A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights
<p>ML and RS integration framework for urban sustainability [<a href="#B47-remotesensing-16-03032" class="html-bibr">47</a>].</p> "> Figure 2
<p>Framework of urban heat vulnerability analysis with ML and RS.</p> "> Figure 3
<p>Likely differences of mapping urban heat vulnerability in census tracts and grid scale.</p> "> Figure 4
<p>Flowchart of U-HEAT implementation.</p> "> Figure 5
<p>Integrated vulnerability and risk indicator framework.</p> "> Figure 6
<p>Visualization of a hypothetical urban heat vulnerability mapping.</p> ">
Abstract
:1. Introduction and Background
1.1. Introduction
1.2. The Current State of Urban Heat Vulnerability Assessment
1.3. The Emerging Trend of Machine Learning and Remote Sensing Integration
1.4. The Focus of This Study
2. Research Design
The Urban Heat Vulnerability Analysis Framework
- Historical Mapping: Historical mapping in U-HEAT utilizes advanced ML and RS techniques to reconstruct detailed heat maps from diverse data sources. This phase is pivotal as it provides a comprehensive understanding of past and present heat vulnerabilities, allowing for the identification of long-term trends and spatial patterns in urban heat exposure. By fusing various socio-economic, environmental, and health-related data with high-resolution RS imagery, U-HEAT generates a nuanced portrayal of how urban heat vulnerability has evolved over time. This retrospective analysis is essential for establishing a baseline, understanding the historical context of current vulnerabilities, and identifying persistent hotspots that require targeted interventions. The detailed historical maps produced in this phase serve as a foundational reference for subsequent predictive mapping efforts, ensuring that future projections are grounded in a robust empirical understanding of past conditions.
- Predictive Mapping: Building on the insights gained from historical mapping, predictive mapping in U-HEAT integrates urban planning data to forecast future trends and distributions of urban heat vulnerability. This phase leverages the predictive power of ML models to simulate how urban heat patterns might evolve under various scenarios, such as climate change, population growth, and urban development. By incorporating forward-looking data, such as planned infrastructure projects and anticipated demographic shifts, U-HEAT can generate projections that inform proactive urban planning and policymaking. The predictive mapping capability is crucial for identifying emerging areas of concern and guiding the implementation of preventative measures. This forward-thinking approach ensures that cities can anticipate and mitigate future heat risks, enhancing their resilience and adaptability to climate change. Predictive mapping transforms U-HEAT from a reactive tool into a proactive planning resource, enabling urban planners to design cities that are better equipped to handle the challenges of rising temperatures.
- Relevance: Rooted in established frameworks and empirical research, U-HEAT’s approach to selecting indicators and gathering data is both relevant and representative.
- Precision: By transitioning from broad statistical areas to a more detailed grid-scale, U-HEAT provides a finer-grained and accurate depiction of urban heat vulnerability, benefitting from the integration of ML and RS.
- Comprehensiveness: U-HEAT not only maps historical data, but also predicts future urban heat trends, resulting in spatially detailed and temporally extensive outcomes.
- Sustainability: The U-HEAT framework’s ability to recommend mitigation strategies, adapt to new data, and provide ongoing monitoring highlights its sustainability.
- Criteria Development: To formulate a universal set of criteria for the selection and categorization of indicators, establishing a reference framework.
- Feasibility Demonstration: To showcase the practicality of conducting long-term, grid-scale, and precise assessments by integrating ML and RS technologies.
- Predictive Methodology: To bridge the existing gap in predictive methods by introducing an innovative approach for forecasting urban heat vulnerability trends in future decades.
- Framework Proposal: To offer a robust, enduring, and sustainable framework for the continuous, accurate, and focused monitoring and management of urban heat vulnerability challenges.
3. Integrated Urban Heat Vulnerability Analysis with Machine Learning and Remote Sensing
3.1. Indicators and Data Selection
3.1.1. Popular Reference Frameworks
3.1.2. Indicator Collection and Categorization
3.1.3. Data Collection and Pre-Processing
3.2. Historical Mapping of Urban Heat Vulnerability
3.2.1. Two Scenarios of Historical Mapping
3.2.2. Challenges and Algorithm Selection for Historical Mapping
3.2.3. Model Development, Validation and Effective Communication of Results
3.3. Future Prediction of Urban Heat Vulnerability
3.3.1. Lack of Future Prediction
3.3.2. Challenges and Algorithm Selection for Future Prediction
3.3.3. Model Development, Validation and Presentation of Results
3.4. Strategy Recommendation
3.5. Continuous Monitoring and Updating
4. Findings and Discussion
4.1. Key Challenges and Limitations in Existing Approaches
4.2. Prospective Applications
4.3. Contributions to Sustainable Development
4.4. Implications in Policy and Public Engagement
4.5. Assumptions and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamruzzaman, M.; Deilami, K.; Yigitcanlar, T. Investigating the Urban Heat Island Effect of Transit Oriented Development in Brisbane. J. Transp. Geogr. 2018, 66, 116–124. [Google Scholar] [CrossRef]
- Degirmenci, K.; Desouza, K.; Fieuw, W.; Watson, R.; Yigitcanlar, T. Understanding Policy and Technology Responses in Mitigating Urban Heat Islands: A Literature Review and Directions for Future Research. Sustain. Cities Soc. 2021, 70, 102873. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Let’s Talk about the Weather: Injuries Related to Extreme Weather. 2023. Available online: https://www.aihw.gov.au/reports/injury/extreme-weather-injuries/contents/about (accessed on 19 June 2024).
