Multiple-Band Electric Field Response to the Geomagnetic Storm on 4 November 2021
<p>Technical route flow chart.</p> "> Figure 2
<p>ULF, ELF single-frequency PSD (the red rectangle is the main phase period).</p> "> Figure 3
<p>VLF, HF single-frequency PSD (the red rectangle is the main phase period).</p> "> Figure 4
<p>(<b>a</b>) Dst, (<b>b</b>) SML, and (<b>c</b>) ULF <math display="inline"><semantics> <mrow> <mi>D</mi> </mrow> </semantics></math> value in 65°N–65°S; (<b>d</b>) ULF <math display="inline"><semantics> <mrow> <mi>D</mi> </mrow> </semantics></math> value in 22°S–65°S; (<b>e</b>) ULF <math display="inline"><semantics> <mrow> <mi>D</mi> </mrow> </semantics></math> value in 22°N–22°S; (<b>f</b>) ULF <math display="inline"><semantics> <mrow> <mi>D</mi> </mrow> </semantics></math> value in 22°N–65°N (the red rectangle is the most disturbed orbits, and strongly disturbed frequency bands are circled in white).</p> "> Figure 5
<p>Same as <a href="#remotesensing-16-03497-f004" class="html-fig">Figure 4</a> but for the ELF band (the red rectangle is the most disturbed orbits, and strongly disturbed frequency bands are circled in white).</p> "> Figure 6
<p>The latitude range is 22°S–22°N and the frequency range is 0–300 Hz (the red rectangle is the most disturbed orbits).</p> "> Figure 7
<p>Same as <a href="#remotesensing-16-03497-f004" class="html-fig">Figure 4</a> but for the VLF band (the red rectangle is the most disturbed orbits, and strongly disturbed frequency bands are circled in white).</p> "> Figure 8
<p>Same as <a href="#remotesensing-16-03497-f004" class="html-fig">Figure 4</a> but for the HF band.</p> "> Figure 9
<p>Three-component comparison of the disturbance maximal orbital quad band. (<b>a</b>) ULF, (<b>b</b>) ELF, (<b>c</b>) VLF, (<b>d</b>) HF.</p> "> Figure 10
<p>(<b>a</b>) Dst, (<b>b</b>) SML, growth rate of ULF D value: (<b>c</b>) ULF, (<b>d</b>) ELF, (<b>e</b>) VLF, (<b>f</b>) HF.</p> "> Figure 11
<p>Maximum growth rate curve: (<b>a</b>) ULF, (<b>b</b>) ELF, (<b>c</b>) VLF, (<b>d</b>) HF.</p> "> Figure 12
<p>Wavelet coherence in the latitude range of 22°S-65°S.</p> "> Figure 13
<p>Wavelet coherence in the latitude range of 22°N–65°N.</p> "> Figure 14
<p>Wavelet coherence in the latitude range of 22°S–22°N.</p> "> Figure 15
<p>Dayside and nightside single frequency PSD (the red rectangle is the main phase period).</p> "> Figure 16
<p>(<b>a</b>) Dst, (<b>b</b>) SML, ULF dayside <math display="inline"><semantics> <mrow> <mi>D</mi> </mrow> </semantics></math> value: (<b>c</b>) 65°N–65°S, (<b>d</b>) 22°S–65°S, (<b>e</b>) 22°N–22°S, (<b>f</b>) 22°N–65°N.</p> "> Figure 17
<p>Frequencies of significant disturbances in multiple magnetic storms.</p> "> Figure 18
<p>D value below 22° in the 0–300 Hz band during the main phases of different magnetic storms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data Process
2.2. Wavelet Coherence (WTC) Analysis
3. Results
3.1. Single-Frequency PSD Analysis
3.2. ULF Band’ D Value Analysis
3.3. ELF Band’ D Value Analysis
3.4. VLF Band’ D Value Analysis
3.5. HF Band’ D Value Analysis
3.6. Comparison of Ex, Ey and Ez
3.7. Analysis of Variation Growth Rate
3.8. Wavelet Coherence (WTC) Analysis
4. Discussion
4.1. Comparison of Dayside and Nightside Data
4.2. Strongly Disturbed Frequencies
4.3. Equatorial Ionospheric Anomaly
4.4. Hemispheric Asymmetry
5. Conclusions
- (1)
- The ULF, ELF, and VLF bands are more significantly perturbed by magnetic storms, with the ULF band exhibiting the strongest response. Not only is the absolute increment in the D value larger in the ULF band compared to the ELF and VLF bands, but the relative increment is also more pronounced, exceeding that of the ELF and VLF bands by more than 10%. Within the ULF band, the 0–5 Hz range is particularly sensitive, featuring an extreme value frequency point at 3.9 ± 1.0 Hz. In contrast, the HF band (above 18 kHz) remains unaffected by magnetic storms and can be primarily utilized in the design of future spacecraft and communication equipment.
