Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation
"> Figure 1
<p>Summary of the methodology used in the current work to discriminate pasture degradation with SuperDove satellite constellation data.</p> "> Figure 2
<p>Location of the five sites (15 × 15 km each) selected in the southeastern region of the Brazilian state of Goiás in a climatically homogeneous region. The insets show photographs representative of non-degraded pasture (NDP) and of pastures with low-intensity degradation (LID), moderate-intensity degradation (MID), severe agronomic degradation (SAD), and severe biological degradation (SBD). The sites are numbered according to the municipality where they are located: 1. Bela Vista de Goiás; 2. Caldas Novas; 3. Piracanjuba; 4. Pontalina; and 5. Trindade. Long-term monthly precipitation (average values between 2001 and 2021) and the dry season period are also indicated for reference.</p> "> Figure 3
<p>Frequency of cloud-free images captured by the SuperDove satellite constellation in 2022 for each of the five selected sites targeted for analysis. The dry season period is indicated for reference.</p> "> Figure 4
<p>False color composites generated from SuperDove imagery, illustrating visual distinctions between plots of biologically degraded (SBD) and non-degraded (NDP) pastures across various seasonal stages. Notable time points include the rainy season (DOY 62 and 324 in (<b>a</b>,<b>e</b>)), the transition from the rainy to the dry season (DOY 153 in (<b>b</b>)), the middle of the dry season (DOY 227 in (<b>c</b>)), and the transition from the dry to the rainy season (DOY 273 in (<b>d</b>)). SuperDove bands 8 (NIR), 7 (red-edge) and 6 (red) are shown in red, green and blue colors, respectively.</p> "> Figure 5
<p>Seasonal variations in mean reflectance for both (<b>a</b>) red and (<b>b</b>) near-infrared (NIR) bands (SuperDove bands 6 and 8) across different pasture degradation classes. The symbols within the profiles denote data acquisition in 2022 through the satellite constellation. Class abbreviations are defined in the text.</p> "> Figure 6
<p>Seasonal variation in the Mahalanobis distance for discriminating areas of Severe Agronomic Degradation (SAD) from those with Low- (LID) and Moderate-intensity (MID) degradation using the eight-band reflectance data from SuperDove.</p> "> Figure 7
<p>Endmember reflectance spectra derived from Sequential Maximum Angle Convex Cone (SMACC) for SuperDove data acquired on 2 June (DOY 153) over areas exhibiting varying degrees of pasture degradation across the five studied sites in central Brazil.</p> "> Figure 8
<p>Scatterplots illustrating the relationships between (<b>a</b>) NDVI and GRND and (<b>b</b>) EVI and REND for three field-sampled classes of pasture degradation: Non-degraded pasture (NDP) and pastures with severe agronomic (SAD) and biological (SBD) degradation.</p> "> Figure 9
<p>False color composites (SuperDove bands 8, 7, and 6 in RGB) illustrating examples of the five classes of pasture degradation (NDP, LID, MID, SAD, and SBD) are presented on the left side of the figure. In the middle panel, color composites of green vegetation (GV1), GV2, and soil (S) fraction images in RGB are displayed. Lastly, NDVI images are presented on the right side.</p> "> Figure 10
<p>Variations in Gray Level Co-occurrence Matrix (GLCM) texture metrics, specifically (<b>a</b>) texture mean and (<b>b</b>) texture variance, calculated from the Near-Infrared (NIR) band 8 of SuperDove for the five classes of pasture degradation.</p> "> Figure 11