- Vescovi, L.; Rebetez, M.; Rong, F. Assessing Public Health Risk Due to Extremely High Temperature Events: Climate and Social Parameters. Clim. Res. 2005, 30, 71–78. [Google Scholar] [CrossRef]
- Harlan, S.; Brazel, A.J.; Prashad, L.; Stefanov, W.; Larsen, L. Neighborhood Microclimates and Vulnerability to Heat Stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef]
- Reid, C.E.; O’Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping Community Determinants of Heat Vulnerability. Environ. Health Perspect. 2009, 117, 1730–1736. [Google Scholar] [CrossRef]
- Boumans, R.; Phillips, D.; Victery, W.; Fontaine, T. Developing a Model for Effects of Climate Change on Human Health and Health–Environment Interactions: Heat Stress in Austin, Texas. Urban Clim. 2014, 8, 78–99. [Google Scholar] [CrossRef]
- Zhang, W.; McManus, P.; Duncan, E. A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia. Int. J. Environ. Res. Public Health 2018, 15, 2516. [Google Scholar] [CrossRef]
- Cheng, W.; Li, D.; Liu, Z.; Brown, R. Approaches for Identifying Heat-Vulnerable Populations and Locations: A Systematic Review. Sci. Total Environ. 2021, 799, 149417. [Google Scholar] [CrossRef] [PubMed]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Tate, E. Social Vulnerability Indices: A Comparative Assessment Using Uncertainty and Sensitivity Analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, M.; Yang, X.; Hu, K.; Qi, J. Spatially Explicit Assessment of Heat Health Risk by Using Multi-Sensor Remote Sensing Images and Socioeconomic Data in Yangtze River Delta, China. Int. J. Health Geogr. 2018, 17, 13. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Z.; Gao, Y.; Liu, X.; Xu, L.; Vardoulakis, S.; Liu, Q. A Systematic Review of the Development and Validation of the Heat Vulnerability Index: Major Factors, Methods, and Spatial Units. Curr. Clim. Chang. Rep. 2021, 7, 87–97. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review. Energies 2022, 15, 6998. [Google Scholar] [CrossRef]
- Kazak, J. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions: The Case of the Wrocław Larger Urban Zone (Poland). Sustainability 2018, 10, 1083. [Google Scholar] [CrossRef]
- He, C.; Ma, L.; Zhou, L.; Kan, H.; Zhang, Y.; Ma, W.; Chen, B. Exploring the Mechanisms of Heat Wave Vulnerability at the Urban Scale Based on the Application of Big Data and Artificial Societies. Environ. Int. 2019, 127, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Holec, J.; Šveda, M.; Szatmári, D.; Feranec, J.; Bobáľová, H.; Kopecká, M.; Šťastný, P. Heat Risk Assessment Based on Mobile Phone Data: Case Study of Bratislava, Slovakia. Nat. Hazards 2021, 108, 3099–3120. [Google Scholar] [CrossRef]
- Weber, S.; Sadoff, N.; Zell, E.; de Sherbinin, A. Policy-Relevant Indicators for Mapping the Vulnerability of Urban Populations to Extreme Heat Events: A Case Study of Philadelphia. Appl. Geogr. 2015, 63, 231–243. [Google Scholar] [CrossRef]
- Wilson, B.; Chakraborty, A. Mapping Vulnerability to Extreme Heat Events: Lessons from Metropolitan Chicago. J. Environ. Plan. Manag. 2019, 62, 1065–1088. [Google Scholar] [CrossRef]
- Heaton, M.; Sain, S.; Greasby, T.; Uejio, C.; Hayden, M.; Monaghan, A.; Boehnert, J.; Sampson, K.; Banerjee, D.; Nepal, V.; et al. Characterizing Urban Vulnerability to Heat Stress Using a Spatially Varying Coefficient Model. Spat. Spatio-Temporal Epidemiol. 2014, 8, 23–33. [Google Scholar] [CrossRef]
- Yin, Y.; Grundstein, A.; Mishra, D.R.; Ramaswamy, L.; Tonekaboni, N.; Dowd, J. DTEx: A Dynamic Urban Thermal Exposure Index Based on Human Mobility Patterns. Environ. Int. 2021, 155, 106573. [Google Scholar] [CrossRef]
- Bu, S.; Smith, K.L.; Masoud, F.; Sheinbaum, A. Spatial distribution of heat vulnerability in Toronto, Canada. Urban Clim. 2024, 54, 101838. [Google Scholar] [CrossRef]
- Barron, L.; Ruggieri, D.; Branas, C. Assessing Vulnerability to Heat: A Geospatial Analysis for the City of Philadelphia. Urban Sci. 2018, 2, 38. [Google Scholar] [CrossRef]
- Prosdocimi, D.; Klima, K. Health Effects of Heat Vulnerability in Rio de Janeiro: A Validation Model for Policy Applications. SN Appl. Sci. 2020, 2, 1948. [Google Scholar] [CrossRef]