- (2)
- The effects of magnetic storms exhibit hemispheric asymmetry. The timing and intensity of maximum disturbances differ between the hemispheres. In the ULF/ELF/VLF band, strong disturbances in the ULF band were observed earlier and with greater intensity in the northern hemisphere compared to the southern hemisphere. In addition, in the ELF and VLF bands, constant perturbations below 6 kHz were present in the southern hemisphere, but not in the northern hemisphere. Consequently, in both bands, the strength of the electric field perturbation in the northern hemisphere was more indicative of the overall magnitude of magnetic storms.
- (3)
- Schumann waves exhibit hemispheric asymmetry. In the southern hemisphere, 8 Hz Schumann waves dominate, while in the northern hemisphere, 13 Hz Schumann waves are more prevalent. Schumann waves are also enhanced during magnetic storms.
- (4)
- The frequency band of the equatorial ionospheric electric field anomaly during this magnetic storm was concentrated in the 0–100 Hz range, while frequencies above 100 Hz were less affected by the high-latitude penetrating electric field.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blagoveshchenskii, D.V. Effect of Geomagnetic Storms (Substorms) on the Ionosphere: 1. A Review. Geomagn. Aeron. 2013, 53, 275–290. [Google Scholar] [CrossRef]
- Piddington, J.H. Geomagnetic Storms, Auroras and Associated Effects. Space Sci. Rev. 1964, 3, 724–780. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What Is a Geomagnetic Storm? J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Echer, E.; Clua-Gonzalez, A.L.; Tsurutani, B.T. Interplanetary Origin of Intense Geomagnetic Storms (Dst < −100 nT) during Solar Cycle 23. Geophys. Res. Lett. 2007, 34, 2006GL028879. [Google Scholar] [CrossRef]
- Zong, Q.-G.; Reinisch, B.W.; Song, P.; Wei, Y.; Galkin, I.A. Dayside Ionospheric Response to the Intense Interplanetary Shocks–Solar Wind Discontinuities: Observations from the Digisonde Global Ionospheric Radio Observatory. J. Geophys. Res. 2010, 115, 2009JA014796. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Alex, S.; Tsurutani, B.T.; Gonzalez, W.D. Supermagnetic Storms: Hazard to Society. In Geophysical Monograph Series; Sharma, A.S., Bunde, A., Dimri, V.P., Baker, D.N., Eds.; American Geophysical Union: Washington, DC, USA, 2012; Volume 196, pp. 267–278. ISBN 978-0-87590-486-3. [Google Scholar]
- Lakhina, G.S.; Tsurutani, B.T. Geomagnetic Storms: Historical Perspective to Modern View. Geosci. Lett. 2016, 3, 5. [Google Scholar] [CrossRef]
- Rama Rao, P.V.S.; Gopi Krishna, S.; Vara Prasad, J.; Prasad, S.N.V.S.; Prasad, D.S.V.V.D.; Niranjan, K. Geomagnetic Storm Effects on GPS Based Navigation. Ann. Geophys. 2009, 27, 2101–2110. [Google Scholar] [CrossRef]
- Roodman, D. The Risk of Geomagnetic Storms to the Grid: A Preliminary Review. GiveWell. 29 June 2015. Available online: http://files.givewell.org/files/labs/geomagnetic-storms/The_risk_of_geomagnetic_storms_5_dr.pdf (accessed on 1 July 2017).