<p>Variations in Precision, Recall, F1-score, and Overall Accuracy (OA) resulting from the Random Forest (RF) classification of five classes of pasture degradation (NDP, LID, MID, SAD, and SBD). The classifier utilized individual attributes, including the reflectance of the eight SuperDove bands, five vegetation indices (EVI, GRND, MPRI, NDVI, and REND), and four-endmember fractions from Spectral Mixture Analysis (SMA) (GV1, GV2, soil, and shade). Results from GLCM texture metrics were excluded for enhanced graphical representation. The reported results refer to the validation dataset.</p> "> Figure 12
<p>Percentage of importance assigned to each variable in the Random Forest (RF) classification of five classes of pasture degradation (NDP, LID, MID, SAD, and SBD).</p> "> Figure 13
<p>(<b>a</b>) Ground truth map and (<b>b</b>) Random Forest classification of degraded and non-degraded pastures. Classification uncertainties are depicted in (<b>c</b>). The abbreviations are defined in the text.</p> "> Figure 14
<p>Variations in F1-score and Overall Accuracy (OA) resulting from the Random Forest (RF) classification of five classes of pasture degradation (NDP, LID, MID, SAD, and SBD) using the combined sets of attributes. Results are presented for two dates representing the transition from the rainy to the dry season (DOY 153 in June; blue color results) and the middle of the dry season (DOY 227 in August; red color results). The reported results refer to the validation dataset.</p> "> Figure 15
<p>Average reflectance spectra from OLI/Landsat-8 data acquired over field-surveyed plots representing non-degraded pastures and pastures experiencing severe agronomical or biological degradation. The results are presented for various dates during the year 2021, specifically during (<b>a</b>) the transition from the rainy to the dry season, (<b>b</b>) the middle of the dry season, and (<b>c</b>) after the occurrence of the first rainfall events in the new seasonal cycle in October.</p> "> Figure 16
<p>Variations in F1-score and Overall Accuracy (OA) resulting from the Random Forest (RF) classification of five classes of pasture degradation (NDP, LID, MID, SAD, and SBD) using reflectance data of 10 bands (10-m and 20-m spatial resolution) from the Multispectral Instrument (MSI)/Sentinel-2 (400–2500 nm) and eight bands from the SuperDove (400–900 nm). Images from both instruments were acquired in approximately coincident dates (2 and 4 June 2022). The reported results in blue (SuperDove) and red (MSI/Sentinel-2) colors refer to the validation dataset.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Selection of the Study Area
2.2. SuperDove Data Acquisition and Fieldwork Activities
2.3. Selecting an Optimal Period for Discriminating Degraded Pastures
2.4. Determination of SuperDove Attributes
2.5. Random Forest, Validation, and Test of Different Classification Scenarios
3. Results
3.1. Seasonal Reflectance Differences between Pasture Degradation Classes
3.2. Discriminative Ability of the Spectral and Spatial Attributes
3.3. Random Forest (RF) Classification Using Individual Sets of Attributes
3.4. Random Forest (RF) Using Combined Sets of Attributes in Two Classification Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parente, L.; Mesquita, V.; Miziara, F.; Baumann, L.; Ferreira, L. Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sens. Environ. 2019, 232, 111301. [Google Scholar] [CrossRef]
- Santos, C.O.d.; Pinto, A.d.S.; Silva, J.R.d.; Parente, L.L.; Mesquita, V.V.; Santos, M.P.d.; Ferreira, L.G. Monitoring of Carbon Stocks in Pastures in the Savannas of Brazil through Ecosystem Modeling on a Regional Scale. Land 2023, 12, 60. [Google Scholar] [CrossRef]
- Santos, C.O.d.; Mesquita, V.V.; Parente, L.L.; Pinto, A.d.S.; Ferreira, L.G., Jr. Assessing the Wall-to-Wall Spatial and Qualitative Dynamics of the Brazilian Pasturelands 2010–2018, Based on the Analysis of the Landsat Data Archive. Remote Sens. 2022, 14, 1024. [Google Scholar] [CrossRef]
- Kichel, A.N.; Miranda, C.H.B.; Zimmer, A.H. Degradação de pastagens e produção de bovinos de corte com a integração agricultura x pecuária. In Simpósio de Produção de Gado de Corte; UFV: Viçosa, Brazil, 1999; pp. 201–234. [Google Scholar]
