Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery
<p>(<b>a</b>) Location of the Qiyi glacier (red star). (<b>b</b>) A true-color RGB image (10 m resolution) of the glacier, with the blue curve outlining its boundary. Red circles represent spectral sampling points, yellow triangles indicate UAV ground control points, and pink rectangles delineate the validation areas. (<b>c</b>,<b>d</b>) are images of the glacier terminus taken on 31 July 2013, and 15 August 2023, respectively.</p> "> Figure 2
<p>(<b>a</b>) Spectral measurements were collected with a fiber optic probe ~1 m above the ice surface. (<b>b</b>) The actual measured spectral curves are depicted with solid black lines, while colored circles represent the reflectance values at the central wavelengths of Sentinel-2B bands (B2-B8A bands correspond to red to pink hues on the graph).</p> "> Figure 3
<p>Spectral curves after SRF conversion, where solid lines represent mean values and shaded areas denote standard deviations (<b>a</b>). Photographs of the following categories of ice are shown: (<b>b</b>) coarse-grained snow; (<b>c</b>) slightly dirty ice; (<b>d</b>) moderately dirty ice; (<b>e</b>) extremely dirty ice; and (<b>f</b>) supraglacial rivers. The spectrometer’s field of view is a ~50 cm diameter circle; a pen is placed for scale, aiming to provide readers with a sense of proportion for better comprehension.</p> "> Figure 4
<p>A comparison of measured reflectance and satellite products, where red pentagrams denote the sampling positions of the spectrometer. (<b>a</b>,<b>b</b>) represent relatively clean glacier surfaces, while (<b>c</b>,<b>d</b>) depict relatively dirty glacier surfaces. L2A denotes products produced by the ESA, FLAASH (10 m) signifies atmospheric correction through FLAASH, and L2A (Sen2cor) indicates correction via the Sen2cor plugin. SRF refers to spectral response function conversion, the green line represents the measured spectra, and L1C denotes ESA L1C products.</p> "> Figure 5
<p>(<b>a</b>) The UAV image and (<b>b</b>) the SVM-classified image.</p> "> Figure 6
<p>The final spectral endmembers for the following different glacier surface types: (<b>a</b>) coarse-grained snow; (<b>b</b>) slightly dirty ice; (<b>c</b>) moderately dirty ice; (<b>d</b>) extremely dirty ice; and (<b>e</b>) debris.</p> "> Figure 7
<p>Fraction images for the following five distinct ice surface types are presented: (<b>a</b>) coarse-grained snow; (<b>b</b>) slightly dirty ice; (<b>c</b>) moderately dirty ice; (<b>d</b>) extremely dirty ice; and (<b>e</b>) debris.</p> "> Figure 8
<p>A regression model was constructed to examine the relationship between MESMA fraction images and reference fraction (UAV images). The solid line illustrates the degree of fitting, while the shaded area represents the 95% confidence interval. The determination coefficient (R<sup>2</sup>) and root mean square error (RMSE) are presented, <span class="html-italic">n</span> = 330.</p> ">
Abstract
:1. Introduction
- (1)
- Map the distribution of ice types with varying degrees of dirtiness on glacier surfaces, assess the accuracy of MESMA in simulating the degree of dirtiness on glaciers, and validate the results using UAV imagery.
- (2)
- Validate the reliability of Sentinel satellite reflectance products using measured reflectance data.
- (3)
- Provide a reliable approach and method for classifying and monitoring long-term trends in glacier surface dirtiness using remote sensing data.