- Oh, K.; Lee, M.; Jeon, S. Development of the Korean Climate Change Vulnerability Assessment Tool (VESTAP): Centered on Health Vulnerability to Heat Waves. Sustainability 2017, 9, 1103. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; He, X.; Corcoran, J.; Qiu, S.; Wang, X. Heatwave-Induced Human Health Risk Assessment in Megacities Based on Heat Stress-Social Vulnerability-Human Exposure Framework. Landsc. Urban Plan. 2020, 203, 103907. [Google Scholar] [CrossRef]
- Ho, H.; Knudby, A.; Huang, W. A Spatial Framework to Map Heat Health Risks at Multiple Scales. Int. J. Environ. Res. Public Health 2015, 12, 16110–16123. [Google Scholar] [CrossRef] [PubMed]
- Krstic, N.; Yuchi, W.; Ho, H.; Walker, B.; Knudby, A.; Henderson, S. The Heat Exposure Integrated Deprivation Index (HEIDI): A Data-Driven Approach to Quantifying Neighborhood Risk During Extreme Hot Weather. Environ. Int. 2017, 109, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.; Chapman, L.; Thornes, J.; Baker, C. Including the Urban Heat Island in Spatial Heat Health Risk Assessment Strategies: A Case Study for Birmingham, UK. Int. J. Health Geogr. 2011, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, H.; Heaviside, C.; Taylor, J.; Picetti, R.; Symonds, P.; Cai, X.; Vardoulakis, S. Assessing Urban Population Vulnerability and Environmental Risks Across an Urban Area During Heatwaves: Implications for Health Protection. Sci. Total Environ. 2017, 610–611, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.; Stanforth, A.; Lulla, V.; Luber, G. Developing an Applied Extreme Heat Vulnerability Index Utilizing Socioeconomic and Environmental Data. Appl. Geogr. 2012, 35, 23–31. [Google Scholar] [CrossRef]
- Kamal, N.; Ash’aari, Z.; Abdullah, A.; Kusin, F.; Mohamat Yusuff, F.; Sharaai, A.; Mohd Ariffin, N. Extreme Heat Vulnerability Assessment in Tropical Region: A Case Study in Malaysia. Clim. Dev. 2021, 4, 472–486. [Google Scholar] [CrossRef]
- Conlon, K.; Mallen, E.; Gronlund, C.; Berrocal, V.; Larsen, L.; O’Neill, M. Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis. Environ. Health Perspect. 2020, 128, 97001. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.; Ooba, M.; Seposo, X.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat Health Risk Assessment in Philippine Cities Using Remotely Sensed Data and Social-Ecological Indicators. Nat. Commun. 2020, 11, 1581. [Google Scholar] [CrossRef]
- Chen, N.; Lin, P.; Guo, Y. Long-Term Exposure to High Temperature Associated with the Incidence of Major Depressive Disorder. Sci. Total Environ. 2019, 659, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.; Eum, Y.; Roberts, J.; Gao, Q.; Chen, K. Association Between Extreme Temperatures and Emergency Room Visits Related to Mental Disorders: A Multi-Region Time-Series Study in New York, USA. Sci. Total Environ. 2021, 792, 148246. [Google Scholar] [CrossRef]
- Huang, F.; Yu, Y.; Feng, T. Automatic Extraction of Impervious Surfaces from High Resolution Remote Sensing Images Based on Deep Learning. J. Vis. Commun. Image Represent. 2019, 58, 453–461. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A Comprehensive Review on Deep Learning Based Remote Sensing Image Super-Resolution Methods. Earth-Sci. Rev. 2022, 234, 104110. [Google Scholar] [CrossRef]
- Osaku, D.; Nakamura, R.Y.M.; Pereira, L.A.M.; Pisani, R.J.; Levada, A.L.M.; Cappabianco, F.A.M.; Falcão, A.X.; Papa, J.P. Improving Land Cover Classification through Contextual-Based Optimum-Path Forest. Inf. Sci. 2015, 324, 60–87. [Google Scholar] [CrossRef]
- Kafy, A.A.; Saha, M.; Faisal, A.-A.; Rahaman, Z.A.; Rahman, M.T.; Liu, D.; Fattah, M.A.; Al Rakib, A.; AlDousari, A.E.; Rahaman, S.N.; et al. Predicting the Impacts of Land Use/Land Cover Changes on Seasonal Urban Thermal Characteristics Using Machine Learning Algorithms. Build. Environ. 2022, 217, 109066. [Google Scholar] [CrossRef]
- Uniyal, S.; Purohit, S.; Chaurasia, K.; Rao, S.S.; Amminedu, E. Quantification of Carbon Sequestration by Urban Forest Using Landsat 8 OLI and Machine Learning Algorithms in Jodhpur, India. Urban For. Urban Green. 2022, 67, 127445. [Google Scholar] [CrossRef]