- Dias-Filho, M.B. Degradação de Pastagens: Processos, Causas e Estratégias de Recuperação, 4th ed.; Edição do Autor: Belém, PA, Brazil, 2011; 215p. [Google Scholar]
- Bustamante, M.M.C.; Nobre, C.A.; Smeraldi, R.; Aguiar, A.P.D.; Barioni, L.G.; Ferreira, L.G.; Longo, K.; May, P.; Pinto, A.S.; Ometto, J.P.H.B. Estimating greenhouse gas emissions from cattle raising in Brazil. Clim. Chang. 2012, 115, 559–577. [Google Scholar] [CrossRef]
- Henderson, B.B.; Gerber, P.J.; Hilinski, T.E.; Falcucci, A.; Ojima, D.S.; Salvatore, M.; Conant, R.T. Greenhouse gas mitigation potential of the world’s grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices. Agric. Ecosyst. Environ. 2015, 207, 91–100. [Google Scholar] [CrossRef]
- Lambin, E.F.; Gibbs, H.K.; Ferreira, L.; Grau, R.; Mayaux, P.; Meyfroidt, P.; Morton, D.C.; Rudel, T.K.; Gasparri, I.; Munger, J. Estimating the world’s potentially available cropland using a bottom-up approach. Glob. Environ. Chang. 2013, 23, 892–901. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Victoria, D.d.C.; Sano, E.E.; Bayma, G.; Massruhá, S.M.F.S.; de Oliveira, A.F. Potential for Agricultural Expansion in Degraded Pasture Lands in Brazil Based on Geospatial Databases. Land 2024, 13, 200. [Google Scholar] [CrossRef]
- Fernandes, F.H.S.; Sano, E.E.; Ferreira, L.G.; Baptista, G.M.M.; de Castro Victoria, D.; Fassoni-Andrade, A.C. Degradation trends based on MODIS-derived estimates of productivity and water use efficiency: A case study for the cultivated pastures in the Brazilian Cerrado. Remote Sens. Appl. Soc. Environ. 2019, 11, 30–40. [Google Scholar] [CrossRef]
- Pereira, O.J.R.; Ferreira, L.G.; Pinto, F.; Baumgarten, L. Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sens. 2018, 10, 1761. [Google Scholar] [CrossRef]
- Gosch, M.S.; Parente, L.L.; Ferreira, N.C.; Oliveira, A.R.O.; Ferreira, L.G. Pastagens degradadas, uma herança dos imóveis rurais desapropriados para os assentamentos rurais do Cerrado goiano. Rev. Campo–Territ. 2020, 15, 202–229. [Google Scholar] [CrossRef]
- Gosch, M.S.; Parente, L.L.; dos Santos, C.O.; Mesquita, V.V.; Ferreira, L.G. Landsat-Based Assessment of the Quantitative and Qualitative Dynamics of the Pasture Areas in Rural Settlements in the Cerrado Biome, Brazil. Appl. Geogr. 2021, 136, 102585. [Google Scholar] [CrossRef]
- Veloso, G.A.; Silva, J.R.; Ferreira, M.E.; Ferreira, L.G., Jr. Biomassa Seca Estimada Em Áreas De Pastagens Com Dados De Sensoriamento Remoto: Estudo de caso na bacia hidrográfica do Rio Vermelho-Goiás. Soc. E Territ. 2021, 32, 150–171. [Google Scholar] [CrossRef]
- Aguiar, D.A.; Mello, M.P.; Nogueira, S.F.; Gonçalves, F.G.; Adami, M.; Rudorff, B.F.T. MODIS Time Series to Detect Anthropogenic Interventions and Degradation Processes in Tropical Pasture. Remote Sens. 2017, 9, 73. [Google Scholar] [CrossRef]
- Baeza, S.; Paruelo, J.M. Land Use/Land Cover Change (2000–2014) in the Rio de la Plata Grasslands: An Analysis Based on MODIS NDVI Time Series. Remote Sens. 2020, 12, 381. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.B.; Dang, D.L.; Dou, H.S.; Xuan, X.J.; Liu, S.Y.; Li, M.Y.; Gong, J.R. A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing. Ecol. Indic. 2020, 114, 106310. [Google Scholar] [CrossRef]
- Jadhav, R.N.; Kimothi, M.M.; Kandya, A.K. Grassland mapping/monitoring of Banni, Kachchh (Gujarat) using remotely-sensed data. Int. J. Remote Sens. 1993, 14, 3093–3103. [Google Scholar] [CrossRef]
- Toivonen, T.; Luoto, M. Landsat TM images in mapping of semi-natural grasslands and analysing of habitat pattern in an agricultural landscape in south-west Finland. Fenn. Int. J. Geogr. 2003, 181, 49–67. Available online: https://fennia.journal.fi/article/view/3756 (accessed on 13 December 2023).
