Assessment of Spatio-Temporal Dynamic Vegetation Evolution and Its Driving Mechanism on the Kubuqi Desert Using Multi-Source Satellite Remote Sensing
<p>Geographical location of the study area.</p> "> Figure 2
<p>Flowchart of the methods.</p> "> Figure 3
<p>Interannual variation trend of meteorological elements in the ecological management area from 2001 to 2020. ((<b>A</b>) indicates the variation trend of Pre and SSD; (<b>B</b>) indicates the variation trend of Tem and Wind; (<b>C</b>) indicates the variation trend of Tem-max and Tem-min; (<b>D</b>) indicates the variation trend of RHU).</p> "> Figure 4
<p>NDVI time series based on the Sen trend line.</p> "> Figure 5
<p>Results of the Pettitt mutation test.</p> "> Figure 6
<p>NDVI spatial distribution before and after water diversion in the ecological management area.</p> "> Figure 7
<p>Image display and spectral attribute ((<b>A</b>–<b>C</b>) represent true and false color composition and the spectral attribute of the lake in 2013, respectively; (<b>D</b>–<b>F</b>) are for Grassland in 2014, and (<b>G</b>–<b>I</b>) are for desert in 2019).</p> "> Figure 8
<p>Spatial change map of land use in the ecological management area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Moderate Resolution Imaging Spectroradiometer Data
2.2.2. Landsat Data
2.2.3. Meteorological Data
2.3. Methods
2.3.1. NDVI Calculation Method
2.3.2. Trend Analysis Method
2.3.3. Mutation Test
2.3.4. Multiple Linear Regression
2.3.5. Random Forest
2.3.6. Support Vector Machine
2.3.7. Deep Neural Network
2.3.8. Land Use Interpretation
Overall Accuracy (OA)
Kappa Coefficient
3. Results
3.1. Meteorological Element Analysis
3.2. NDVI Trend Analysis
3.3. NDVI Mutation Test
3.4. Spatial Variation Characteristics of NDVI
4. Discussion
4.1. Land Use Change Analysis
4.2. NDVI Driving Mechanism Analysis
4.2.1. Linear Mechanism
4.2.2. Nonlinear Mechanism
4.3. Effects on Other Species
4.4. Policy Implications
4.5. Limitations in Terms of Data and Methods
4.6. Perspectives for Future Research
5. Conclusions
- (1)
- From the perspective of time variation characteristics, NDVI, temperature, and precipitation showed an upward trend during 2001–2020, indicating that hydrothermal conditions were the main factors influencing vegetation growth.
- (2)
- From the perspective of spatial change characteristics, taking 2013 as the reference year, the NDVI showed a relatively obvious improvement trend overall because of water diversion, and there was spatial heterogeneity. The southwest is in the receiving area, and the change was obvious. The central part remains outside the influence of the water intake area and has not changed. A large range in vegetation was observed in the northeast, and it has shown fluctuating changes in recent years because this region is close to the Yellow River wetland and irrigation area and has relatively sufficient water conditions to maintain a certain level of vegetation coverage.
