A Method for Estimating Soybean Sowing, Beginning Seed, and Harvesting Dates in Brazil Using NDVI-MODIS Data
<p>Paraná state, Brazil. The soybean areas in 2021 and the DERAL regions (<b>a</b>). The soybean crop calendar and Length of Season (LOS) for the Paraná state (<b>b</b>), [<a href="#B35-remotesensing-16-02520" class="html-bibr">35</a>].</p> "> Figure 2
<p>Original and filtered NDVI time-series sample with key soybean phenological events identification.</p> "> Figure 3
<p>An example of the phenology metrics Start of Season (SOS), Peak of Season (POS), and End of Season (EOS) (dotted lines) derived by the double-logistic method applied to a seasonal 8-day NDVI filtered and cropped curve.</p> "> Figure 4
<p>NDVI value variability for Start of Season (SOS), Peak of Season (POS), and End of Season (EOS): (<b>a</b>) scatter distribution and (<b>b</b>) violin plot of phenological event dates.</p> "> Figure 5
<p>The correlation between the observed and estimated dates for the Start of Season (SOS), Peak of Season (POS), and End of Season (EOS) accumulated (0–100%). For each phenological metric, the points represent the accumulated value for the reference date when the DERAL conducts field surveys.</p> "> Figure 6
<p>Distribution of dates for Start of Season (SOS), Peak of Season (POS), and End of Season (EOS).</p> "> Figure 7
<p>Comparative accumulation percentual values of Start of Season (SOS) (<b>a</b>), Peak of Season (POS) (<b>b</b>), and End of Season (EOS) (<b>c</b>): MODIS data vs. DERAL (reference) data with percentage differences for Paraná state.</p> "> Figure A1
<p>A roadmap of the three stages of extraction of the phenological metrics.</p> "> Figure A2
<p>Regional breakdown of cumulative sowing, beginning seed, and harvesting percentages: detailed seasonal evolution by region of Paraná state.</p> "> Figure A2 Cont.
<p>Regional breakdown of cumulative sowing, beginning seed, and harvesting percentages: detailed seasonal evolution by region of Paraná state.</p> "> Figure A3
<p>Temporal distribution of Start of Season (SOS) by eight-day periods across Brazilian states.</p> "> Figure A4
<p>Temporal distribution of Peak of Season (POS) by eight-day periods across Brazilian states.</p> "> Figure A5
<p>Temporal distribution of End of Season (EOS) by eight-day periods across Brazilian states.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Soybean Mapping Processing
2.3. MYD09Q1 Product
2.4. Vegetation Index Time-Series Processing
2.5. Identification of Vegetative Peak
2.6. Identification of Inflection Points and Temporal Delimitation
2.7. Application of Growing Season Window and Double-Logistic Function
2.8. Extraction of Phenological Metrics and Estimation of Phenology
2.9. Reference Data
2.10. Data Analysis
3. Results
4. Discussion
4.1. Potential of Phenological Metrics for Crop Monitoring Applications
4.2. Challenges and Solutions in Remote Sensing Data
4.3. Importance of Smoothing Filters and Fitting Methods
4.4. Methodological Limitations and Future Directions
4.5. Statistical Analysis
4.5.1. Correlation Analysis
4.5.2. Mean Bias
4.5.3. Standard Deviation of Bias (S.D. of Bias)
4.5.4. Root Mean Square Error (RMSE)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- FAO—Food and Agriculture Organization of the United Nations. Faostat. 2023. Available online: http://www.fao.org/faostat/en/#data (accessed on 26 October 2023).
- CEPEA—Centro de Estudos Avançados em Economia Aplicada—CEPEA-Esalq/USP. Available online: https://www.cepea.esalq.usp.br/br/mercado-de-trabalho-do-agronegocio.aspx (accessed on 26 October 2023).