- Wu, X.; Ou, J.; Wen, Y.; Liu, X.; He, J.; Zhang, J. Developing a Data-Fusing Method for Mapping Fine-Scale Urban Three-Dimensional Building Structure. Sustain. Cities Soc. 2022, 80, 103716. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y. Deep Learning-Based Analytic Framework Using Comprehensive Urbanization Index for Heat Vulnerability Assessment in Urban Areas. Expert Syst. Appl. 2024, 235, 121140. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine Learning and Remote Sensing Integration for Leveraging Urban Sustainability: A Review and Framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Zhu, Q.; Sun, Y.; Guan, Q.; Wang, L.; Lin, W. A Weakly Pseudo-Supervised Decorrelated Subdomain Adaptation Framework for Cross-Domain Land-Use Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Jamali, A. Evaluation and Comparison of Eight Machine Learning Models in Land Use/Land Cover Mapping Using Landsat 8 OLI: A Case Study of the Northern Region of Iran. SN Appl. Sci. 2019, 1, 1527. [Google Scholar] [CrossRef]
- Frantz, D.; Schug, F.; Okujeni, A.; Navacchi, C.; Wagner, W.; van der Linden, S.; Hostert, P. National-Scale Mapping of Building Height Using Sentinel-1 and Sentinel-2 Time Series. Remote Sens. Environ. 2021, 252, 112128. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.J.; Chen, B.; Guo, X.; Singh, V.P. A Machine Learning-Based Strategy for Estimating Non-Optically Active Water Quality Parameters Using Sentinel-2 Imagery. Int. J. Remote Sens. 2021, 42, 1841–1866. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Manchado, C.; Roldán-Valcarce, A.; Moscardó, V. ArcUHI: A GIS Add-In for Automated Modelling of the Urban Heat Island Effect through Machine Learning. Urban Clim. 2022, 44, 101203. [Google Scholar] [CrossRef]
- Abunnasr, Y.; Mhawej, M. Towards a Combined Landsat-8 and Sentinel-2 for 10-m Land Surface Temperature Products: The Google Earth Engine Monthly Ten-ST-GEE System. Environ. Model. Softw. 2022, 155, 105456. [Google Scholar] [CrossRef]
- Casali, Y.; Aydin, N.Y.; Comes, T. Machine Learning for Spatial Analyses in Urban Areas: A Scoping Review. Sustain. Cities Soc. 2022, 85, 104050. [Google Scholar] [CrossRef]
- Demarchi, L.; Canters, F.; Cariou, C.; Licciardi, G.; Chan, J.C.-W. Assessing the Performance of Two Unsupervised Dimensionality Reduction Techniques on Hyperspectral APEX Data for High Resolution Urban Land-Cover Mapping. ISPRS J. Photogramm. Remote Sens. 2014, 87, 166–179. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. The Use of Single-Date MODIS Imagery for Estimating Large-Scale Urban Impervious Surface Fraction with Spectral Mixture Analysis and Machine Learning Techniques. ISPRS J. Photogramm. Remote Sens. 2013, 86, 100–110. [Google Scholar] [CrossRef]
- Priem, F.; Okujeni, A.; van der Linden, S.; Canters, F. Comparing Map-Based and Library-Based Training Approaches for Urban Land-Cover Fraction Mapping from Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 295–305. [Google Scholar] [CrossRef]
- Yigitcanlar, T. Australian Local Governments’ Practice and Prospects with Online Planning. URISA J. 2006, 18, 7–17. [Google Scholar]
- Patino, J.E.; Duque, J.C. A Review of Regional Science Applications of Satellite Remote Sensing in Urban Settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Galaz, V.; Centeno, M.A.; Callahan, P.W.; Causevic, A.; Patterson, T.; Brass, I.; Baum, S.; Farber, D.; Fischer, J.; Garcia, D.; et al. Artificial Intelligence, Systemic Risks, and Sustainability. Technol. Soc. 2021, 67, 101741. [Google Scholar] [CrossRef]
- United Nations. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development; United Nations: San Francisco, CA, USA, 2023. [Google Scholar]
- Touzani, S.; Granderson, J. Open Data and Deep Semantic Segmentation for Automated Extraction of Building Footprints. Remote Sens. 2021, 13, 2578. [Google Scholar] [CrossRef]
- Chi, Y.; Fan, M.; Zhao, C.; Yang, Y.; Fan, H.; Yang, X.; Yang, J.; Tao, J. Machine Learning-Based Estimation of Ground-Level NO2 Concentrations over China. Sci. Total Environ. 2022, 807, 150721. [Google Scholar] [CrossRef]