- (3)
- Based on the above research results, we extracted the Bayin Wenduer Wetland in the southwest water-receiving area and constructed a mechanism set for NDVI. Multiple linear regression, support vector machine, random forest, and deep neural network can reflect the comprehensive effects of various factors on the NDVI. Among them, random forests and deep neural networks have the best simulation effects and can be used to predict the water diversion range under future climate conditions and vegetation growth levels, which is significant for the high-quality operation of water diversion projects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MODIS | moderate-resolution imaging spectroradiometer |
NDVI | normalized difference vegetation index |
CN05.1 | China Meteorological Forcing Dataset 05.1 |
MOD13A3 | MOD13A3 NDVI Monthly 1 km Vegetation Index Data |
RF | Random Forest |
CART | classification regression tree |
SVM | Support vector machine |
OA | Overall Accuracy |
LUCC | Land Use and Land Cover Change |
Pre | precipitation |
SSD | sunshine duration |
Tem | temperature |
RHU | relative humidity |
References
- Wang, W.Z.; Hu, P.; Yang, Z.F.; Wang, J.; Zhao, J.; Zeng, Q.; Liu, H.; Yang, Q. Prediction of NDVI dynamics under different ecological water supplementation scenarios based on a long short-term memory network in the Zhalong Wetland, China. J. Hydrol. 2022, 608, 127626. [Google Scholar] [CrossRef]
- Wang, S.D.; Cui, D.Y.; Wang, L.; Peng, J. Applying deep-learning enhanced fusion methods for improved NDVI reconstruction and long-term vegetation cover study: A case of the Danjiang River Basin. Ecol. Indic. 2023, 155, 111088. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Fu, B.; Gao, G.; Shen, Q. Ecological effects and potential risks of the water diversion project in the Heihe River Basin. Sci. Total Environ. 2018, 619–620, 794–803. [Google Scholar] [CrossRef]
- Gu, X.L.; Guo, E.L.; Yin, S.; Wang, Y.F.; Wan, Z.Q.; Wang, J. Effects of Yellow River Diversion Project on vegetation in the northern margin of Kubuqi Desert. Chin. J. Ecol. 2021, 40, 2678–2688. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, Y.; Li, Y.; Li, H.; Xia, Q.; Kayumba, P.M. Evaluation of consistency among three NDVI products applied to High Mountain Asia in 2000–2015. Remote Sens. Environ. 2022, 269, 112821. [Google Scholar] [CrossRef]
- Cano, D.; Cacciuttolo, C.; Custodio, M.; Nosetto, M. Effects of Grassland Afforestation on Water Yield in Basins of Uruguay: A Spatio-Temporal Analysis of Historical Trends Using Remote Sensing and Field Measurements. Land 2023, 12, 185. [Google Scholar] [CrossRef]
- Wang, X.; Geng, X.; Liu, B.; Cai, D.; Li, D.; Xiao, F.; Zhu, B.; Hua, T.; Lu, R.; Liu, F. Desert ecosystems in China: Past, present, and future. Earth Sci. Rev. 2022, 234, 104206. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Sereke, T.E. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- Nan, L.; Yang, M.; Wang, H.; Wang, H.; Dong, N. An innovative correction–fusion approach for multi-satellite precipitation products conditioned by gauge background fields over the Lancang River Basin. Remote Sens. 2024, 16, 1824. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Li, X.; Wang, S.; Wang, J. Vulnerability assessment and its driving forces in terms of NDVI and GPP over the Loess Plateau, China. Phys. Chem. Earth 2022, 125, 103106. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Wu, S.; Yang, C. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecol. Indic. 2021, 129, 107933. [Google Scholar] [CrossRef]
- He, P.; Xu, L.; Liu, Z.; Jing, Y.; Zhu, W. Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002–2018. Reg. Sustain. 2021, 2, 36–46. [Google Scholar] [CrossRef]