2. Materials and Methods
2.1. Study Area
2.2. Field Spectroscopy Measurements
2.3. UAV and Sentinel-2B Imagery
2.4. Spectral Channel Reflectance Values
2.5. Comparison of Different Atmospheric Correction Methods
2.6. Glacier Surface Classification of UAV Imagery
2.7. MESMA Procedure
2.7.1. Building the Spectral Library
2.7.2. Selection of Optimal Endmembers
2.7.3. Spectral Unmixing
3. Results
3.1. Glacier Surface Classification
3.2. Optimal Endmembers
3.3. Abundance of Glacier Surface Materials
3.4. Accuracy Assessment of MESMA Fraction Images
4. Discussion
4.1. Limitations of UAV Data
4.2. The Uncertainty of MESMA Procedure
4.3. The Prospective Outlook for Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Terzi, S.; Torresan, S.; Schneiderbauer, S.; Critto, A.; Zebisch, M.; Marcomini, A. Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. J. Environ. Manag. 2019, 232, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; van den Broeke, M.; van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef]
- Kaser, G.; Georges, C.; Juen, I.; Mölg, T. Low latitude glaciers: Unique global climate indicators and essential contributors to regional fresh water supply. A conceptual approach. In Global Change and Mountain Regions: An Overview of Current Knowledge; Springer: Berlin/Heidelberg, Germany, 2005; pp. 185–195. [Google Scholar]
- Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.; Shrestha, A.B.; Bierkens, M.F. Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes. PLoS ONE 2016, 11, e0165630. [Google Scholar] [CrossRef]
- Cong, Z.Y.; Gao, S.P.; Zhao, W.C.; Wang, X.; Wu, G.M.; Zhang, Y.L.; Kang, S.C.; Liu, Y.Q.; Ji, J.F. Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: Abundance, speciation and implications. Cryosphere 2018, 12, 3177–3186. [Google Scholar] [CrossRef]
- Dall’Asta, E.; Forlani, G.; Roncella, R.; Santise, M.; Diotri, F.; Morra di Cella, U. Unmanned Aerial Systems and DSM matching for rock glacier monitoring. ISPRS J. Photogramm. Remote Sens. 2017, 127, 102–114. [Google Scholar] [CrossRef]
- Rossini, M.; Garzonio, R.; Panigada, C.; Tagliabue, G.; Bramati, G.; Vezzoli, G.; Cogliati, S.; Colombo, R.; Di Mauro, B. Mapping Surface Features of an Alpine Glacier through Multispectral and Thermal Drone Surveys. Remote Sens. 2023, 15, 3429. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Shea, J.M.; Litt, M.; Steiner, J.F.; Treichler, D.; Koch, I.; Immerzeel, W.W. Mapping Surface Temperatures on a Debris-Covered Glacier With an Unmanned Aerial Vehicle. Front. Earth Sci. 2018, 6, 64. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Gao, T.G.; Kang, S.C.; Sprenger, M.; Tao, S.; Du, W.T.; Yang, J.H.; Wang, F.T.; Meng, W.J. Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia. Sci. Total Environ. 2020, 740, 15. [Google Scholar] [CrossRef]
- Hartl, L.; Felbauer, L.; Schwaizer, G.; Fischer, A. Small-scale spatial variability in bare-ice reflectance at Jamtalferner, Austria. Cryosphere 2020, 14, 4063–4081. [Google Scholar] [CrossRef]
- Naegeli, K.; Damm, A.; Huss, M.; Schaepman, M.; Hoelzle, M. Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance. Remote Sens. Environ. 2015, 168, 388–402. [Google Scholar] [CrossRef]
- Florath, J.; Keller, S.; Staub, G.; Weinmann, M. Optical Remote Sensing for Glacier Monitoring with Respect to Different Snow and Ice Types: A Case Study for the Southern Patagonian Icefield. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021; pp. 1–5. [Google Scholar]
- Wu, Y.; Wang, N.; He, J.; Jiang, X. Estimating mountain glacier surface temperatures from Landsat-ETM + thermal infrared data: A case study of Qiyi glacier, China. Remote Sens. Environ. 2015, 163, 286–295. [Google Scholar] [CrossRef]
