DACLnet: A Dual-Attention-Mechanism CNN-LSTM Network for the Accurate Prediction of Nonlinear InSAR Deformation
<p>Flowchart of the improved IPTA method. The full names of abbreviations such as SLC, DEM, EDAD, and SVD can be found in Abbreviations Section.</p> "> Figure 2
<p>Structure diagram of the DACLnet model.</p> "> Figure 3
<p>The Turpan Basin and SAR data coverage.</p> "> Figure 4
<p>Spatiotemporal baseline maps, where (<b>a</b>) shows the spatiotemporal baseline map for AT41F135 and (<b>b</b>) shows the spatiotemporal baseline map for DT121F449.</p> "> Figure 5
<p>Surface subsidence velocity maps for the Turpan–Hami Basin: (<b>a</b>) AT orbit; (<b>b</b>) DT orbit. Panels (<b>c</b>,<b>d</b>) depict the temporal deformations of feature points P1 and P2, monitored using the AT and DT orbit datasets.</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) Distribution statistics and (<b>c</b>) correlation between the subsidence rate results on AT143F135 and DT121F449. The black dashed line represents three times the RMSE.</p> "> Figure 7
<p>Loss decrease chart during model training.</p> "> Figure 8
<p>A comparison of sedimentation simulation results between the DACLnet and LSTM as well as CNN-LSTM models under the same training strategy.</p> "> Figure 9
<p>Prediction of nonlinear deformations from historical deformation sequences from 25 March 2015 to 27 February 2020, spanning from 27 February 2020 to 27 April 2020.</p> "> Figure 10
<p>A spatial variation map of surface deformation velocity in the Turpan Basin. (<b>a</b>) Actual deformation results processed with InSAR from the ascending track (AT41F135) of Sentinel-1. (<b>b</b>) The InSAR deformation results predicted using the DACLnet model.</p> "> Figure 11
<p>A comparison between the InSAR deformation velocity observations and DACLnet prediction results, derived from a comprehensive dataset of 574,662 ascending track observations and predictions. The black dashed line indicates a range three times greater than the RMSE.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Deformation Signals Monitored Using Advanced IPTA-InSAR
2.2. CNN-LSTM Model Embedded within Dual-Attention Mechanisms
2.3. Network Training
3. Study Area and Data Processing
3.1. The Study Area
3.2. InSAR Datasets
3.3. Data Processing
4. Results
4.1. Monitoring Results
4.1.1. Deformation in the Turpan Basin
4.1.2. Reliability Evaluation of InSAR Results
4.2. DACLnet Results
4.2.1. Network Training Results
4.2.2. Model Performance Testing
4.2.3. Prediction Result
4.2.4. Reliability Evaluation of the DACLnet Results
5. Discussion
5.1. Analysis of the Temporal Variability in the Correlation between Observed and DACLnet-Simulated Deformations
5.2. Model Performance and Data Sparsity Issues
5.3. Long-Term Applicability of the Model and Future Directions for Optimization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
CNN | Convolutional Neural Network |
LSTM | Long Short-Term Memory Network |
DACLnet | CNN-LSTM Model Embedded within Dual-Attention Mechanisms |
InSAR | Interferometric Synthetic Aperture Radar |
SAR | Synthetic Aperture Radar |
RNN | Recurrent Neural Network |
MLP | Multilayer Perceptron |
SPIA | Shanghai Pudong International Airport |
IPTA | Interferometric Point Target Analysis |
DEM | Digital Elevation Model |
SLC | Single-Look Complex |
DInSAR | Differential Interferometric Synthetic Aperture Radar |
EDAD | Elevation-dependent Atmospheric Delay |
SVD | Singular Value Decomposition |
SRTM | Shuttle Radar Topography Mission |
MCF | Minimum Cost Flow |
MAE | Mean Absolute Error |
RMSE | Root Mean Square Error |
MAPE | Mean Absolute Percentage Error |
R2 | Coefficient of Determination |
References
- Scigala, R.; Szafulera, K. Linear discontinuous deformations created on the surface as an effect of underground mining and local geological conditions-case study. Bull. Eng. Geol. Environ. 2020, 79, 2059–2068. [Google Scholar] [CrossRef]
- Chen, G.; Yang, J.; Liu, Y.; Kitahara, T.; Beer, M. An energy-frequency parameter for earthquake ground motion intensity measure. Earthq. Eng. Struct. Dyn. 2023, 52, 271–284. [Google Scholar] [CrossRef]