- Han, J.C.; Huang, Y.; Zhang, H.; Wu, X. Characterization of elevation and land cover dependent trends of NDVI variations in the Hexi region, northwest China. J. Environ. Manag. 2019, 232, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Ma, R. Estimating suitable hydrothermal conditions for vegetation growth for land use cover across China based on maximum-probability-density monthly NDVI. Remote Sens. Appl. Soc. Environ. 2023, 30, 100958. [Google Scholar] [CrossRef]
- Hejduk, L.; Kaznowska, E.; Wasilewicz, M.; Hejduk, A. Dynamics of the Natural Afforestation Process of a Small Lowland Catchment and Its Possible Impact on Runoff Changes. Sustainability 2021, 13, 10339. [Google Scholar] [CrossRef]
- Chen, P.; Wang, S.; Song, S.; Wang, Y.; Wang, Y.; Gao, D.; Li, Z. Ecological restoration intensifies evapotranspiration in the Kubuqi Desert. Ecol. Eng. 2022, 175, 106504. [Google Scholar] [CrossRef]
- Du, H.; Xue, X.; Wang, T. Estimation of saltation emission in the Kubuqi Desert, North China. Sci. Total Environ. 2014, 479–480, 77–92. [Google Scholar] [CrossRef]
- Formica, A.F.; Burnside, R.J.; Dolman, P.M. Rainfall validates MODIS-derived NDVI as an index of spatio-temporal variation in green biomass across non-montane semi-arid and arid Central Asia. J. Arid Environ. 2017, 142, 11–21. [Google Scholar] [CrossRef]
- Gu, J.; Li, X.; Huang, C.; Okin, G.S. A simplified data assimilation method for reconstructing time-series MODIS NDVI data. Adv. Space Res. 2009, 44, 501–509. [Google Scholar] [CrossRef]
- Kumar, B.P.; Babu, K.R.; Anusha, B.N.; Rajasekhar, M. Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI/TIRS, LST, and NDVI approach. Environ. Chall. 2022, 8, 100578. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; van Dijk, A.I.J.M.; Schellekens, J.; de Jeu, R.A.M.; Bruijnzeel, L.A. Global evaluation of four AVHRR–NDVI data sets: Inter comparison and assessment against Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Liu, Y.; Wang, F.; Deng, W.; Rao, P. Spatiotemporal characteristics and natural forces of grassland NDVI changes in Qilian Mountains from a sub-basin perspective. Ecol. Indic. 2023, 157, 111186. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, Y.; Chen, T.; Liu, H. Evolution characteristics of precipitation and runoff in the Hanjiang River Basin. J. China Hydrol. 2023, 43, 103–109. [Google Scholar] [CrossRef]
- Sun, Z.; Mao, Z.; Yang, L.; Liu, Z.; Han, J.; Wanag, H.; He, W. Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert, China. Ecol. Indic. 2021, 129, 108020. [Google Scholar] [CrossRef]
- Mehmood, K.; Anees, S.A.; Rehman, A.; Pan, S.; Tariq, A.; Zubair, M.; Liu, Q.; Rabbi, F.; Khan, K.A.; Luo, M. Exploring spatiotemporal dynamics of NDVI and climate-driven responses in ecosystems: Insights for sustainable management and climate resilience. Ecol. Inform. 2024, 80, 12532. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, L.; Zhang, Y.; Wang, Z.; Wu, J.; Li, L.; Li, S.; Paudel, B. Identification of impact factors for differentiated patterns of NDVI change in the headwater source region of Brahmaputra and Indus, Southwestern Tibetan Plateau. Ecol. Indic. 2021, 125, 107604. [Google Scholar] [CrossRef]
- Yang, T.X.; Yue, C.J. Research on hydrometeor classification of convective weather based on SVM by dual linear polarization radar. Torrential Rain Disasters 2019, 38, 297–302. [Google Scholar] [CrossRef]
- Jin, H.; Chen, X.; Wang, Y.; Zhong, R.; Zhao, T.; Liu, Z.; Tu, X. Spatio-temporal distribution of NDVI and its influencing factors in China. J. Hydrol. 2021, 603, 127129. [Google Scholar] [CrossRef]