- Olsen, N.; Stolle, C. Satellite Geomagnetism. Annu. Rev. Earth Planet. Sci. 2012, 40, 441–465. [Google Scholar] [CrossRef]
- Berthelier, J.J.; Godefroy, M.; Leblanc, F.; Malingre, M.; Menvielle, M.; Lagoutte, D.; Brochot, J.Y.; Colin, F.; Elie, F.; Legendre, C.; et al. ICE, the Electric Field Experiment on DEMETER. Planet. Space Sci. 2006, 54, 456–471. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Piergiorgio, P.; Dai, J. The State-of-the-Art of the China Seismo-Electromagnetic Satellite Mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Trautner, R.; Koschny, D.; Witasse, O.; Zender, J.; Knöfel, A. ULF–VLF electric field measurements during the 2001 Leonid storm. In Proceedings of the Asteroids, Comets, Meteors, ACM-2002, International Conference, Berlin, Germany, 29 July–2 August 2002; Warmbein, B., Ed.; ESA: Noordwijk, The Netherlands, 2002; pp. 161–164. [Google Scholar]
- Parkhomov, V.A.; Borodkova, N.L.; Yahnin, A.G.; Suvorova, A.V.; Dovbnya, B.V.; Pashinin, A.Y.; Kozelov, B.V. Global Impulse Burst of Geomagnetic Pulsations in the Frequency Range of 0.2–5 Hz as a Precursor of the Sudden Commencement of St. Patrick’s Day 2015 Geomagnetic Storm. Cosm. Res 2017, 55, 307–317. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Kjono, S.N. The ULF Magnetic Fields Generated by Thunderstorms: A Source of ULF Geomagnetic Pulsations? Radio Sci. 2014, 49, 1162–1170. [Google Scholar] [CrossRef]
- Ahmad, S.N.A.; Jusoh, M.H.; Kasran, F.A.M.; Abdullah, M.; Veenadhari, B.; Uozumi, T.; Abe, S.; Yoshikawa, A.; Cardinal, M.G. Variations of ULF and VLF during Moderate Geomagnetic Storm at Equatorial Region. In Proceedings of the 2015 International Conference on Space Science and Communication (IconSpace), Langkawi, Malaysia, 10–12 August 2015; pp. 256–261. [Google Scholar]
- Li, Y.; Yue, C.; Liu, J.; Zong, Q.; Hu, H.; Zhou, X.; Hu, Z.; Yang, F.; Zhao, X. The Distribution and Evolution of Storm Time Pc3-5 ULF Wave Power Based on Satellite and Ground Observations. JGR Space Phys. 2023, 128, e2023JA031775. [Google Scholar] [CrossRef]
- Kozyreva, O.V.; Kleimenova, N.G. Estimation of Storm-Time Level of Day-Side Wave Geomagnetic Activity Using a New ULF Index. Geomagn. Aeron. 2008, 48, 491–498. [Google Scholar] [CrossRef]
- Kozyreva, O.V.; Kleimenova, N.G. Variations in the ULF Index of Geomagnetic Pulsations during Strong Magnetic Storms. Geomagn. Aeron. 2009, 49, 425–437. [Google Scholar] [CrossRef]
- Kozyreva, O.V.; Kleimenova, N.G. Variations in the ULF Index of Daytime Geomagnetic Pulsations during Recurrent Magnetic Storms. Geomagn. Aeron. 2010, 50, 770–780. [Google Scholar] [CrossRef]
- Tatsuta, K.; Hobara, Y.; Pal, S.; Balikhin, M. Sub-Ionospheric VLF Signal Anomaly Due to Geomagnetic Storms: A Statistical Study. Ann. Geophys. 2015, 33, 1457–1467. [Google Scholar] [CrossRef]