- Chen, G.; Li, Q.; Li, D.; Wu, Z.; Liu, Y. Main frequency band of blast vibration signal based on wavelet packet transform. Appl. Math. Model. 2019, 74, 569–585. [Google Scholar] [CrossRef]
- Diao, X.; Wu, K.; Chen, R.; Yang, J. Identifying the Cause of Abnormal Building Damage in Mining Subsidence Areas Using InSAR Technology. IEEE Access 2019, 7, 172296–172304. [Google Scholar] [CrossRef]
- Zhang, W. Geological disaster monitoring and early warning system based on big data analysis. Arab. J. Geosci. 2020, 13, 946. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Hu, J.; Liu, J.; Li, Z.; Zhu, J.; Wu, L.; Sun, Q.; Wu, W. Estimating three-dimensional coseismic deformations with the SM-VCE method based on heterogeneous SAR observations: Selection of homogeneous points and analysis of observation combinations. Remote Sens. Environ. 2021, 255, 112298. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, L.; Liu, L.; Zhu, R.; Gao, Z.; Qiao, Y.; Tian, L.; Zhou, H.; Xie, M. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data. Sci. Cold Arid Reg. 2018, 10, 114–125. [Google Scholar]
- Xu, W.; Ruch, J.; Jónsson, S. Birth of two volcanic islands in the southern Red Sea. Nat. Commun. 2015, 6, 7104. [Google Scholar] [CrossRef]
- Babu, A.; Kumar, S. SBAS interferometric analysis for volcanic eruption of Hawaii island. J. Volcanol. Geotherm. Res. 2019, 370, 31–50. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Aoki, Y.; Rivalta, E.; Jónsson, S. Volcano-Wide Deformation After the 2017 Erta Ale Dike Intrusion, Ethiopia, Observed with Radar Interferometry. J. Geophys. Res.-Solid Earth 2020, 125, e2020JB019562. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Tang, M.; Liao, M.; Xu, Q.; Gong, J.; Ao, M. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote Sens. Environ. 2018, 205, 180–198. [Google Scholar] [CrossRef]
- Song, C.; Yu, C.; Li, Z.; Utili, S.; Frattini, P.; Crosta, G.; Peng, J. Triggering and recovery of earthquake accelerated landslides in Central Italy revealed by satellite radar observations. Nat. Commun. 2022, 13, 7278. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, M.; Ma, J.; Xing, G.; Feng, G.; An, Q. InSAR-based landslide detection method with the assistance of C-index. Landslides 2023, 20, 2709–2723. [Google Scholar] [CrossRef]
- Ma, P.; Lin, H.; Wang, W.; Yu, H.; Chen, F.; Jiang, L.; Zhou, L.; Zhang, Z.; Shi, G.; Wang, J. Toward Fine Surveillance: A Review of Multitemporal Interferometric Synthetic Aperture Radar for Infrastructure Health Monitoring. IEEE Geosci. Remote Sens. Mag. 2022, 10, 207–230. [Google Scholar] [CrossRef]
- Ma, P.; Wang, W.; Zhang, B.; Wang, J.; Shi, G.; Huang, G.; Chen, F.; Jiang, L.; Lin, H. Remotely sensing large- and small-scale ground subsidence: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area of China. Remote Sens. Environ. 2019, 232, 111282. [Google Scholar] [CrossRef]
- Liu, P.; Chen, X.; Li, Z.; Zhang, Z.; Xu, J.; Feng, W.; Wang, C.; Hu, Z.; Tu, W.; Li, H. Resolving Surface Displacements in Shenzhen of China from Time Series InSAR. Remote Sens. 2018, 10, 1162. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Wang, Y.; Wu, L. Use of SAR/InSAR in Mining Deformation Monitoring, Parameter Inversion, and Forward Predictions: A Review. IEEE Geosci. Remote Sens. Mag. 2020, 8, 71–90. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Li, Z.; Zhu, J.; Wu, L. Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method. J. Geod. 2020, 94, 47. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, Q.; Han, J.; Kang, K.; Peng, J. InSAR measurements of surface deformation over permafrost on Fenghuoshan Mountains section, Qinghai-Tibet Plateau. J. Syst. Eng. Electron. 2021, 32, 1284–1303. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.; Feng, G.; Wang, Q.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Liao, M.; Balz, T.; Rocca, F.; Li, D. Paradigm Changes in Surface-Motion Estimation From SAR: Lessons From 16 Years of Sino-European Cooperation in the Dragon Program. IEEE Geosci. Remote Sens. Mag. 2020, 8, 8–21. [Google Scholar] [CrossRef]
- Xue, F.; Lv, X.; Dou, F.; Yun, Y. A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis. IEEE Geosci. Remote Sens. Mag. 2020, 8, 22–42. [Google Scholar] [CrossRef]