- Peng, B.; Meng, Z.; Huang, Q.; Wang, C. Patch Similarity Convolutional Neural Network for Urban Flood Extent Mapping Using Bi-Temporal Satellite Multispectral Imagery. Remote Sens. 2019, 11, 2492. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Roy, D.; Filatova, T.; Kerle, N. Agent-Based Modelling of Post-Disaster Recovery with Remote Sensing Data. Int. J. Disaster Risk Reduct. 2021, 60, 102285. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Yang, L.; Zhao, J.; Li, Y.; Qi, Y.; Ma, X.; Cao, L. Exploring the Response of Ecosystem Service Value to Land Use Changes under Multiple Scenarios Coupling a Mixed-Cell Cellular Automata Model and System Dynamics Model in Xi’an, China. Ecol. Indic. 2023, 147, 110009. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Li, W.; Nepal, M.; Nguyen, K.; Dur, F. Understanding urban heat vulnerability: Scientometric analysis of five decades of research. Urban Clim. 2024, 56, 102035. [Google Scholar] [CrossRef]
- Yigitcanlar, T. Sustainable Urban and Regional Infrastructure Development: Technologies, Applications and Management; IGI Global: Hersey, PA, USA, 2010. [Google Scholar]
- Koumetio Tekouabou, S.C.; Diop, E.B.; Azmi, R.; Jaligot, R.; Chenal, J. Reviewing the Application of Machine Learning Methods to Model Urban Form Indicators in Planning Decision Support Systems: Potential, Issues and Challenges. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5943–5967. [Google Scholar] [CrossRef]
- Karanja, J.; Kiage, L. Perspectives on Spatial Representation of Urban Heat Vulnerability. Sci. Total Environ. 2021, 774, 145634. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change. Climate Change 2007: Impacts, Adaptation and Vulnerability; Intergovernmental Panel On Climate Change: Genebra, Switzerland, 2001. [Google Scholar]
- Rinner, C.; Patychuk, D.; Bassil, K.; Nasr, S.; Gower, S.; Campbell, M. The Role of Maps in Neighborhood-Level Heat Vulnerability Assessment for the City of Toronto. Cartogr. Geogr. Inf. Sci. 2010, 37, 31–44. [Google Scholar] [CrossRef]
- Depietri, Y.; Welle, T.; Renaud, F. Social Vulnerability Assessment of the Cologne Urban Area (Germany) to Heat Waves: Links to Ecosystem Services. Int. J. Disaster Risk Reduct. 2013, 6, 98–117. [Google Scholar] [CrossRef]
- Hulley, G.; Shivers, S.; Wetherley, E.; Cudd, R. New ECOSTRESS and MODIS Land Surface Temperature Data Reveal Fine-Scale Heat Vulnerability in Cities: A Case Study for Los Angeles County, California. Remote Sens. 2019, 11, 2136. [Google Scholar] [CrossRef]
- Crichton, D. The Risk Triangle. In Natural Disaster Management; Ingleton, J., Ed.; Tudor Rose: London, UK, 1999; pp. 102–103. ISBN 0-9536140-1-8. [Google Scholar]
- Buscail, C.; Upegui, E.; Viel, J. Mapping Heatwave Health Risk at the Community Level for Public Health Action. Int. J. Health Geogr. 2012, 11, 38. [Google Scholar] [CrossRef]
- Dugord, P.; Lauf, S.; Schuster, C.; Kleinschmit, B. Land Use Patterns, Temperature Distribution, and Potential Heat Stress Risk: The Case Study Berlin, Germany. Comput. Environ. Urban Syst. 2014, 48, 86–98. [Google Scholar] [CrossRef]
- Paranunzio, R.; Dwyer, E.; Fitton, J.; Alexander, P.; O’Dwyer, B. Assessing Current and Future Heat Risk in Dublin City, Ireland. Urban Clim. 2021, 40, 100983. [Google Scholar] [CrossRef]
- Luber, G.; McGeehin, M. Climate Change and Extreme Heat Events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef]
- Cheng, W.; Brown, R. An Energy Budget Model for Estimating the Thermal Comfort of Children. Int. J. Biometeorol. 2020, 64, 1355–1366. [Google Scholar] [CrossRef]
- Alonso, L.; Renard, F. A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context. Int. J. Environ. Res. Public Health 2020, 17, 1004. [Google Scholar] [CrossRef]
- Hu, K.; Yang, X.; Zhong, J.; Fei, F.; Qi, J. Spatially Explicit Mapping of Heat Health Risk Utilizing Environmental and Socioeconomic Data. Environ. Sci. Technol. 2017, 51, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Lee, D.; Kwon, Y. Is Sensible Heat Flux Useful for the Assessment of Thermal Vulnerability in Seoul (Korea)? Int. J. Environ. Res. Public Health 2020, 17, 963. [Google Scholar] [CrossRef]
- Reid, C.; Mann, J.; Alfasso, R.; English, P.; King, G.; Lincoln, R.; Balmes, J. Evaluation of a Heat Vulnerability Index on Abnormally Hot Days: An Environmental Public Health Tracking Study. Environ. Health Perspect. 2012, 120, 715–720. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Yuan, Q.; He, J.; Zhang, L. Generating a Long-Term (2003−2020) Hourly 0.25° Global PM2.5 Dataset via Spatiotemporal Downscaling of CAMS with Deep Learning (DeepCAMS). Sci. Total Environ. 2022, 848, 157747. [Google Scholar] [CrossRef]