- Dias, L.C.P.; Pimenta, F.M.; Santos, A.B.; Costa, M.H.; Ladle, R.J. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob. Chang. Biol. 2016, 22, 2887–2903. [Google Scholar] [CrossRef] [PubMed]
- CONAB—Companhia Nacional de Abastecimento. Calendário de Plantio e Colheita de Grãos no Brasil. 2022. Available online: https://www.conab.gov.br/institucional/publicacoes/outras-publicacoes (accessed on 26 October 2023).
- Paschal, H.; Berger, G.; Nari, C. Soybean breeding in South America. In Proceedings of the American Seed Trade Association Conference, 30th ASTA, Chicago, IL, USA, 7–10 December 2000; pp. 11–18. [Google Scholar]
- Bergamaschi, H. O clima como fator determinante da fenologia das plantas. In Fenologia: Ferramenta para Conservação, Melhoramento e Manejo de Recursos Vegetais Arbóreos, 1st ed.; Embrapa Florestas: Colombo, Brazil, 2007; pp. 291–310. [Google Scholar]
- Sediyama, T.; Oliveira, R.C.T.; Sediyama, H.A. A Soja. In Produtividade da Soja, 2nd ed.; Sediyama, T., Ed.; Mecenas: Londrina, Brasil, 2016; pp. 11–18. [Google Scholar]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development, 1st ed.; Iowa State University of Science and Technology: Ames, IA, USA, 1977; pp. 1–11. [Google Scholar]
- Duveiller, G.; López-Lozano, R.; Seguini, L.; Bojanowski, J.S.; Baruth, B. Optical Remote Sensing Requirements for Operational Crop Monitoring and Yield Forecasting in Europe. In Proceedings of the Sentinel-3 OLCI/SLSTR and MERIS/(A)ATSR Workshop, ESA SP-711, Frascati, Italy, 15–19 October 2012. [Google Scholar]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. Tecnologias de Produção de Soja: Região Central do Brasil 2012–2013, 1st ed.; Embrapa Soja: Londrina, Brazil, 2011; pp. 1–262. [Google Scholar]
- Brazil. Dispõe sobre o Programa Nacional de Zoneamento Agrícola de Risco Climático; Decreto No. 9.841, de 18 de Junho de 2019; Ministério da Agricultura e Pecuária: Brasília, Brazil, 2019. [Google Scholar]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward Mapping Crop Progress at Field Scales through Fusion of Landsat and MODIS Imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef]
- Dente, L.; Satalino, G.; Mattia, F.; Rinaldi, M. Assimilation of Leaf Area Index Derived from ASAR and MERIS Data into CERES-Wheat Model to Map Wheat Yield. Remote Sens. Environ. 2008, 112, 1395–1407. [Google Scholar] [CrossRef]
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield Gap Analysis with Local to Global Relevance—A Review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Santos, J.S.; Fontana, D.C.; Silva, T.S.F.; Rudorff, B.F.T. Identificação da dinâmica espaço-temporal para estimar área cultivada de soja a partir de imagens MODIS no Rio Grande do Sul. Rev. Bras. Eng. Agríc. Ambient. 2014, 18, 54–63. [Google Scholar] [CrossRef]
- Hufkens, K.; Melaas, E.K.; Mann, M.L.; Foster, T.; Ceballos, F.; Robles, M.; Kramer, B. Monitoring crop phenology using a smartphone based near-surface remote sensing approach. Agric. For. Meteorol. 2019, 265, 327–337. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Daughtry, C.; Karnieli, A.; Hively, D.; Kustas, W. A within-season approach for detecting early growth stages in corn and soybean using high temporal and spatial resolution imagery. Remote Sens. Environ. 2020, 242, 111752. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O. Agricultural growing season calendars derived from MODIS surface reflectance. Int. J. Digit. Earth 2015, 8, 173–197. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Carletto, C.; Dillon, A.; Zezza, A. Agricultural data collection to minimize measurement error and maximize coverage. In Handbook of Agricultural Economics, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 5, pp. 4407–4480. [Google Scholar]
- Xu, X.; Conrad, C.; Doktor, D. Optimising phenological metrics extraction for different crop types in Germany using the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. 2017, 9, 254. [Google Scholar] [CrossRef]