- Hori, M.; Aoki, T.; Tanikawa, T.; Motoyoshi, H.; Hachikubo, A.; Sugiura, K.; Yasunari, T.J.; Eide, H.; Storvold, R.; Nakajima, Y.; et al. In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sens. Environ. 2006, 100, 486–502. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2011, 33, 4094–4134. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Roberts, D.A. Multiple Endmember Spectral Mixture Analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries. Remote Sens. Environ. 2013, 136, 76–88. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M.; Richard, C. Deep Generative Models for Library Augmentation in Multiple Endmember Spectral Mixture Analysis. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1831–1835. [Google Scholar] [CrossRef]
- Roberts, D.A.; Smith, M.O.; Adams, J.B. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A. Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sens. Environ. 2007, 108, 467–480. [Google Scholar] [CrossRef]
- Quintano, C.; Fernandez-Manso, A.; Roberts, D.A. Burn severity mapping from Landsat MESMA fraction images and Land Surface Temperature. Remote Sens. Environ. 2017, 190, 83–95. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C.; Roberts, D. Evaluation of potential of multiple endmember spectral mixture analysis (MESMA) for surface coal mining affected area mapping in different world forest ecosystems. Remote Sens. Environ. 2012, 127, 181–193. [Google Scholar] [CrossRef]
- Fernández-García, V.; Marcos, E.; Fernández-Guisuraga, J.M.; Fernández-Manso, A.; Quintano, C.; Suárez-Seoane, S.; Calvo, L. Multiple Endmember Spectral Mixture Analysis (MESMA) Applied to the Study of Habitat Diversity in the Fine-Grained Landscapes of the Cantabrian Mountains. Remote Sens. 2021, 13, 979. [Google Scholar] [CrossRef]
- Cunnick, H.; Ramage, J.M.; Magness, D.; Peters, S.C. Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing. Remote Sens. 2023, 15, 1440. [Google Scholar] [CrossRef]
- Wu, C.; Deng, C.; Jia, X. Spatially Constrained Multiple Endmember Spectral Mixture Analysis for Quantifying Subpixel Urban Impervious Surfaces. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1976–1984. [Google Scholar] [CrossRef]
- Guo, W.Q.; Liu, S.Y.; Xu, L.; Wu, L.Z.; Shangguan, D.H.; Yao, X.J.; Wei, J.F.; Bao, W.J.; Yu, P.C.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, N.L.; He, J.Q.; Wu, X.B.; Song, G.J. A distributed surface energy and mass balance model and its application to a mountain glacier in China. Chin. Sci. Bull. 2010, 55, 2079–2087. [Google Scholar] [CrossRef]
- Wang, N.L.; He, J.Q.; Pu, J.C.; Jiang, X.; Jing, Z.F. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chin. Sci. Bull. 2010, 55, 3810–3817. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, N.; Li, Z.; Chen, A.; Guo, Z.; Qie, Y. The effect of thermal radiation from surrounding terrain on glacier surface temperatures retrieved from remote sensing data: A case study from Qiyi Glacier, China. Remote Sens. Environ. 2019, 231, 111267. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Gao, T.G.; Kang, S.C.; Shangguan, D.H.; Luo, X. Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas. Earth-Sci. Rev. 2021, 220, 11. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, T.; Diao, W.; Zhang, Y. Snow/ice albedo variation and its impact on glacier mass balance in the Qilian Mountains. J. Glaciol. Geocryol. 2021, 43, 145–157. [Google Scholar]
- Riggs, G.A.; Hall, D.K.; Salomonson, V.V. A snow index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer. In Proceedings of the IGARSS ′94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 1942–1944. [Google Scholar]
- Main-Knorn, M.; Pflug, B.; Debaecker, V.; Louis, J. Calibration and Validation Plan for the L2A Processor and Products of the sentinel-2 Mission. ISPRS Arch. 2015, 40, 1249–1255. [Google Scholar] [CrossRef]
- Otazu, X.; González-Audícana, M.; Fors, O.; Núñez, J. Introduction of sensor spectral response into image fusion methods. application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2376–2385. [Google Scholar] [CrossRef]
