Minor, R.L.; Allen, N.A.; Cronin, A.D.; Brooks, A.E.; Pavao-Zuckerman, M.A. The Photovoltaic Heat Island Effect: Larger Solar Power Plants Increase Local Temperatures. Sci. Rep. 2016, 6, 35070. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, B.; Suhendri; Ao, X.; Cao, J.; Wang, Q.; Riffat, S.; Su, Y.; Pei, G. Applications of Radiative Sky Cooling in Solar Energy Systems: Progress, Challenges, and Prospects. Renew. Sustain. Energy Rev. 2022, 160, 112304. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, Q.; Miller, P.A.; Zhang, Q.; Berntell, E.; Smith, B. Impacts of Large-Scale Sahara Solar Farms on Global Climate and Vegetation Cover. Geophys. Res. Lett. 2021, 48, e2020GL090789. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, J.; Liu, M.; Gao, Y.; Li, W.; Duan, H. Vegetation Restoration Increases Soil Carbon Storage in Land Disturbed by a Photovoltaic Power Station in Semi-Arid Regions of Northern China. Agronomy 2024, 14, 9. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Zhang, W.; Guo, S.; Zheng, L.; Jia, N.; Chen, R.; Guo, X.; Du, P. Quantitatively Distinguishing the Impact of Solar Photovoltaics Programs on Vegetation in Dryland Using Satellite Imagery. Land Degrad. Dev. 2023, 34, 4373–4385. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Guo, S.; Chen, R.; Zhang, W.; Guo, X.; Zhang, X.; Du, P. Satellites Reveal Spatial Heterogeneity in Dryland Photovoltaic Plants’ Effects on Vegetation Dynamics. Earths Future 2024, 12, e2024EF004427. [Google Scholar] [CrossRef]
- Muñoz-García, M.-Á.; Fialho, L.; Moreda, G.P.; Baptista, F. Assessment of the Impact of Utility-Scale Photovoltaics on the Surrounding Environment in the Iberian Peninsula. Alternatives for the Coexistence with Agriculture. Sol. Energy 2024, 271, 112446. [Google Scholar] [CrossRef]
- Appelbaum, J.; Aronescu, A. Inter-Row Spacing Calculation in Photovoltaic Fields—A New Approach. Renew. Energy 2022, 200, 387–394. [Google Scholar] [CrossRef]
- Ma, C.; Deng, Z.; Xu, X.; Pang, X.; Li, X.; Wu, R.; Tian, Z. Space Optimization of Utility-Scale Photovoltaic Power Plants Considering the Impact of Inter-Row Shading. Appl. Energy 2024, 370, 123591. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost Is Warming at a Global Scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef]
- Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan Plateau Climate Dynamics: Recent Research Progress and Outlook. Natl. Sci. Rev. 2015, 2, 100–116. [Google Scholar] [CrossRef]
- Fang, Y.; Wei, Y. Climate Change Adaptation on the Qinghai–Tibetan Plateau: The Importance of Solar Energy Utilization for Rural Household. Renew. Sustain. Energy Rev. 2013, 18, 508–518. [Google Scholar] [CrossRef]
- Yang, X.; Xie, F.; Liu, S.; Zhu, Y.; Fan, J.; Zhao, H.; Fu, Y.; Duan, Y.; Fu, R.; Guo, S. Mapping Debris-Covered Glaciers Using High-Resolution Imagery (GF-2) and Deep Learning Algorithms. Remote Sens. 2024, 16, 2062. [Google Scholar] [CrossRef]
- He, Q.; Sun, X.; Yan, Z.; Fu, K. DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5601216. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-Based Atmospheric Correction Algorithm, Its Application and Validation. In Proceedings of the IGARSS 2002: International Geoscience and Remote Sensing Symposium, 24th Canadian Symposium on Remote Sensing, Toronto, ON, Canada, 24–28 June 2002; IEEE: New York, NY, USA, 2002; pp. 1414–1418. [Google Scholar]
- Sun, W.; Chen, B.; Messinger, D.W. Nearest-Neighbor Diffusion-Based Pan-Sharpening Algorithm for Spectral Images. Opt. Eng. 2014, 53, 013107. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gandhi, I.; Pandey, M. Hybrid Ensemble of Classifiers Using Voting. In Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Delhi, India, 8–10 October 2015; pp. 399–404. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Support Vector Machine. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 101–121. [Google Scholar]