- Liang, J.; Chen, C.; Sun, W.; Yang, G.; Liu, Z.; Zhang, Z. Spatiotemporal land use/cover change dynamics in Hangzhou Bay, China, using long-term Landsat time series and GEE platform. Natl. Remote Sens. Bull. 2023, 27, 1480–1495. [Google Scholar] [CrossRef]
- Verhoeven, V.B.; Dedoussi, I.C. Annual satellite-based NDVI-derived land cover of Europe for 2001–2019. J. Environ. Manag. 2022, 302, 113917. [Google Scholar] [CrossRef]
- Chouari, W. Assessment of vegetation cover changes and the contributing factors in the Al-Ahsa Oasis using Normalized Difference Vegetation Index (NDVI). Reg. Sustain. 2024, 5, 100111. [Google Scholar] [CrossRef]
- Wu, X.; Gao, Y.; Dang, X.; Du, B.; Zhang, H.; Bao, X. Temporal and spatial variation of vegetation coverage in Kubuqi Desert from 1989 to 2019. Bull. Soil Water Conserv. 2022, 42, 300–306. [Google Scholar] [CrossRef]
- Jia, Q.; Gao, X.; Jiang, Z.; Li, H.; Guo, J.; Lu, X.; Yonghong Li, F. Sensitivity of temperate vegetation to precipitation is higher in steppes than in deserts and forests. Ecol. Indic. 2024, 166, 112317. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Zhang, Y.; Qin, S.; Shao, Y.; Gao, Y. Responses of vegetation to climatic variations in the desert region of northern China. CATENA 2019, 175, 27–36. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Ling, H.; Han, F. Comparison of time-integrated NDVI and annual maximum NDVI for assessing grassland dynamics. Ecol. Indic. 2022, 136, 108611. [Google Scholar] [CrossRef]
- Yang, J.; Yan, D.; Yu, Z.; Wu, Z.; Wang, H.; Liu, W.; Liu, S.; Yuan, Z. NDVI variations of different terrestrial ecosystems and their response to major driving factors on two side regions of the Hu-Line. Ecol. Indic. 2024, 2024, 111667. [Google Scholar] [CrossRef]
- Dai, S.P.; Zhang, B.; Wang, Q.; Ma, Z.H.; Zou, Y.; Zhang, Y.N. Variation in grassland vegetation NDVI and its ten-day response to temperature and precipitation in the Qilian Mountains. Resour. Sci. 2010, 32, 1769–1776. [Google Scholar]
- Hossain, M.L.; Li, J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob. Ecol. Conserv. 2021, 30, e01768. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y. A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS J. Photogramm. 2016, 121, 177–191. [Google Scholar] [CrossRef]
- Faheem, Z.; Kazmi, J.H.; Shaikh, S.; Arshad, S.; Noreena Mohammed, S. Random forest-based analysis of land cover/land use LCLU dynamics associated with meteorological droughts in the desert ecosystem of Pakistan. Ecol. Indic. 2024, 159, 111670. [Google Scholar] [CrossRef]
- Lin, M.; Hou, L.; Qi, Z.; Wan, L. Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecol. Indic. 2022, 142, 109164. [Google Scholar] [CrossRef]
- Zhao, H.; Zhai, X.; Li, S.; Wang, Y.; Xie, J.; Yan, C. The continuing decrease of sandy desert and sandy land in northern China in the latest 10 years. Ecol. Indic. 2023, 154, 110699. [Google Scholar] [CrossRef]
- Ding, Y.; He, X.; Zhou, Z.; Hu, J.; Cai, H.; Wang, X.; Li, L.; Xu, J.; Shi, H. Response of vegetation to drought and yield monitoring based on NDVI and SIF. CATENA 2022, 219, 106328. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Lei, Y.; Gao, S. The contributions of natural and anthropogenic factors to NDVI variations on the Loess Plateau in China during 2000–2020. Ecol. Indic. 2022, 143, 109342. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, Q.Y.; Zou, B.; Xu, M.; Feng, Y.X. Tracing climatic and human disturbance in diverse vegetation zones in China: Over 20 years of NDVI observations. Ecol. Indic. 2023, 156, 111170. [Google Scholar] [CrossRef]