- Loughnan, M.; Nicholls, N.; Tapper, N. Mapping Heat Health Risks in Urban Areas. Int. J. Popul. Res. 2012, 2012, 518687. [Google Scholar] [CrossRef]
- Hammer, J.; Ruggieri, D.; Thomas, C.; Caum, J. Local Extreme Heat Planning: An Interactive Tool to Examine a Heat Vulnerability Index for Philadelphia, Pennsylvania. J. Urban Health 2020, 97, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Lammers, R.; Li, A.; Nag, S.; Ravindra, V. Prediction Models for Urban Flood Evolution for Satellite Remote Sensing. J. Hydrol. 2021, 603, 127175. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, Z.; Ouyang, X.; Shen, Y.; Jiang, S.; Liu, B.; He, B.-J. Delineating the Spatial-Temporal Variation of Air Pollution with Urbanization in the Belt and Road Initiative Area. Environ. Impact Assess. Rev. 2021, 91, 106646. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. 2015, 9351, 234–241. [Google Scholar] [CrossRef]
- Yan, C.; Fan, X.; Fan, J.; Wang, N. Improved U-Net Remote Sensing Classification Algorithm Based on Multi-Feature Fusion Perception. Remote Sens. 2022, 14, 1118. [Google Scholar] [CrossRef]
- Li, Z.; Demir, I. U-Net-Based Semantic Classification for Flood Extent Extraction Using SAR Imagery and GEE Platform: A Case Study for 2019 Central US Flooding. Sci. Total Environ. 2023, 869, 161757. [Google Scholar] [CrossRef]
- Yigitcanlar, T. Rethinking Sustainable Development: Urban Management, Engineering, and Design; IGI Global: Hersey, PA, USA, 2010. [Google Scholar]
- Stehman, S.V.; Hansen, M.C.; Broich, M.; Potapov, P.V. Adapting a Global Stratified Random Sample for Regional Estimation of Forest Cover Change Derived from Satellite Imagery. Remote Sens. Environ. 2011, 115, 650–658. [Google Scholar] [CrossRef]
- Amani, S.; Shafizadeh-Moghadam, H. A Review of Machine Learning Models and Influential Factors for Estimating Evapotranspiration Using Remote Sensing and Ground-Based Data. Agric. Water Manag. 2023, 284, 108324. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Q.C.; Huang, X.; Tao, Y.; Dong, C.; Das, S.; Liu, Y. Health-Integrated Heat Risk Assessment in Australian Cities. Environ. Impact Assess. Rev. 2023, 102, 107176. [Google Scholar] [CrossRef]
- Vu, H.L.; Ng, K.T.W.; Richter, A.; An, C. Analysis of Input Set Characteristics and Variances on k-Fold Cross Validation for a Recurrent Neural Network Model on Waste Disposal Rate Estimation. J. Environ. Manag. 2022, 311, 114869. [Google Scholar] [CrossRef]
- Azhar, G.; Saha, S.; Ganguly, P.; Mavalankar, D.; Madrigano, J. Heat Wave Vulnerability Mapping for India. Int. J. Environ. Res. Public Health 2017, 14, 357. [Google Scholar] [CrossRef]
- Guo, X.; Huang, G.; Jia, P.; Wu, J. Estimating Fine-Scale Heat Vulnerability in Beijing through Two Approaches: Spatial Patterns, Similarities, and Divergence. Remote Sens. 2019, 11, 2358. [Google Scholar] [CrossRef]
- Shang, W.L.; Chen, Y.; Yu, Q.; Song, X.; Chen, Y.; Ma, X.; Chen, X.; Tan, Z.; Huang, J.; Ochieng, W. Spatio-Temporal Analysis of Carbon Footprints for Urban Public Transport Systems Based on Smart Card Data. Appl. Energy 2023, 352, 121859. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.Y.; Byrne, J.A. Reconceptualizing Green Infrastructure for Climate Change Adaptation: Barriers to Adoption and Drivers for Uptake by Spatial Planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- Mitchell, B.; Chakraborty, J. Landscapes of Thermal Inequity: Disproportionate Exposure to Urban Heat in the Three Largest US Cities. Environ. Res. Lett. 2015, 10, 115005. [Google Scholar] [CrossRef]
- Ferreira, F.; Pereira, E.; Gonçalves, A.; Costa, R.; Bezerra, F. An Explicitly Spatial Approach to Identify Heat Vulnerable Urban Areas and Landscape Patterns. Urban Clim. 2021, 40, 101021. [Google Scholar] [CrossRef]
- Wieland, M.; Pittore, M. Large-Area Settlement Pattern Recognition from Landsat-8 Data. ISPRS J. Photogramm. Remote Sens. 2016, 119, 294–308. [Google Scholar] [CrossRef]
- Das, T.; Jana, A.; Mandal, B.; Sutradhar, A. Spatio-Temporal Pattern of Land Use and Land Cover and Its Effects on Land Surface Temperature Using Remote Sensing and GIS Techniques: A Case Study of Bhubaneswar City, Eastern India (1991–2021). GeoJournal 2021, 87, 765–795. [Google Scholar] [CrossRef]