- Baldi, G.; Guerschman, J.P.; Paruelo, J.M. Characterizing fragmentation in temperate South America grasslands. Agric. Ecosyst. Environ. 2006, 116, 197–208. [Google Scholar] [CrossRef]
- Jakimov, B.; Griffiths, P.; van der Linden, S.; Hostert, P. Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sens. Environ. 2018, 205, 453–468. [Google Scholar] [CrossRef]
- Smith, A.M.; Buckley, J.R. Investigating RADARSAT-2 as a tool for monitoring grassland in western Canada. Can. J. Remote Sens. 2011, 37, 93–102. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H. Mapping three invasive weeds using airborne hyperspectral imagery. Ecol. Inform. 2010, 5, 429–439. [Google Scholar] [CrossRef]
- Obermeier, W.A.; Lehnert, L.W.; Pohl, M.J.; Makowski Gianonni, S.; Silva, B.; Seibert, R.; Laser, H.; Moser, G.; Müller, C.; Luterbacher, J.; et al. Grassland ecosystem services in a changing environment: The potential of hyperspectral monitoring. Remote Sens. Environ. 2019, 232, 111273. [Google Scholar] [CrossRef]
- Feltran-Barbieri, R.; Féres, J.G. Degraded pastures in Brazil: Improving livestock production and forest restoration. R. Soc. Open Sci. 2021, 8, 201854. [Google Scholar] [CrossRef] [PubMed]
- Toniol, A.C.; Galvão, L.S.; Ponzoni, F.J.; Sano, E.E.; de Jesus Amore, D. Potential of hyperspectral metrics and classifiers for mapping Brazilian savannas in the rainy and dry seasons. Remote Sens. Appl. Soc. Environ. 2017, 8, 20–29. [Google Scholar] [CrossRef]
- Jacon, A.D.; Galvão, L.S.; Dos Santos, J.R.; Sano, E.E. Seasonal characterization and discrimination of savannah physiognomies in Brazil using hyperspectral metrics from Hyperion/EO-1. Int. J. Remote Sens. 2017, 38, 4494–4516. [Google Scholar] [CrossRef]
- Haddad, I.; Galvão, L.S.; Breunig, F.M.; Dalagnol, R.; Bourscheidt, V.; Jacon, A.D. On the combined use of phenological metrics derived from different PlanetScope vegetation indices for classifying savannas in Brazil. Remote Sens. Appl. Soc. Environ. 2002, 26, 100764. [Google Scholar] [CrossRef]
- Araújo, J.d.A.; Galvão, L.S.; Dalagnol, R. Evaluating changes with vegetation cover in PRISMA’s spectral, spatial, and temporal attributes and their performance for classifying savannahs in Brazil. Remote Sens. Appl. Soc. Environ. 2023, 32, 101074. [Google Scholar] [CrossRef]
- Parente, L.; Taquary, E.; Silva, A.P.; Souza, C.; Ferreira, L. Next generation mapping: Combining deep learning, cloud computing, and big remote sensing data. Remote Sens. 2019, 11, 2881. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2015, 1, 36–49. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Moura, Y.M.D.; Galvão, L.S.; Hilker, T.; Wu, J.; Saleska, S.; Amaral, C.H.D.; Nelson, B.W.; Lopes, A.P.; Wiedeman, K.K.; Prohaska, N.; et al. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations. ISPRS J. Photogramm. Remote Sens. 2017, 131, 52–64. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schnell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation of Natural Vegetation; NASA/GSFC Type II Progress Report; NASA: Greenbelt, MD, USA, 1973.
