Sparse Reconstruction-Based Joint Signal Processing for MIMO-OFDM-IM Integrated Radar and Communication Systems
"> Figure 1
<p>Schematic diagram of the proposed MIMO-OFDM integrated system model.</p> "> Figure 2
<p>Schematic diagram of MIMO-OFDM-IM integrated signal design in transmitter.</p> "> Figure 3
<p>Flow chart of the joint signal processing schemes in the proposed system.</p> "> Figure 4
<p>Flowchart of the conventional processing.</p> "> Figure 5
<p>The PSLR performance. (<b>a</b>) The variation in PSLR with SNR. (<b>b</b>) The variation in PSLR with the number of activated subcarriers (SNR = 10 dB).</p> "> Figure 6
<p>The variation in PSLR with SNR under different number of activated subcarriers.</p> "> Figure 7
<p>The variation in MSEs of range and velocity estimation with SNR under different methods (<math display="inline"><semantics> <msub> <mi>N</mi> <mi>r</mi> </msub> </semantics></math> = <math display="inline"><semantics> <msub> <mi>N</mi> <mi>t</mi> </msub> </semantics></math> = 4, <math display="inline"><semantics> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> </semantics></math> = 8, <span class="html-italic">K</span> = 4, <span class="html-italic">H</span> = 4). (<b>a</b>) Range estimation. (<b>b</b>) Velocity estimation.</p> "> Figure 8
<p>Complexity comparison. (<b>a</b>) The variation in number of complex multiplications with the number of activated subcarriers. (<b>b</b>) The variation in number of complex multiplications with the number of transmitting antennas.</p> "> Figure 9
<p>The BER performance of different information detection methods under the proposed integrated MIMO-OFDM-IM system (<math display="inline"><semantics> <msub> <mi>N</mi> <mi>r</mi> </msub> </semantics></math> = <math display="inline"><semantics> <msub> <mi>N</mi> <mi>t</mi> </msub> </semantics></math> = 4). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> </semantics></math> = 8, <span class="html-italic">K</span> = 3; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> </semantics></math> = 8, <span class="html-italic">K</span> = 6.</p> "> Figure 10
<p>The BER performance of different information detection methods under the proposed integrated MIMO-OFDM-IM system (<math display="inline"><semantics> <msub> <mi>N</mi> <mi>r</mi> </msub> </semantics></math> = <math display="inline"><semantics> <msub> <mi>N</mi> <mi>t</mi> </msub> </semantics></math> = 8). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> </semantics></math> = 8, <span class="html-italic">K</span> = 3; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> </semantics></math> = 8, <span class="html-italic">K</span> = 6.</p> "> Figure 11
<p>The variation in radar–communication trade-off curve with the number of activated subcarriers under different SNRs (<math display="inline"><semantics> <msub> <mi>N</mi> <mi>r</mi> </msub> </semantics></math> = <math display="inline"><semantics> <msub> <mi>N</mi> <mi>t</mi> </msub> </semantics></math> = 4). (<b>a</b>) SNR = 6 dB; (<b>b</b>) SNR = 12 dB.</p> ">
Abstract
:1. Introduction
2. System Model and Signal Design
2.1. System Model
2.2. Bit and Subcarrier Allocation
2.3. Integrated Signal Design
3. Optimized Joint Signal Processing Schemes
3.1. Sparsity Reconstruction-Based Improved Parameter Estimation
3.1.1. Conventional Processing