- Sola, I.; García-Martín, A.; Sandonís-Pozo, L.; Álvarez-Mozos, J.; Pérez-Cabello, F.; González-Audícana, M.; Montorio Llovería, R. Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 63–76. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Liu, Y.; Pei, X. The Application and Evaluation of Spectral Reconstruction of Hyperion Based on Radiative Transfer Model. Remote Sens. Land Resour. 2010, 22, 30–34. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Di Mauro, B.; Baccolo, G.; Garzonio, R.; Giardino, C.; Massabò, D.; Piazzalunga, A.; Rossini, M.; Colombo, R. Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps). Cryosphere 2017, 11, 2393–2409. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, P.; Feng, X.; Zhang, X.; Wang, Z.; Jiang, L. Support vector machine-based decision tree for snow cover extraction in mountain areas using high spatial resolution remote sensing image. J. Appl. Remote Sens. 2014, 8, 084698. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Shea, J.M.; Pellicciotti, F.; Jong, S.M.d.; Immerzeel, W.W. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sens. Environ. 2016, 186, 581–595. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Shimabukuro, Y.E.; Pereira, G. Spectral unmixing. Int. J. Remote Sens. 2012, 33, 5307–5340. [Google Scholar] [CrossRef]
- Drake, N.A.; Mackin, S.; Settle, J.J. Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery. Remote Sens. Environ. 1999, 68, 12–25. [Google Scholar] [CrossRef]
- Tane, Z.; Roberts, D.; Veraverbeke, S.; Casas, Á.; Ramirez, C.; Ustin, S. Evaluating Endmember and Band Selection Techniques for Multiple Endmember Spectral Mixture Analysis using Post-Fire Imaging Spectroscopy. Remote Sens. 2018, 10, 389. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sens. Environ. 2003, 87, 123–135. [Google Scholar] [CrossRef]
- Dennison, P.E.; Halligan, K.Q.; Roberts, D.A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ. 2004, 93, 359–367. [Google Scholar] [CrossRef]
- Roberts, D.A.; Dennison, P.E.; Gardner, M.E.; Hetzel, Y.; Ustin, S.L.; Lee, C.T. Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1297–1310. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Phinn, S.; Stanford, M.; Scarth, P.; Murray, A.T.; Shyy, P.T. Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques. Int. J. Remote Sens. 2002, 23, 4131–4153. [Google Scholar] [CrossRef]
Band | Range (nm) | Central Wavelength (nm) | Resolution (m) |
---|---|---|---|
2 (Blue) | 457.5–522.5 | 490 | 10 |
3 (Green) | 542.5–577.5 | 569 | 10 |
4 (Red) | 650–680 | 665 | 10 |
5 (Vegetation red edge) | 697.5–712.5 | 705 | 20 |
6 (Vegetation red edge) | 732.5–747.5 | 740 | 20 |
7 (Vegetation red edge) | 773–793 | 783 | 20 |
8 (NIR) | 784.5–899.5 | 842 | 10 |
8A (NIR narrow band) | 855–875 | 865 | 20 |
L2A | FLAASH (10 m) | L2A (Sen2cor) | |
---|---|---|---|
Coarse-grained snow | 0.149 | 0.093 | 0.050 |
Dirty ice | 0.094 | 0.094 | 0.064 |
Ground Truth Pixels | Classified Pixels | |||||||
---|---|---|---|---|---|---|---|---|
Coarse-Grained Snow | Slightly Dirty Ice | Moderately Dirty Ice | Extremely Dirty Ice | Debris | Supraglacial River | Shadows | Bright Rocks | |
Coarse-grained snow | 88 | 12 | ||||||
Slightly dirty ice | 12 | 84 | 4 | |||||
Moderately dirty ice | 2 | 20 | 76 | 2 | ||||
Extremely dirty ice | 1 | 22 | 75 | 1 | 1 | |||
Debris | 11 | 89 | ||||||
Supraglacial river | 10 | 38 | 1 | 47 | 4 | |||
Shadows | 1 | 26 | 3 | 5 | 65 | |||
Bright rocks | 23 | 5 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, N.; Wu, Y.; Chen, A.; Shi, C.; Zhao, M.; Xie, L. Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery. Remote Sens. 2024, 16, 3351. https://doi.org/10.3390/rs16173351
Chen J, Wang N, Wu Y, Chen A, Shi C, Zhao M, Xie L. Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery. Remote Sensing. 2024; 16(17):3351. https://doi.org/10.3390/rs16173351
Chicago/Turabian StyleChen, Jiangtao, Ninglian Wang, Yuwei Wu, Anan Chen, Chenlie Shi, Mingjie Zhao, and Longjiang Xie. 2024. "Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery" Remote Sensing 16, no. 17: 3351. https://doi.org/10.3390/rs16173351
APA StyleChen, J., Wang, N., Wu, Y., Chen, A., Shi, C., Zhao, M., & Xie, L. (2024). Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery. Remote Sensing, 16(17), 3351. https://doi.org/10.3390/rs16173351