- Tao, C.; Jia, M.; Wang, G.; Zhang, Y.; Zhang, Q.; Wang, X.; Wang, Q.; Wang, W. Time-Sensitive Prediction of NO2 Concentration in China Using an Ensemble Machine Learning Model from Multi-Source Data. J. Environ. Sci. 2023, 137, 30–40. [Google Scholar] [CrossRef]
- Tella, A.; Balogun, A.-L.; Adebisi, N.; Abdullah, S. Spatial Assessment of PM10 Hotspots Using Random Forest, K-Nearest Neighbour and Naïve Bayes. Atmos. Pollut. Res. 2021, 12, 101202. [Google Scholar] [CrossRef]
- Al-Aizari, A.R.; Al-Masnay, Y.A.; Aydda, A.; Zhang, J.; Ullah, K.; Islam, A.R.M.T.; Habib, T.; Kaku, D.U.; Nizeyimana, J.C.; Al-Shaibah, B.; et al. Assessment Analysis of Flood Susceptibility in Tropical Desert Area: A Case Study of Yemen. Remote Sens. 2022, 14, 4050. [Google Scholar] [CrossRef]
- Singleton, A.; Arribas-Bel, D.; Murray, J.; Fleischmann, M. Estimating Generalized Measures of Local Neighbourhood Context from Multispectral Satellite Images Using a Convolutional Neural Network. Comput. Environ. Urban Syst. 2022, 95, 101802. [Google Scholar] [CrossRef]
- Papadomanolaki, M.; Vakalopoulou, M.; Karantzalos, K. A Deep Multitask Learning Framework Coupling Semantic Segmentation and Fully Convolutional LSTM Networks for Urban Change Detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7651–7668. [Google Scholar] [CrossRef]
- Zhu, Y.; Geiß, C.; So, E.; Jin, Y. Multitemporal Relearning with Convolutional LSTM Models for Land Use Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3251–3265. [Google Scholar] [CrossRef]
- He, Z.; Chow, C.Y.; Zhang, J.D. STCNN: A Spatio-Temporal Convolutional Neural Network for Long-Term Traffic Prediction. In Proceedings of the 2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019; pp. 226–233. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, H.; Jiang, H.; Li, Y.; Alazab, M.; Zhu, Y.; Dustdar, S. Predicting Urban Region Heat via Learning Arrive-Stay-Leave Behaviors of Private Cars. IEEE Trans. Intell. Transp. Syst. 2023, 24, 10843–10856. [Google Scholar] [CrossRef]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. arXiv 2017, arXiv:1709.04875. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.; Lv, Z.; Wang, Y.; Li, H. A Prediction Method for Population Density in Key Areas. In Proceedings of the International Symposium on Artificial Intelligence and Robotics 2021, Fukuoka, Japan, 28 October 2021; SPIE: Bellingham, WA, USA; Volume 11884, pp. 13–28. [Google Scholar] [CrossRef]
- Kim, Y.; Newman, G. Advancing Scenario Planning through Integrating Urban Growth Prediction with Future Flood Risk Models. Comput. Environ. Urban Syst. 2020, 82, 101498. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hu, Y.; Moncrieff, G.R.; Slingsby, J.A.; Wilson, A.M.; Maitner, B.; Zhou, R.Z. Forecasting Vegetation Dynamics in an Open Ecosystem by Integrating Deep Learning and Environmental Variables. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103060. [Google Scholar] [CrossRef]
- Dehghani, A.; Moazam, H.M.Z.H.; Mortazavizadeh, F.; Ranjbar, V.; Mirzaei, M.; Mortezavi, S.; Ng, J.L.; Dehghani, A. Comparative Evaluation of LSTM, CNN, and ConvLSTM for Hourly Short-Term Streamflow Forecasting Using Deep Learning Approaches. Ecol. Inform. 2023, 75, 102119. [Google Scholar] [CrossRef]
- Maier, G.; Grundstein, A.; Jang, W.; Li, C.; Naeher, L.; Shepherd, M. Assessing the Performance of a Vulnerability Index during Oppressive Heat across Georgia, United States. Weather. Clim. Soc. 2014, 6, 253–263. [Google Scholar] [CrossRef]
- Mushore, T.; Mutanga, O.; Odindi, J.; Dube, T. Determining Extreme Heat Vulnerability of Harare Metropolitan City Using Multispectral Remote Sensing and Socio-Economic Data. J. Spat. Sci. 2017, 63, 173–191. [Google Scholar] [CrossRef]
- Khan, A.; Sudheer, M. Machine Learning-Based Monitoring and Modeling for Spatio-Temporal Urban Growth of Islamabad. Egypt. J. Remote Sens. Space Sci. 2022, 25, 541–550. [Google Scholar] [CrossRef]
- Tuczek, M.; Degirmenci, K.; Desouza, K.; Watson, R.; Yigitcanlar, T.; Breitner, M. Mitigating urban heat with optimal distribution of vegetation and buildings. Urban Clim. 2022, 44, 101208. [Google Scholar] [CrossRef]
- Liu, Y.; Yigitcanlar, T.; Guaralda, M.; Degirmenci, K.; Liu, A. Spatial Modelling of Urban Wind Characteristics: Review of Contributions to Sustainable Urban Development. Buildings 2024, 14, 737. [Google Scholar] [CrossRef]