3.1.2. Information Compensation
3.1.3. Improved Parameter Estimation
3.2. Improved Communication Signal Detection
4. Simulation and Numerical Results
4.1. Radar Performance
4.1.1. PSLR Performance
4.1.2. Range and Velocity Estimation Performance
4.1.3. The Complexity of Parameter Estimation
4.2. Communication Performance
4.2.1. BER Performance
4.2.2. The Complexity of Communication Detection Methods
4.3. Trade-Off Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OFDM | orthogonal frequency division multiplexing |
IM | index modulation |
IRCS | integrated radar and communication systems |
UAV | unmanned aerial vehicle |
MIMO | multiple-input multiple-output |
HAD | hybrid analog–digital |
DL | deep learning |
ICI | intercarrier interference |
IFFT | inverse fast Fourier transform |
CP | cyclic prefix |
GI | guard interval |
ISI | intersymbol interference |
DFT | discrete Fourier transform |
CRB | Cramér–Rao bound |
SMC | sequential Monte Carlo |
SNR | signal-to-noise ratio |
PSLR | peak sidelobe ratio |
MSE | mean-square error |
BER | bit error rate |
ML | maximum likelihood |
MMSE | minimum mean square error |
References
- Kumari, P.; Choi, J.; González-Prelcic, N.; Heath, R.W. IEEE 802.11ad-Based Radar: An Approach to Joint Vehicular Communication-Radar System. IEEE Trans. Veh. Technol. 2018, 67, 3012–3027. [Google Scholar] [CrossRef]
- Grossi, E.; Lops, M.; Venturino, L. Joint Design of Surveillance Radar and MIMO Communication in Cluttered Environments. IEEE Trans. Signal Process. 2020, 68, 1544–1557. [Google Scholar] [CrossRef]
- Gu, M.-X.; Lee, M.-C.; Liu, Y.-S.; Lee, T.-S. Design and Analysis of Frequency Hopping-Aided FMCW-Based Integrated Radar and Communication Systems. IEEE Trans. Commun. 2022, 70, 8416–8432. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Masouros, C.; Heath, R.; Feng, Z.; Zheng, L.; Petropulu, A. An overview of signal processing techniques for joint communication and radar sensing. IEEE J. Sel. Topics Signal Process. 2021, 15, 1295–1315. [Google Scholar] [CrossRef]
- Wang, J.; Liang, X.-D.; Chen, L.-Y.; Li, Y.-L. Waveform Designs for Joint Wireless Communication and Radar Sensing: Pitfalls and Opportunities. IEEE Internet Things J. 2023, 10, 15252–15265. [Google Scholar] [CrossRef]
- Xiao, Z.; Zeng, Y. Waveform design and performance analysis for full-duplex integrated sensing and communication. IEEE J. Sel. Areas Commun. 2022, 40, 1823–1837. [Google Scholar] [CrossRef]
- Liu, F.; Masouros, C.; Petropulu, A.P.; Griffiths, H.; Hanzo, L. Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead. IEEE Trans. Commun. 2020, 68, 3834–3862. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Yeo, T.-S.; Cheng, Y.; Fu, J. Robust Multiplexing Waveform Design for Integrated OFDM Radar and Communication via Complex Weight Optimization. Remote Sens. 2023, 15, 4438. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, L.; Masouros, C.; Li, A.; Luo, W.; Petropulu, A. Toward Dual-functional Radar-Communication Systems: Optimal Waveform Design. IEEE Trans. Signal Process. 2018, 66, 4264–4279. [Google Scholar] [CrossRef]
- Yu, X.; Yao, X.; Yang, J.; Zhang, L.; Kong, L.; Cui, G. Integrated Waveform Design for MIMO Radar and Communication via Spatio-Spectral Modulation. IEEE Trans. Signal Process. 2022, 70, 2293–2305. [Google Scholar] [CrossRef]