- Parrot, M.; Buzzi, A.; Santolík, O.; Berthelier, J.J.; Sauvaud, J.A.; Lebreton, J.P. New Observations of Electromagnetic Harmonic ELF Emissions in the Ionosphere by the DEMETER Satellite during Large Magnetic Storms. J. Geophys. Res. 2006, 111, 2005JA011583. [Google Scholar] [CrossRef]
- Pinto, O.; Gonzalez, W.D. Energetic Electron Precipitation at the South Atlantic Magnetic Anomaly: A Review. J. Atmos. Terr. Phys. 1989, 51, 351–365. [Google Scholar] [CrossRef]
- Zhima, Z.; Cao, J.; Liu, W.; Fu, H.; Wang, T.; Zhang, X.; Shen, X. Storm Time Evolution of ELF/VLF Waves Observed by DEMETER Satellite. J. Geophys. Res. Space Phys. 2014, 119, 2612–2622. [Google Scholar] [CrossRef]
- Zhima, Z.; Hu, Y.; Shen, X.; Chu, W.; Piersanti, M.; Parmentier, A.; Zhang, Z.; Wang, Q.; Huang, J.; Zhao, S.; et al. Storm-Time Features of the Ionospheric ELF/VLF Waves and Energetic Electron Fluxes Revealed by the China Seismo-Electromagnetic Satellite. Appl. Sci. 2021, 11, 2617. [Google Scholar] [CrossRef]
- Blagoveshchenskii, D.V. Effect of Magnetic Storms (Substorms) on HF Propagation: A Review. Geomagn. Aeron. 2013, 53, 409–423. [Google Scholar] [CrossRef]
- Yuan, S.G.; Zhu, X.H.; Huang, J.P. System Design and Key Technology of China Seismo-Electromagnetic Satellite. Natl. Remote Sens. Bull. 2018, 22, 32–38. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlin. Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Giri, A.; Adhikari, B.; Shrestha, B.; Rimal, S. Wavelet Coherence Analysis foF2 over Boulder Station during Different Geomagnetic Activity. Himal. Phys. 2023, 10, 66–77. [Google Scholar] [CrossRef]
- Xiang, Y.; Gao, Y.; Shi, J.; Xu, C. Consistency and Analysis of Ionospheric Observables Obtained from Three Precise Point Positioning Models. J. Geod. 2019, 93, 1161–1170. [Google Scholar] [CrossRef]
- Smith, S.W. Digital Signal Processing: A Practical Guide for Engineers and Scientists; Demystifying Technology Series; Newnes: Amsterdam, The Netherlands; Boston, UK, 2003; ISBN 978-0-7506-7444-7. [Google Scholar]
- Sanfui, M.; Haldar, D.K.; Biswas, D. Studies on Different Geophysical and Extra-Terrestrial Events within the Earth-Ionosphere Cavity in Terms of ULF/ELF/VLF Radio Waves. Astrophys. Space Sci. 2016, 361, 325. [Google Scholar] [CrossRef]
- Lissa, D.; Srinivasu, V.K.D.; Prasad, D.S.V.V.D.; Niranjan, K. Ionospheric Response to the 26 August 2018 Geomagnetic Storm Using GPS-TEC Observations along 80° E and 120° E Longitudes in the Asian Sector. Adv. Space Res. 2020, 66, 1427–1440. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, W.; Lin, D.; Huang, C.; Zhang, Y. Penetrating Electric Field during the Nov 3–4, 2021 Geomagnetic Storm. J. Atmos. Sol.-Terr. Phys. 2024, 257, 106219. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Kosch, M.J. The Equatorial Electrojet during Geomagnetic Storms and Substorms. JGR Space Phys. 2015, 120, 2276–2287. [Google Scholar] [CrossRef]