- Even, M.; Schulz, K. InSAR Deformation Analysis with Distributed Scatterers: A Review Complemented by New Advances. Remote Sens. 2018, 10, 744. [Google Scholar] [CrossRef]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase Unwrapping in InSAR A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Passalis, N.; Tefas, A.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A. Deep Adaptive Input Normalization for Time Series Forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 3760–3765. [Google Scholar] [CrossRef]
- Hu, X.; Burgmann, R.; Xu, X.; Fielding, E.; Liu, Z. Machine-Learning Characterization of Tectonic, Hydrological and Anthropogenic Sources of Active Ground Deformation in California. J. Geophys. Res.-Solid Earth 2021, 126, e2021JB022373. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Albino, F.; Bull, D. The Application of Convolutional Neural Networks to Detect Slow, Sustained Deformation in InSAR Time Series. Geophys. Res. Lett. 2019, 46, 11850–11858. [Google Scholar] [CrossRef]
- Valade, S.; Ley, A.; Massimetti, F.; D’Hondt, O.; Laiolo, M.; Coppola, D.; Loibl, D.; Hellwich, O.; Walter, T. Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System. Remote Sens. 2019, 11, 1528. [Google Scholar] [CrossRef]
- Prabhakar, K.R.; Nukala, V.H.; Nayak, M.; Gubbi, J.; Purushothaman, B. Multi-scale Attention Guided Recurrent Neural Network for Deformation Map Forecasting. In Proceedings of the Image and Signal Processing for Remote Sensing XXVII, Online, 13–17 September 2021; p. 11862. [Google Scholar] [CrossRef]
- Yazbeck, J.; Rundle, J.B. Predicting Short-Term Deformation in the Central Valley Using Machine Learning. Remote Sens. 2023, 15, 449. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Wei, J.; Wu, H.; Deng, M. HLSTM: Heterogeneous Long Short-Term Memory Network for Large-Scale InSAR Ground Subsidence Prediction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8679–8688. [Google Scholar] [CrossRef]
- Chen, Y.; He, Y.; Zhang, L.; Chen, Y.; Pu, H.; Chen, B.; Gao, L. Prediction of InSAR deformation time-series using a long short-term memory neural network. Int. J. Remote Sens. 2021, 42, 6921–6944. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, R.; Shama, A.; Li, S.; Xie, L.; Lv, J.; Fu, Y.; Wu, R.; Liu, G. Ground Deformation Pattern Analysis and Evolution Prediction of Shanghai Pudong International Airport Based on PSI Long Time Series Observations. Remote Sens. 2022, 14, 610. [Google Scholar] [CrossRef]
- Ali, O.; Saif-ur-Rehman, M.; Glasmachers, T.; Iossifidis, I.; Klaes, C. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data. Comput. Biol. Med. 2024, 168, 107649. [Google Scholar] [CrossRef]
- Wisdom, S.; Powers, T.; Hershey, J.R.; Le Roux, J.; Atlas, L. Full-Capacity Unitary Recurrent Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016; p. 29. [Google Scholar]
- Arjovsky, M.; Shah, A.; Bengio, Y. Unitary Evolution Recurrent Neural Networks. In International Conference on Machine Learning; PMLR: London, UK, 2016; p. 48. [Google Scholar]
- Kang, J.; Zhang, W.-Q.; Liu, W.-W.; Liu, J.; Johnson, M.T. Advanced recurrent network-based hybrid acoustic models for low resource speech recognition. EURASIP J. Audio Speech Music. Process. 2018, 6, 1–15. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, W.-Q.; Liu, J. Gated Recurrent Units Based Hybrid Acoustic Models for Robust Speech Recognition. In Proceedings of the 2016 10th International Symposium on Chinese Spoken Language Processing (ISCSLP), Tianjin, China, 17–20 October 2016. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; p. 30. [Google Scholar]
- Xiong, Z.; Feng, G.; Feng, Z.; Miao, L.; Wang, Y.; Yang, D.; Luo, S. Pre- and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images. Eng. Geol. 2020, 279, 105880. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, G.; Li, Z.; Xu, W.; Zhu, J.; He, L.; Xiong, Z.; Qiao, X. Retrieving the displacements of the Hutubi (China) underground gas storage during 2003-2020 from multi-track InSAR. Remote Sens. Environ. 2022, 268, 112768. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; pp. 4362–4364. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Liao, M.; Gong, J. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring. Remote Sens. Environ. 2019, 233, 111370. [Google Scholar] [CrossRef]