- Zheng, L.; Lops, M.; Eldar, Y.C.; Wang, X. Radar and Communication Coexistence: An Overview: A Review of Recent Methods. IEEE Signal Process. Mag. 2019, 36, 85–99. [Google Scholar] [CrossRef]
- Hwang, S.; Seo, J.; Park, J.; Kim, H.; Jeong, B.J. Compressive Sensing-Based Radar Imaging and Subcarrier Allocation for Joint MIMO OFDM Radar and Communication System. Sensors 2021, 21, 2382. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.; Liu, F.; Miao, Y. High-Efficiency Optimization Algorithm of PMEPR for OFDM Integrated Radar and Communication Waveform Based on Conjugate Gradient. Remote Sens. 2022, 14, 1715. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nakamura, A.; Itami, M. A study on LDM-BST-OFDM transmission for the next-generation terrestrial broadcasting. IEEE Trans. Broadcast. 2020, 66, 205–215. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, G.; Chen, Y.; Xu, J.; Yin, Y. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform. IEEE Trans. Veh. Technol. 2020, 69, 11659–11672. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, G.; Xu, J.; Yang, Z.; Huang, L.; Zhang, Y. Transmit power adaptation for orthogonal frequency division multiplexing integrated radar and communication systems. J. Appl. Remote Sens. 2017, 11, 035017. [Google Scholar] [CrossRef]
- Shi, C.; Wang, F.; Salous, S.; Zhou, J. Joint subcarrier assignment and power allocation strategy for integrated radar and communications system based on power minimization. IEEE Sens. J. 2019, 19, 11167–11179. [Google Scholar] [CrossRef]
- Temiz, M.; Alsusa, E.; Baidas, M.W. A dual-functional massive MIMO OFDM communication and radar transmitter architecture. IEEE Trans. Veh. Technol. 2020, 69, 14974–14988. [Google Scholar] [CrossRef]
- Keskin, M.F.; Koivunen, V.; Wymeersch, H. Limited feedforward waveform design for OFDM dual-functional radar-communications. IEEE Trans. Signal Process. 2021, 69, 2955–2970. [Google Scholar] [CrossRef]
- Ahmed, A.; Zhang, Y.D.; Hassanien, A. Joint Radar-Communications Exploiting Optimized OFDM Waveforms. Remote Sens. 2021, 13, 4376. [Google Scholar] [CrossRef]
- Saad, M.; Palicot, J.; Bader, F.; Ghouwayel, A.C.A.; Hijazi, H. A Novel Index Modulation Dimension Based on Filter Domain: Filter Shapes Index Modulation. IEEE Trans. Commun. 2021, 69, 1445–1461. [Google Scholar] [CrossRef]
- Yu, P.; Huang, F. Spatial Index Modulation with the Combination of Both Antenna Indexes and Two Constellations. IEEE Access 2022, 10, 133778–133788. [Google Scholar] [CrossRef]
- Choi, J. Coded OFDM-IM With Transmit Diversity. IEEE Trans. Commun. 2017, 65, 3164–3171. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, B.; Li, J.; Zhang, Y.; Xie, F. Y-Shaped Net-Based Signal Detection for OFDM-IM Systems. IEEE Commun. Lett. 2022, 26, 2661–2664. [Google Scholar] [CrossRef]
- Li, J.; Dang, S.; Huang, Y.; Chen, P.; Qi, X.; Wen, M.; Arslan, H. Composite Multiple-Mode Orthogonal Frequency Division Multiplexing with Index Modulation. IEEE Trans. Wireless Commun. 2023, 22, 3748–3761. [Google Scholar] [CrossRef]
- Sui, Z.; Yan, S.; Zhang, H.; Yang, L.-L.; Hanzo, L. Approximate Message Passing Algorithms for Low Complexity OFDM-IM Detection. IEEE Trans. Veh. Technol. 2021, 70, 9607–9612. [Google Scholar] [CrossRef]