- Yan, Z.; Li, Z.; Li, P.; Zhao, C.; Xu, Y.; Cui, Z.; Sun, H. Spatial and temporal variation of NDVI and its driving factors based on geographical detector: A case study of GuanZhong plain urban agglomeration. Remote Sens. Appl. Soc. Environ. 2023, 32, 101030. [Google Scholar] [CrossRef]
- Liu, C.; Yan, X.; Jiang, F. Desert vegetation responses to the temporal distribution patterns of precipitation across the northern Xinjiang, China. CATENA 2021, 206, 105544. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Li, H.Y.; Wu, Z.F.; Wang, Z.; Yin, J.; Qing, D.; Hasi, E. Sand fixation mechanism and effect evaluation of sand barriers in Mu Us sandy land, China. Chin. Sci. Bull. 2023, 68, 1312–1329. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.L.; Song, Y.T.; Zhang, J.; Wu, Y.N.; Sun, L. The spatiotemporal pattern and prediction model of NDVI in Qiangtang grassland based on random forest algorithm. Chin. J. Ecol. 2024, 43, 1664–1673. [Google Scholar] [CrossRef]
- Jin, Z.R.; Feng, Q.S.; Wang, R.J.; Liang, T.G. A study of grassland aboveground biomass on the Tibetan Plateau using MODIS data and machine learning. J. Arid Environ. 2022, 31, 1–17. [Google Scholar] [CrossRef]
- Huang, J.W.; Cai, R.H.; Yao, R.; Wang, S.C.; Teng, Z.W. Application of Deep neural network method to discrimination and forecasting of precipitation type. Meteorol. Mon. 2021, 47, 317–326. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wu, P.H.; Duan, S.B.; Yang, H.; Yin, Z.X. Downscaling of Landsat 8 land surface temperature products based on Deep neural network. Natl. Remote Sens. Bull. 2021, 25, 1767–1777. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, W. Thinking and countermeasures of promoting ecological environmental water management. Water Resour. Dev. Res. 2014, 9, 44–51. [Google Scholar] [CrossRef]
Year | OA (%) | Kappa |
---|---|---|
2013 | 96.50 | 0.87 |
2014 | 96.99 | 0.89 |
2019 | 97.50 | 0.89 |
Land Cover Area (Km2) | 2013 | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
2014 | A | 1.84 | 0.76 | 0.75 | 1.24 | 0.18 |
B | 0.71 | 0.32 | 0.35 | 0.15 | 0.12 | |
C | 0.05 | 0.08 | 5.04 | 0.12 | 5.98 | |
D | 1.90 | 1.34 | 12.53 | 34.58 | 5.61 | |
E | 0.13 | 0.11 | 24.81 | 5.14 | 283.16 | |
2019 | A | 0 | 0 | 0.16 | 0.22 | 0.19 |
B | 0.66 | 0.08 | 0.04 | 0.28 | 0.01 | |
C | 3.35 | 1.88 | 13.48 | 16.75 | 19.26 | |
D | 0.07 | 0.03 | 5.06 | 4.58 | 31.11 | |
E | 0.56 | 0.63 | 24.79 | 19.38 | 244.64 |
Method Class | RMSE | MSE | R2 |
---|---|---|---|
SVM | 0.28 | 0.08 | 0.32 |
Random forest | 0.29 | 0.08 | 0.88 |
Deep neural network | 0.19 | 0.04 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, L.; Yang, M.; Wang, H.; Miao, P.; Ma, H.; Wang, H.; Zhang, X. Assessment of Spatio-Temporal Dynamic Vegetation Evolution and Its Driving Mechanism on the Kubuqi Desert Using Multi-Source Satellite Remote Sensing. Remote Sens. 2024, 16, 4769. https://doi.org/10.3390/rs16244769
Nan L, Yang M, Wang H, Miao P, Ma H, Wang H, Zhang X. Assessment of Spatio-Temporal Dynamic Vegetation Evolution and Its Driving Mechanism on the Kubuqi Desert Using Multi-Source Satellite Remote Sensing. Remote Sensing. 2024; 16(24):4769. https://doi.org/10.3390/rs16244769
Chicago/Turabian StyleNan, Linjiang, Mingxiang Yang, Hejia Wang, Ping Miao, Hongli Ma, Hao Wang, and Xinhua Zhang. 2024. "Assessment of Spatio-Temporal Dynamic Vegetation Evolution and Its Driving Mechanism on the Kubuqi Desert Using Multi-Source Satellite Remote Sensing" Remote Sensing 16, no. 24: 4769. https://doi.org/10.3390/rs16244769
APA StyleNan, L., Yang, M., Wang, H., Miao, P., Ma, H., Wang, H., & Zhang, X. (2024). Assessment of Spatio-Temporal Dynamic Vegetation Evolution and Its Driving Mechanism on the Kubuqi Desert Using Multi-Source Satellite Remote Sensing. Remote Sensing, 16(24), 4769. https://doi.org/10.3390/rs16244769