- De Abreu, A.J.; Fagundes, P.R.; Sahai, Y.; De Jesus, R.; Bittencourt, J.A.; Brunini, C.; Gende, M.; Pillat, V.G.; Lima, W.L.C.; Abalde, J.R.; et al. Hemispheric Asymmetries in the Ionospheric Response Observed in the American Sector during an Intense Geomagnetic Storm. J. Geophys. Res. 2010, 115, 2010JA015661. [Google Scholar] [CrossRef]
- Terefe, D.A.; Nigussie, M. Spatio-Temporal Evolution of Global Ionospheric Storm Drivers and Hemispherical Asymmetry During 17–18 March 2015 Geomagnetic Storm. JGR Space Phys. 2021, 126, e2021JA029348. [Google Scholar] [CrossRef]
- Yu, T.; Cai, X.; Ren, Z.; Wang, Z.; Pedatella, N.M.; Jin, Y. Investigation of Interhemispheric Asymmetry of the Thermospheric Composition Observed by GOLD During the First Strong Geomagnetic Storm in Solar-Cycle 25, 1: IMF By Effects. JGR Space Phys. 2023, 128, e2023JA031429. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Yang, C.; Feng, F. A Review and Prospects of Operational Frequency Selecting Techniques for HF Radio Communication. Adv. Space Res. 2022, 69, 2989–2999. [Google Scholar] [CrossRef]
Band | Parameters | 22°S–65°S | 22°N–22°S | 22°N–65°N |
---|---|---|---|---|
ULF | Disturbance Band | 0–5 Hz (4.4 Hz) | 6–14 Hz (13.2 Hz) | 0–5 Hz (2.9 Hz) |
Maximum D value | 1.81 | 2.83 | 2.30 | |
ELF | Disturbance Band | 300 Hz–900 Hz Above 1.8 kHz (780 Hz, 2441 Hz) | Below 300 Hz 1.2–1.8 kHz (1511 Hz) | None |
Maximum D value | 3.25 | 1.66 | 1.45 | |
VLF | Disturbance Band | 3–10 kHz (5396 Hz) | None | 6–5 kHz (8887 Hz) |
Maximum D value | 3.82 | 1.13 | 1.93 | |
HF | Disturbance Band | 1.79 MHz | 2.57 MHz | 1.93 MHz |
Maximum D value | 0.16 | 0.68 | 0.12 |
Number | Date | Dst Minimum (nT) |
---|---|---|
1 | 2021.11.04 | −105 |
2 | 2023.02.27 | −132 |
3 | 2023.04.24 | −209 |
4 | 2023.11.05 | −172 |
5 | 2024.05.11 | −409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Huang, J.; Li, Z.; Li, W.; Han, Y.; Lu, H.; Zhima, Z. Multiple-Band Electric Field Response to the Geomagnetic Storm on 4 November 2021. Remote Sens. 2024, 16, 3497. https://doi.org/10.3390/rs16183497
Zheng J, Huang J, Li Z, Li W, Han Y, Lu H, Zhima Z. Multiple-Band Electric Field Response to the Geomagnetic Storm on 4 November 2021. Remote Sensing. 2024; 16(18):3497. https://doi.org/10.3390/rs16183497
Chicago/Turabian StyleZheng, Jie, Jianping Huang, Zhong Li, Wenjing Li, Ying Han, Hengxin Lu, and Zeren Zhima. 2024. "Multiple-Band Electric Field Response to the Geomagnetic Storm on 4 November 2021" Remote Sensing 16, no. 18: 3497. https://doi.org/10.3390/rs16183497
APA StyleZheng, J., Huang, J., Li, Z., Li, W., Han, Y., Lu, H., & Zhima, Z. (2024). Multiple-Band Electric Field Response to the Geomagnetic Storm on 4 November 2021. Remote Sensing, 16(18), 3497. https://doi.org/10.3390/rs16183497