- Xu, Z.; Petropulu, A. A Bandwidth Efficient Dual-Function Radar Communication System Based on a MIMO Radar Using OFDM Waveforms. IEEE Trans. Signal Process. 2023, 71, 401–416. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, Z.; Li, L.; Zheng, L.; Liu, L. RC-Struct: A Structure-Based Neural Network Approach for MIMO-OFDM Detection. IEEE Trans. Wirel. Commun. 2022, 21, 7181–7193. [Google Scholar] [CrossRef]
- Qian, J.; Lops, M.; Zheng, L.; Wang, X.; He, Z. Joint System Design for Coexistence of MIMO Radar and MIMO Communication. IEEE Trans. Signal Process. 2018, 66, 3504–3519. [Google Scholar] [CrossRef]
- Basar, E. Multiple-input multiple-output OFDM with index modulation. IEEE Signal Process. Lett. 2015, 22, 2259–2263. [Google Scholar] [CrossRef]
- Yang, Y.; Dang, S.; Wen, M.; Guizani, M. Millimeter Wave MIMO-OFDM with Index Modulation: A Pareto Paradigm on Spectral- Energy Efficiency Trade-Off. IEEE Trans. Wirel. Commun. 2021, 20, 6371–6386. [Google Scholar] [CrossRef]
- Zhao, T.; Li, F. Variational-autoencoder signal detection for MIMO-OFDM-IM. Digit. Signal Process. 2021, 118, 103230. [Google Scholar] [CrossRef]
- Basar, E. On multiple-input multiple-output OFDM with index modulation for next generation wireless networks. IEEE Trans. Signal Process. 2016, 64, 3868–3878. [Google Scholar] [CrossRef]
- Wang, L. Generalized Quadrature Space-Frequency Index Modulation for MIMO-OFDM Systems. IEEE Trans. Commun. 2021, 69, 6375–6389. [Google Scholar] [CrossRef]
- Hodge, J.A.; Mishra, K.V.; Zaghloul, A.I. Intelligent Time-Varying Metasurface Transceiver for Index Modulation in 6G Wireless Networks. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1891–1895. [Google Scholar] [CrossRef]
- Chen, R.; Zheng, J. Index-Modulated MIMO-OFDM: Joint Space-Frequency Signal Design and Linear Precoding in Rapidly Time-Varying Channels. IEEE Trans. Wirel. Commun. 2018, 17, 7067–7079. [Google Scholar] [CrossRef]
- Noh, H.; Lee, H.; Yang, H.J. IICI-Robust Transceiver Design for Integration of MIMO-OFDM Radar and MU-MIMO Communication. IEEE Trans. Veh. Technol. 2023, 72, 821–838. [Google Scholar] [CrossRef]
- Schindler, D.; Schweizer, B.; Knill, C.; Hasch, J.; Waldschmidt, C. Synthetization of Virtual Transmit Antennas for MIMO OFDM Radar by Space-Time Coding. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1964–1971. [Google Scholar] [CrossRef]
- Hakobyan, G.; Ulrich, M.; Yang, B. OFDM-MIMO Radar With Optimized Nonequidistant Subcarrier Interleaving. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 572–584. [Google Scholar] [CrossRef]
- Multerer, T.; Prechtel, U.; Vossiek, M.; Ziegler, V. Systematic Phase Correction for Direction-of-Arrival Estimation in Spectrally Interleaved OFDM MIMO Radar. IEEE Trans. Microw. Theory Technol. 2019, 67, 4570–4577. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Shahrrava, B. A SLM Scheme for PAPR Reduction in Polar Coded OFDM-IM Systems Without Using Side Information. IEEE Trans. Broadcast. 2021, 67, 463–472. [Google Scholar] [CrossRef]
- Deng, S. Reduced-Guard-Interval OFDM Using Digital Sub-Band-Demultiplexing. IEEE Photon. Technol. Lett. 2013, 25, 2174–2177. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, J.; Wan, X.; Zhang, X.; Ke, H. Evaluation of Clutter Suppression in CP-OFDM-Based Passive Radar. IEEE Sens. J. 2019, 19, 5572–5586. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Yeo, T.-S.; Han, J.; Peng, Z. Joint Sequence Optimization-Based OFDM Waveform Design for Integrated Radar and Communication Systems. IEEE Trans. Veh. Technol. 2022, 71, 12734–12748. [Google Scholar] [CrossRef]