- Lieth, H. Introduction to phenology and modeling of seasonality. In Phenology and Seasonality Modeling, 8th ed.; Lieth, H., Ed.; Springer: Berlin, Germany, 1974; Volume 8, pp. 3–19. [Google Scholar]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. Biogeosci. 2006, 111, JG000217. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Wang, R.; Shan, J.; Tadesse, T.; Hayes, M.J.; Li, D. A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2016, 181, 237–250. [Google Scholar] [CrossRef]
- Bajocco, S.; Raparelli, E.; Teofili, T.; Bascietto, M.; Ricotta, C. Text mining in remotely sensed phenology studies: A review on research development, main topics, and emerging issues. Remote Sens. 2019, 11, 2751. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- CONAB—Companhia Nacional de Abastecimento. Séries Históricas das Safras, Grãos, Soja. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras (accessed on 12 January 2024).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Biomas e Sistema Costeiro-Marinho do Brasil. 2019. Available online: https://www.ibge.gov.br/geociencias/informacoes-ambientais/vegetacao/15842-biomas.html (accessed on 18 July 2023).
- Johann, J.A.; Becker, W.R.; Uribe-Opazo, M.A.; Mercante, E. Uso de imagens do sensor orbital MODIS na estimação de datas do ciclo de desenvolvimento da cultura da soja para o Estado do Paraná—Brasil. Eng. Agríc. 2016, 36, 126–142. [Google Scholar] [CrossRef]
- Becker, W.R.; Richetti, J.; Mercante, E.; Esquerdo, J.C.D.M.; da Silva Junior, C.A.; Paludo, A.; Johann, J.A. Agricultural soybean and corn calendar based on moderate resolution satellite images for southern Brazil. Semina Ciênc. Agrár. 2020, 41, 2419–2428. [Google Scholar] [CrossRef]
- Becker, W.R.; Silva, L.C.D.A.; Richetti, J.; Ló, T.B.; Johann, J.A. Harvest date forecast for soybeans from maximum vegetative development using satellite images. Int. J. Remote Sens. 2021, 42, 1121–1138. [Google Scholar] [CrossRef]
- Zhang, M.; Abrahao, G.; Cohn, A.; Campolo, J.; Thompson, S. A MODIS-based scalable remote sensing method to estimate sowing and harvest dates of soybean crops in Mato Grosso, Brazil. Heliyon 2021, 7, e07436. [Google Scholar] [CrossRef]
- Rodigheri, G.; Sanches, I.D.A.; Richetti, J.; Tsukahara, R.Y.; Lawes, R.; Bendini, H.D.N.; Adami, M. Estimating crop sowing and harvesting dates using satellite vegetation index: A comparative analysis. Remote Sens. 2023, 15, 5366. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Potapov, P.; Adusei, B.; Pickering, J.; Adami, M.; Lima, A.; Zalles, V.; Stehman, S.V.; Di Bella, C.M.; et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. 2021, 4, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Townshend, J.R.G.; Huang, C.; Kalluri, S.N.V.; Defries, R.S.; Liang, S.; Yang, K. Beware of per-pixel characterization of land cover. Int. J. Remote Sens. 2000, 21, 839–843. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Guindin-Garcia, N.; Gitelson, A.A.; Arkebauer, T.J.; Shanahan, J.; Weiss, A. An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index. Agric. For. Meteorol. 2012, 161, 15–25. [Google Scholar] [CrossRef]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A.; Verma, S.B.; Suyker, A.E.; Arkebauer, T.J. A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2010, 114, 2146–2159. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, Z.; Di, L.; Pei, Z. Evaluation of temporal resolution effect in remote sensing based crop phenology detection studies. In Proceedings of the 5th IFIP TC 5/SIG 5.1 Conference on Computer and Computing Technologies in Agriculture (CCTA 2011), Beijing, China, 29–31 October 2011. [Google Scholar] [CrossRef]
- Castro, A.I.; Six, J.; Plant, R.E.; Peña, J.M. Mapping crop calendar events and phenology-related metrics at the parcel level by Object-Based Image Analysis (OBIA) of MODIS-NDVI time-series: A Case Study in Central California. Remote Sens. 2018, 10, 1745. [Google Scholar] [CrossRef]