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Galvão, L.S.; Arlanche Petri, C.; Dalagnol, R. Coupled effects of solar illumination and phenology on vegetation index determination: An analysis over the Amazonian forests using the SuperDove satellite constellation. GISci. Remote Sens. 2024, 61, 2290354. [Google Scholar] [CrossRef]
- Teles, N.M. Sensoriamento Remoto e Escore de Condição da Pastagem para Avaliação da Qualidade e Produtividade de Pastagens. Master’s Thesis, Universidade Federal de Goiás, Escola de Veterinária e Zootecnia (EVZ), Goiânia, Brazil, 2021. [Google Scholar]
- Laboratório de Processamento de Imagens e Geoprocessamento—LAPIG. Atlas Digital das Pastagens Brasileiras. 2021. Available online: https://pastagem.org (accessed on 25 January 2024).
- Gamon, J.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Gruninger, J.; Ratkowski, A.; Hoke, M. The sequential maximum angle convex cone (SMACC) endmember model. Proc. SPIE 2004, 5425, 1–14. [Google Scholar] [CrossRef]
- Roberts, D.A.; Smith, M.O.; Adams, J.B. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Van der Meer, F. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 55–68. [Google Scholar] [CrossRef]
- Haralick, R.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture as a remotely sensed measure of vegetation structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Huang, L.; Chen, C.; Lin, X.S.; Hu, Z.J.; Li, J.L. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 2017, 83, 303–313. [Google Scholar] [CrossRef]
- Sano, E.E.; Bezerra, H.D.S.; Barcellos, A.D.O.; Rosa, R. Metodologias para Mapeamento de Pastagens Degradadas no Cerrado. In Boletim de Pesquisa e Desenvolvimento; Embrapa: Brasília, Brazil, 2002; pp. 1–22. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAC-2009/24654/1/bolpd_70.pdf (accessed on 15 January 2024).
- Jacon, A.D.; Galvão, L.S.; Dalagnol, R.; Dos Santos, J.R. Aboveground biomass estimates over Brazilian savannas using hyperspectral metrics and machine learning models: Experiences with Hyperion/EO-1. Gisci. Remote Sens. 2021, 58, 112–1129. [Google Scholar] [CrossRef]
- De Torres, F.N.; Richter, R.; Vohland, M. A multisensoral approach for high-resolution land cover and pasture degradation mapping in the humid tropics: A case study of the fragmented landscape of Rio de Janeiro. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 189–201. [Google Scholar] [CrossRef]
- Karnieli, A.; Bayarjargal, Y.; Bayasgalan, M.; Mandakh, B.; Dugarjav, C.; Burgheimer, J.; Khudulmur, S.; Bazha, S.N.; Gunin, P.D. Do vegetation indices provide a reliable indication of vegetation degradation? A case study in the Mongolian pastures. Int. J. Remote Sens. 2013, 34, 6243–6262. [Google Scholar] [CrossRef]
- Sano, E.E.; Bolfe, É.L.; Parreiras, T.C.; Bettiol, G.M.; Vicente, L.E.; Sanches, I.D.; Victoria, D.d.C. Estimating Double Cropping Plantations in the Brazilian Cerrado through PlanetScope Monthly Mosaics. Land 2023, 12, 581. [Google Scholar] [CrossRef]