- Roth, I.; Kliesch, M.; Flinth, A.; Wunder, G.; Eisert, J. Reliable Recovery of Hierarchically Sparse Signals for Gaussian and Kronecker Product Measurements. IEEE Trans. Signal Process. 2020, 68, 4002–4016. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Chen, J.; Ma, J. A Novel Identification Method for a Class of Closed-Loop Systems Based on Basis Pursuit De-Noising. IEEE Access 2020, 8, 99648–99654. [Google Scholar] [CrossRef]
- Vesa, J.; Rasilo, P. Permeability Estimations of SMC Material Particles. IEEE Trans. Magn. 2020, 56, 2000807. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y.; Shen, H.; Zhou, P. SMC Design for Robust Stabilization of Nonlinear Markovian Jump Singular Systems. IEEE Trans. Autom. Control 2018, 63, 219–224. [Google Scholar] [CrossRef]
- Yih, C. Iterative interference cancellation for OFDM signals with blanking nonlinearity in impulsive noise channels. IEEE Signal Process. Lett. 2012, 19, 147–150. [Google Scholar] [CrossRef]
- Fang, L.; Xu, L.; Huang, D.D. Low Complexity Iterative MMSE-PIC Detection for Medium-Size Massive MIMO. IEEE Wirel. Commun. Lett. 2016, 5, 108–111. [Google Scholar] [CrossRef]
- Zheng, B.; Wen, M.; Basar, E.; Chen, F. Multiple-Input Multiple-Output OFDM With Index Modulation: Low-Complexity Detector Design. IEEE Trans. Signal Process. 2017, 65, 2758–2772. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Bandwidth | 20 MHz |
Carrier frequency | 5 GHz |
Duration of pulses | 32 s |
Number of OFDM symbols | 8 |
Number of subcarriers | 256 |
Number of subblocks | 32 |
Total number of pulses | 32 |
Lower limit of the number of state combinations | 6 |
Upper limit of the number of samples | 10 |
Modulation mode of communication information | BPSK |
Parameters | Number of Complex Multiplications | ||
---|---|---|---|
ML detection | 3.26 × | − | − |
MMSE detection | 6.62 × | 5.28 × | 9.35 × |
Improved MMSE detection | 2.07 × | 9.23 × | 2.84 × |
Subcarrier-wise detection | 2.23 × | 8.51 × | 1.5 × |
Proposed improved detection | 2.27 × | 6.04 × | 9.61 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cao, Y.; Yeo, T.-S.; Cheng, Y.; Zhang, Y. Sparse Reconstruction-Based Joint Signal Processing for MIMO-OFDM-IM Integrated Radar and Communication Systems. Remote Sens. 2024, 16, 1773. https://doi.org/10.3390/rs16101773
Wang Y, Cao Y, Yeo T-S, Cheng Y, Zhang Y. Sparse Reconstruction-Based Joint Signal Processing for MIMO-OFDM-IM Integrated Radar and Communication Systems. Remote Sensing. 2024; 16(10):1773. https://doi.org/10.3390/rs16101773
Chicago/Turabian StyleWang, Yang, Yunhe Cao, Tat-Soon Yeo, Yuanhao Cheng, and Yulin Zhang. 2024. "Sparse Reconstruction-Based Joint Signal Processing for MIMO-OFDM-IM Integrated Radar and Communication Systems" Remote Sensing 16, no. 10: 1773. https://doi.org/10.3390/rs16101773
APA StyleWang, Y., Cao, Y., Yeo, T. -S., Cheng, Y., & Zhang, Y. (2024). Sparse Reconstruction-Based Joint Signal Processing for MIMO-OFDM-IM Integrated Radar and Communication Systems. Remote Sensing, 16(10), 1773. https://doi.org/10.3390/rs16101773