- Siłuch, M.; Bartminski, P.; Zgłobicki, W. Remote sensing in studies of the growing season: A bibliometric analysis. Remote Sens. 2022, 14, 1331. [Google Scholar] [CrossRef]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Hogda, K.A.; Karlsen, S.R.; Solheim, I. Climatic change impact on growing season in Fennoscandia studied by a time series of NOAA AVHRR NDVI data. In Proceedings of the International Geoscience and Remote Sensing Symposium, Sidney, Australia, 9–13 July 2001; IGARSS 2001; pp. 1338–1340. [Google Scholar] [CrossRef]
- Wagenseil, H.; Samimi, C. Assessing spatio-temporal variations in plant phenology using Fourier analysis on NDVI time series: Results from a dry savannah environment in Namibia. Int. J. Remote Sens. 2006, 27, 3455–3471. [Google Scholar] [CrossRef]
- Kariyeva, J.; Van Leeuwen, W.J.D. Environmental drivers of NDVI-based vegetation phenology in Central Asia. Remote Sens. 2011, 3, 203–246. [Google Scholar] [CrossRef]
- Hou, X.; Gao, S.; Zheng, N.; Xu, Z. Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data. Int. J. Remote Sens. 2014, 35, 3316–3330. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 188–197. [Google Scholar] [CrossRef]
- Wu, C.; Peng, D.; Soudani, K.; Siebicke, L.; Gough, C.M.; Arain, M.A.; Bohrer, G.; Lafluer, P.M.; Peichl, M.; Gonsamo, A.; et al. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agric. For. Meteorol. 2017, 233, 171–182. [Google Scholar] [CrossRef]
- Seo, B.; Lee, J.; Lee, K.-D.; Hong, S.; Kang, S. Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA. Field Crops Res. 2019, 238, 113–128. [Google Scholar] [CrossRef]
- Adami, M. Estimativa da Data de Plantio da Soja Por Meio de Séries Temporais de Imagens MODIS; Doutorado em Sensoriamento Remoto, Instituto Nacional de Pesquisas Espaciais: São José dos Campos, Brasil, 2010. [Google Scholar]
- Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; Silva, N.R.F.; Adami, M.; Sanches, I.D.A. Limitations of cloud cover for optical remote sensing of agricultural areas across South America. Remote Sens. Appl. Soc. Environ. 2020, 20, 100414. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Kastens, J.H.; Egbert, S.L. Using USDA Crop Progress Data for the Evaluation of Greenup Onset Date Calculated from MODIS 250-Meter Data. Photogramm. Eng. Remote Sens. 2006, 72, 1225–1234. [Google Scholar] [CrossRef]
- Vieira, D.C.; Sanches, I.D.A.; Montibeller, B.; Prudente, V.H.R.; Hansen, M.C.; Baggett, A.; Adami, M. Cropland expansion, intensification, and reduction in Mato Grosso state, Brazil, between the crop years 2000/01 to 2017/18. Remote Sens. Appl. Soc. Environ. 2022, 28, 100841. [Google Scholar] [CrossRef]
- Fischer, A. A simple model for the temporal variations of NDVI at regional scale over agricultural countries. Validation with ground radiometric measurements. Int. J. Remote Sens. 1994, 15, 1421–1446. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Yu, Y.; Gao, F.; Yang, Z. Real-time monitoring of crop phenology in the Midwestern United States using VIIRS observations. Remote Sens. 2018, 10, 1540. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Diao, C. Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages. Remote Sens. Environ. 2020, 248, 111960. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Monteiro, A.T.; Cunha, M.; Gonçalves, H. QPhenoMetrics: An open source software application to assess vegetation phenology metrics. Comput. Electron. Agric. 2018, 148, 82–94. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Ghazaryan, G.; González, J.; Cornish, N.; Dubovyk, O.; Siebert, S. The use of remote sensing to derive maize sowing dates for large-scale crop yield simulations. Int. J. Biometeorol. 2021, 65, 565–576. [Google Scholar] [CrossRef]
- SEAB, Secretaria de Estado da Agricultura e do Abastecimento, and Departamento de Economia Rural DERAL. 2019. Estimativa Mensal de Plantio, Colheita e Comercialização Das Culturas. Available online: http://www.agricultura.pr.gov.br/deral/safras (accessed on 12 November 2023).