SuperDove Band Number | Spectral Band | Spectral Positioning (nm) | Band Center (nm) | Bandwidth (nm) | Spatial Resolution (m) | Radiometric Resolution (bits) |
---|---|---|---|---|---|---|
1 | Blue I (Coastal) | 431–452 | 441 | 21 | 3.7 | 12 |
2 | Blue II | 465–515 | 490 | 50 | 3.7 | 12 |
3 | Green I | 513–549 | 531 | 36 | 3.7 | 12 |
4 | Green II | 547–583 | 565 | 36 | 3.7 | 12 |
5 | Red I (Yellow) | 600–620 | 610 | 20 | 3.7 | 12 |
6 | Red II | 650–680 | 665 | 30 | 3.7 | 12 |
7 | Red-Edge | 697–713 | 705 | 16 | 3.7 | 12 |
8 | Near-infrared (NIR) | 845–885 | 850 | 40 | 3.7 | 12 |
SuperDove Attribute | Metric |
---|---|
Spectral | I. Surface reflectance of the eight SuperDove bands |
II. Five vegetation indices (EVI, GRND, MPRI, NDVI and REND) | |
III. Four endmember fractions from SMA (NDP, SAD, SBD, and shade) | |
Spatial | Eight GLCM texture metrics calculated from the NIR band (texture mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) |
VIs | Equation | Reference |
---|---|---|
NDVI | (pNIRb8 − pRedb6)/(pNIRb8 + pRedb6) | Rouse et al. [37] |
EVI | 2.5 × (pNIRb8 − pRedb6)/(pNIRb8 + 6 × pRedb6 − 7.5 × pBlueb2) + 1 | Huete et al. [34] |
MPRI | (pGreenb4 − pGreenb3)/(pGreenb4 + pGreenb3) | Gamon et al. [42] |
REND | (pNIRb8 − pReb7)/(pNIRb8 + pReb7) | Gitelson et al. [36] |
GRND | (pGreenb4 − pRedb6)/(pGreenb4 + pRedb6) | Moura et al. [35] |
Reference | |||||
---|---|---|---|---|---|
NDP | LID | MID | SAD | SBD | |
NDP | 91 | 41 | 25 | 13 | 0 |
LID | 29 | 96 | 47 | 9 | 0 |
MID | 4 | 13 | 129 | 34 | 0 |
SAD | 0 | 0 | 18 | 137 | 25 |
SBD | 0 | 0 | 5 | 14 | 167 |
F1-score | 0.61 | 0.58 | 0.64 | 0.71 | 0.88 |
Recall | 0.53 | 0.53 | 0.72 | 0.76 | 0.90 |
Precision | 0.73 | 0.64 | 0.58 | 0.66 | 0.87 |
Overall Accuracy (OA) | 0.69 | ||||
Kappa | 0.61 |
Reference | |||
---|---|---|---|
NDP | SAD | SBD | |
NDP | 160 | 20 | 0 |
SAD | 11 | 138 | 31 |
SBD | 0 | 2 | 178 |
F1-score | 0.91 | 0.81 | 0.91 |
Recall | 0.89 | 0.77 | 0.99 |
Precision | 0.93 | 0.89 | 0.91 |
Overall Accuracy (AO) | 0.88 | ||
Kappa | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.G.P.; Galvão, L.S.; Ferreira Júnior, L.G.; Teles, N.M.; Mesquita, V.V.; Haddad, I. Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation. Remote Sens. 2024, 16, 2256. https://doi.org/10.3390/rs16132256
Silva AGP, Galvão LS, Ferreira Júnior LG, Teles NM, Mesquita VV, Haddad I. Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation. Remote Sensing. 2024; 16(13):2256. https://doi.org/10.3390/rs16132256
Chicago/Turabian StyleSilva, Angela Gabrielly Pires, Lênio Soares Galvão, Laerte Guimarães Ferreira Júnior, Nathália Monteiro Teles, Vinícius Vieira Mesquita, and Isadora Haddad. 2024. "Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation" Remote Sensing 16, no. 13: 2256. https://doi.org/10.3390/rs16132256
APA StyleSilva, A. G. P., Galvão, L. S., Ferreira Júnior, L. G., Teles, N. M., Mesquita, V. V., & Haddad, I. (2024). Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation. Remote Sensing, 16(13), 2256. https://doi.org/10.3390/rs16132256