- Peterson, L.E. K-Nearest Neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Castillo-Martínez, M.Á.; Gallegos-Funes, F.J.; Carvajal-Gámez, B.E.; Urriolagoitia-Sosa, G.; Rosales-Silva, A.J. Color Index Based Thresholding Method for Background and Foreground Segmentation of Plant Images. Comput. Electron. Agric. 2020, 178, 105783. [Google Scholar] [CrossRef]
- Hamuda, E.; Glavin, M.; Jones, E. A Survey of Image Processing Techniques for Plant Extraction and Segmentation in the Field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Babu, S.C.; Gajanan, S.N. Chapter 16-Food and Nutrition Program Evaluation. In Food Security, Poverty and Nutrition Policy Analysis, 3rd ed.; Babu, S.C., Gajanan, S.N., Eds.; Academic Press: San Diego, CA, USA, 2022; pp. 575–597. ISBN 978-0-12-820477-1. [Google Scholar]
- Liu, N.; Zhao, X.; Zhang, X.; Zhao, J.; Wang, H.; Wu, D. Remotely Sensed Evidence of the Divergent Climate Impacts of Wind Farms on Croplands and Grasslands. Sci. Total Environ. 2023, 905, 167203. [Google Scholar] [CrossRef]
- Ling, F.; Du, Y.; Xiao, F.; Li, X. Subpixel Land Cover Mapping by Integrating Spectral and Spatial Information of Remotely Sensed Imagery. IEEE Geosci. Remote. Sens. Lett. 2012, 9, 408–412. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.; Sperry, J.S.; McDowell, N.G. Plant Responses to Rising Vapor Pressure Deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, G.; Wang, Y.; Li, Z.; Hao, Y. Effect of Water Stress on Ecosystem Photosynthesis and Respiration of a Leymus Chinensis Steppe in Inner Mongolia. Sci. China Earth Sci. 2006, 49, 196. [Google Scholar] [CrossRef]
- Wu, D.; Grodsky, S.M.; Xu, W.; Liu, N.; Almeida, R.M.; Zhou, L.; Miller, L.M.; Roy, S.B.; Xia, G.; Agrawal, A.A.; et al. Observed Impacts of Large Wind Farms on Grassland Carbon Cycling. Sci. Bull. 2023, 68, 2889–2892. [Google Scholar] [CrossRef]
- Wang, B.; Biasutti, M.; Byrne, M.P.; Castro, C.; Chang, C.-P.; Cook, K.; Fu, R.; Grimm, A.M.; Ha, K.-J.; Hendon, H.; et al. Monsoons Climate Change Assessment. Bull. Am. Meteorol. Soc. 2021, 102, E1–E19. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Peñuelas, J.; Zhang, G.; et al. Asymmetric Effects of Daytime and Night-Time Warming on Northern Hemisphere Vegetation. Nature 2013, 501, 88–92. [Google Scholar] [CrossRef]
- Lewińska, K.E.; Buchner, J.; Bleyhl, B.; Hostert, P.; Yin, H.; Kuemmerle, T.; Radeloff, V.C. Changes in the Grasslands of the Caucasus Based on Cumulative Endmember Fractions from the Full 1987–2019 Landsat Record. Sci. Remote Sens. 2021, 4, 100035. [Google Scholar] [CrossRef]
- Nguyen, K.C.; Katzfey, J.J.; Riedl, J.; Troccoli, A. Potential Impacts of Solar Arrays on Regional Climate and on Array Efficiency. Int. J. Climatol. 2017, 37, 4053–4064. [Google Scholar] [CrossRef]
- Broadbent, A.M.; Krayenhoff, E.S.; Georgescu, M.; Sailor, D.J. The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance. J. Appl. Meteorol. Climatol. 2019, 58, 989–1006. [Google Scholar] [CrossRef]
- Wu, C.; Liu, H.; Yu, Y.; Zhao, W.; Liu, J.; Yu, H.; Yetemen, O. Ecohydrological Effects of Photovoltaic Solar Farms on Soil Microclimates and Moisture Regimes in Arid Northwest China: A Modeling Study. Sci. Total Environ. 2022, 802, 149946. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, C.; Yu, Y.; Zhao, W.; Liu, J.; Yu, H.; Zhuang, Y.; Yetemen, O. Effect of Solar Farms on Soil Erosion in Hilly Environments: A Modeling Study From the Perspective of Hydrological Connectivity. Water Resour. Res. 2023, 59, e2023WR035067. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, C.; Yang, Y.; Li, X.; Gou, H.; Folkard, A.M. Water Temperature and Energy Balance of Floating Photovoltaic Construction Water Area—Field Study and Modelling. J. Environ. Manag. 2024, 365, 121494. [Google Scholar] [CrossRef] [PubMed]