- Liu, Y.; Guaralda, M.; Yigitcanlar, T.; Limb, M.; Garcia-Hansen, V. Navigating urban climate design implementation challenges: Insights from Brisbane’s built environment experts. J. Urban Des. 2024, 1–20. [Google Scholar] [CrossRef]
- Guo, F.; Zheng, R.; Zhao, J.; Zhang, H.; Dong, J. Framework of street grid-based urban heat vulnerability assessment: Integrating entropy weight method and BPNN model. Urban Clim. 2024, 56, 102067. [Google Scholar] [CrossRef]
- Kitchley, J.L. A framework to assess the contextual composite heat vulnerability index for a heritage city in India-A case study of Madurai. Sustain. Cities Soc. 2024, 101, 105119. [Google Scholar] [CrossRef]
- Wu, H.; Xu, Y.; Zhang, M.; Su, L.; Wang, Y.; Zhu, S. Spatially explicit assessment of the heat-related health risk in the Yangtze River Delta, China, using multisource remote sensing and socioeconomic data. Sustain. Cities Soc. 2024, 104, 105300. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Chen, G.; Ren, C.; Zhang, J. Machine Learning Applications on Air Temperature Prediction in the Urban Canopy Layer: A Critical Review of 2011–2022. Urban Clim. 2023, 49, 101499. [Google Scholar] [CrossRef]
Categories | Indicators | Descriptions | Data Sources |
---|---|---|---|
Socio-demographic characteristics | Age | % of population over 65, below 5 or in a specific range | Census and demographic data |
Economic status | % of population with high/low incomes; local financial status | Census and demographic data | |
Social isolation | % of elderly population living alone or living in a group | Census and demographic data | |
Education | % of population with a low education level | Census and demographic data | |
Population density | Number of population/households per study unit | Census and demographic data, satellite imagery data | |
Health conditions | Personal illness status | % population with pre-existing physical/mental illness | Census and demographic data, health and medical data |
Medical infrastructure | Number of medical workers/facilities/institutions; or distance to medical institutions | Health and medical data, Google Maps | |
Disability | % population with a disability | Census and demographic data, health and medical data | |
Environmental factors (natural) | Land surface temperature | Daytime/night-time land surface temperature | Satellite imagery data |
Vegetation cover | %/area of vegetation | Satellite imagery data | |
Air temperature | Daytime/night-time mean/maximum/minimum air temperature | Meteorological data | |
Environmental factors (built) | Accessibility to cooling space | Area of or distance to green space/open space/water body/cooling facilities | Satellite imagery data and Google Maps |
Land cover/use | Area of developed urban land cover | Satellite imagery data | |
Building information | Building density/height/type | Satellite imagery data |
Type of Condition | Diseases | ICD-10 Codes |
---|---|---|
Direct Heat-Related Conditions | Heat Stroke | X30 |
Dehydration | E86 | |
Hyperpyrexia | R50.9 | |
Indirect Heat-Related Conditions (the impact of heat on pre-existing conditions) | Cardiovascular Diseases | I00-I99 |
Respiratory Diseases | J00-J99 | |
Diabetes | E10-E14 | |
Renal Disease | N00-N29 | |
Nervous Disorders | G00-G99 | |
Cerebrovascular Disease | I60-I69 | |
Mental Health Conditions | F00-F99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Yigitcanlar, T.; Nepal, M.; Thanh, K.N.; Dur, F. A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights. Remote Sens. 2024, 16, 3032. https://doi.org/10.3390/rs16163032
Li F, Yigitcanlar T, Nepal M, Thanh KN, Dur F. A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights. Remote Sensing. 2024; 16(16):3032. https://doi.org/10.3390/rs16163032
Chicago/Turabian StyleLi, Fei, Tan Yigitcanlar, Madhav Nepal, Kien Nguyen Thanh, and Fatih Dur. 2024. "A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights" Remote Sensing 16, no. 16: 3032. https://doi.org/10.3390/rs16163032
APA StyleLi, F., Yigitcanlar, T., Nepal, M., Thanh, K. N., & Dur, F. (2024). A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights. Remote Sensing, 16(16), 3032. https://doi.org/10.3390/rs16163032