- Ghiasi-Shirazi, K. Generalizing the Convolution Operator in Convolutional Neural Networks. Neural Process. Lett. 2019, 50, 2627–2646. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, C.; Wang, X. Stock prediction based on bidirectional gated recurrent unit with convolutional neural network and feature selection. PLoS ONE 2022, 17, e0262501. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, Y.; Chen, W. Effective Adam-Optimized LSTM Neural Network for Electricity Price Forecasting. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018; Li, W., Babu, M., Eds.; IEEE: Piscataway, NJ, USA, 2018; pp. 245–248. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Zhang, M.; Philp, P. Geochemical characterization of aromatic hydrocarbons in crude oils from the Tarim, Qaidam and Turpan Basins, NW China. Pet. Sci. 2010, 7, 448–457. [Google Scholar] [CrossRef]
- Yan, N.; Wu, B.; Zhu, W. Assessment of Agricultural Water Productivity in Arid China. Water 2020, 12, 1161. [Google Scholar] [CrossRef]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Lee, J.; Hoppel, K.; Mango, S.; Miller, A. Intensity and phase statistics of multilook polarimetric and interferometric sar imagery. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1017–1028. [Google Scholar] [CrossRef]
- Mestre-Quereda, A.; Lopez-Sanchez, J.; Ballester-Berman, J.; Gonzalez, P.; Hooper, A.; Wright, T. Evaluation of the Multilook Size in Polarimetric Optimization of Differential SAR Interferograms. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1407–1411. [Google Scholar] [CrossRef]
- Farr, T.; Rosen, P.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, G.; Li, Z.; Luo, S.; Wang, H.; Xiong, Z.; Zhu, J.; Hu, J. A Strategy for Variable-Scale InSAR Deformation Monitoring in a Wide Area: A Case Study in the Turpan-Hami Basin, China. Remote Sens. 2022, 14, 3832. [Google Scholar] [CrossRef]
- Grenerczy, G.; Wegmüller, U. Deformation analysis of a burst red mud reservoir using combined descending and ascending pass ENVISAT ASAR data. Nat. Hazards 2013, 65, 2205–2214. [Google Scholar] [CrossRef]
Frame | Heading | Incidence | Pixel Spacing (Rg × Az) | Time | Number |
---|---|---|---|---|---|
AT41F135 | −9.21° | 33.65° | 2.33 × 13.95 m | 25/03/2015–27/04/2020 | 122 |
DT121F449 | −170.36° | 33.57° | 2.33 × 13.95 m | 19/03/2015–27/04/2020 | 107 |
Parameter | Configuration |
---|---|
Optimizer | Adam |
Dropout | 0.2 |
Learning rate | 0.005 |
Training epochs | 5 |
Training iterations | 14,615 |
Input window length | 30 |
Output window length | 1 |
Number of attention heads | 8 |
Model | MAE | RMSE | MAPE |
---|---|---|---|
LSTM | 0.0197 | 0.0369 | 0.6103 |
CNN-LSTM | 0.0164 | 0.0175 | 0.1345 |
DACLnet | 0.0015 | 0.0055 | 0.0750 |
vs. LSTM | 92.39% | 85.09% | 87.71% |
vs. CNN-LSTM | 90.85% | 68.57% | 44.24% |
Period | MAE | RMSE | MAPE |
---|---|---|---|
12 days | 0.0045 | 0.0068 | 0.0146 |
24 days | 0.0108 | 0.0161 | 0.0318 |
36 days | 0.0151 | 0.0220 | 0.0426 |
48 days | 0.0215 | 0.0306 | 0.0592 |
60 days | 0.0303 | 0.0430 | 0.0823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Wang, Y.; Zhu, Y.; Liu, J.; Xu, Y.; Yang, H.; Wang, Y. DACLnet: A Dual-Attention-Mechanism CNN-LSTM Network for the Accurate Prediction of Nonlinear InSAR Deformation. Remote Sens. 2024, 16, 2474. https://doi.org/10.3390/rs16132474
Lu J, Wang Y, Zhu Y, Liu J, Xu Y, Yang H, Wang Y. DACLnet: A Dual-Attention-Mechanism CNN-LSTM Network for the Accurate Prediction of Nonlinear InSAR Deformation. Remote Sensing. 2024; 16(13):2474. https://doi.org/10.3390/rs16132474
Chicago/Turabian StyleLu, Junyu, Yuedong Wang, Yafei Zhu, Jingtao Liu, Yang Xu, Honglei Yang, and Yuebin Wang. 2024. "DACLnet: A Dual-Attention-Mechanism CNN-LSTM Network for the Accurate Prediction of Nonlinear InSAR Deformation" Remote Sensing 16, no. 13: 2474. https://doi.org/10.3390/rs16132474
APA StyleLu, J., Wang, Y., Zhu, Y., Liu, J., Xu, Y., Yang, H., & Wang, Y. (2024). DACLnet: A Dual-Attention-Mechanism CNN-LSTM Network for the Accurate Prediction of Nonlinear InSAR Deformation. Remote Sensing, 16(13), 2474. https://doi.org/10.3390/rs16132474