- Power, K.; Lu, Z.; Zhang, Q. Impacts of Large-Scale Saharan Solar Farms on the Global Terrestrial Carbon Cycle. Environ. Res. Lett. 2023, 18, 104009. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Xing, Y.; Peng, H.; Wu, H.; Zhong, J. Ecological Construction Status of Photovoltaic Power Plants in China’s Deserts. Front. Environ. Sci. 2024, 12, 1406546. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Huang, Y.; Xin, Z.; Dor-ji, T.; Wang, Y. Tibetan Plateau Greening Driven by Warming-Wetting Climate Change and Ecological Restoration in the 21st Century. Land Degrad. Dev. 2022, 33, 2407–2422. [Google Scholar] [CrossRef]
- García-Segura, A.; Sutter, F.; Martínez-Arcos, L.; Reche-Navarro, T.J.; Wiesinger, F.; Wette, J.; Buendía-Martínez, F.; Fernández-García, A. Degradation Types of Reflector Materials Used in Concentrating Solar Thermal Systems. Renew. Sustain. Energy Rev. 2021, 143, 110879. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under Agrivoltaic Systems: Is Crop Growth Rate Affected in the Partial Shade of Solar Panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Lv, F.; Hui, X.; Ma, L.; Hou, X. Study on the Local Climatic Effects of Large Photovoltaic Solar Farms in Desert Areas. Sol. Energy 2017, 144, 244–253. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, J.; Tong, X.; Zhang, J.; Meng, P.; Li, J.; Liu, P.; Yu, P. NIRv and SIF Better Estimate Phenology than NDVI and EVI: Effects of Spring and Autumn Phenology on Ecosystem Production of Planted Forests. Agric. For. Meteorol. 2022, 315, 108819. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Wang, K.; Lou, A. Unmanned Aerial Vehicle (UAV) Remote Sensing in Grassland Ecosystem Monitoring: A Systematic Review. Remote Sens. 2022, 14, 1096. [Google Scholar] [CrossRef]
- Kurkute, N.; Priyam, A. A Thorough Review of the Existing Concentrated Solar Power Technologies and Various Performance Enhancing Techniques. J. Therm. Anal. Calorim. 2022, 147, 14713–14737. [Google Scholar] [CrossRef]
- Qin, J.; Hu, E.; Nathan, G.J.; Chen, L. Concentrating or Non-Concentrating Solar Collectors for Solar Aided Power Generation? Energy Convers. Manag. 2017, 152, 281–290. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Wang, G. Can Wind Farms Change the Phenology of Grassland in China? Sci. Total Environ. 2022, 832, 155077. [Google Scholar] [CrossRef]
Parameter | Value | Explanation |
---|---|---|
n_estimators (RF) | 20 | The number of trees in the forest |
max_depth (RF) | 13 | The maximum depth of the tree |
min_samples_split (RF) | 50 | The minimum number of samples required to split an internal node |
min_samples_leaf (RF) | 10 | The minimum number of samples required to be at a leaf node |
max_features (RF) | 7 | The number of features to consider when looking for the best split |
Probability (SVM) | True | Whether to enable probability estimates |
n_neighbors (KNN) | 13 | Number of neighbors to use by default for k-neighbors queries |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Peng, H.; Zhang, Z.; Li, Y.; Zhang, K.; Guo, Y.; Cui, Y.; Jiang, Y.; Gao, W.; Wu, D. High-Resolution Remotely Sensed Evidence Shows Solar Thermal Power Plant Increases Grassland Growth on the Tibetan Plateau. Remote Sens. 2024, 16, 4266. https://doi.org/10.3390/rs16224266
Liu N, Peng H, Zhang Z, Li Y, Zhang K, Guo Y, Cui Y, Jiang Y, Gao W, Wu D. High-Resolution Remotely Sensed Evidence Shows Solar Thermal Power Plant Increases Grassland Growth on the Tibetan Plateau. Remote Sensing. 2024; 16(22):4266. https://doi.org/10.3390/rs16224266
Chicago/Turabian StyleLiu, Naijing, Huaiwu Peng, Zhenshi Zhang, Yujin Li, Kai Zhang, Yuehan Guo, Yuzheng Cui, Yingsha Jiang, Wenxiang Gao, and Donghai Wu. 2024. "High-Resolution Remotely Sensed Evidence Shows Solar Thermal Power Plant Increases Grassland Growth on the Tibetan Plateau" Remote Sensing 16, no. 22: 4266. https://doi.org/10.3390/rs16224266
APA StyleLiu, N., Peng, H., Zhang, Z., Li, Y., Zhang, K., Guo, Y., Cui, Y., Jiang, Y., Gao, W., & Wu, D. (2024). High-Resolution Remotely Sensed Evidence Shows Solar Thermal Power Plant Increases Grassland Growth on the Tibetan Plateau. Remote Sensing, 16(22), 4266. https://doi.org/10.3390/rs16224266