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Choudhary, K.; Shi, W.; Boori, M.S.; Corgne, S. Agriculture phenology monitoring using NDVI time series based on remote sensing satellites: A case study of Guangdong, China. Opt. Mem. Neural Netw. 2019, 28, 204–214. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Zhang, X.; Jayavelu, S.; Liu, L.; Friedl, M.A.; Henebry, G.M.; Liu, Y.; Schaaf, C.B.; Richardson, A.D.; Gray, J. Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery. Agric. For. Meteorol. 2018, 256, 137–149. [Google Scholar] [CrossRef]
- Sakamoto, T. Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops. ISPRS J. Photogramm. Remote Sens. 2018, 138, 176–192. [Google Scholar] [CrossRef]
- Urban, D.; Guan, K.; Jain, M. Estimating sowing dates from satellite data over the US Midwest: A comparison of multiple sensors and metrics. Remote Sens. Environ. 2018, 211, 400–412. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, W.; Tao, B.; Ji, L.; Liang, L.; Ruane, A.C.; Fisher, J.B.; Liu, J.; Sama, M.; Li, Z.; et al. Characterizing spatiotemporal patterns of crop phenology across North America during 2000–2016 using satellite imagery and agricultural survey data. ISPRS J. Photogramm. Remote Sens. 2020, 170, 156–173. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Kennedy, H.L. Multidimensional digital smoothing filters for target detection. Signal Process. 2015, 114, 251–264. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, X.; Chen, J.; Wang, C.; Shen, M.; Yang, W.; Li, Z. Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency. ISPRS J. Photogramm. Remote Sens. 2021, 180, 29–44. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations—Application to MODIS LAI products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated mapping of soybean and corn using phenology. ISPRS J. Photogramm. Remote Sens. 2016, 119, 151–164. [Google Scholar] [CrossRef]
- Belda, S.; Pipia, L.; Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Amin, E.; De Grave, C.; Verrelst, J. DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environ. Model. Softw. 2020, 127, 104666. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.D.; Reed, B.C.; White, M.A. Assessing satellite-derived start-of-season measures in the conterminous USA. Int. J. Climatol. 2002, 22, 1793–1805. [Google Scholar] [CrossRef]
- Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sens. Environ. 2006, 100, 265–279. [Google Scholar] [CrossRef]
- Amin, E.; Belda, S.; Pipia, L.; Szantoi, Z.; El Baroudy, A.; Moreno, J.; Verrelst, J. Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI. Remote Sens. 2022, 14, 1812. [Google Scholar] [CrossRef] [PubMed]
- IBGE/SIDRA—Sistema IBGE de Recuperação Automática. Censo Agropecuário 2017: Resultados Definitivos. Rio de Janeiro: IBGE, 2024. Available online: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017 (accessed on 12 January 2024).
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Sibley, A.M.; Sohu, V.S. Satellite detection of earlier wheat sowing in India and implications for yield trends. Agric. Syst. 2013, 115, 137–143. [Google Scholar] [CrossRef]
- Vyas, S.; Nigam, R.; Patel, N.K.; Panigrahy, S. Extracting regional pattern of wheat sowing dates using multispectral and high temporal observations from Indian geostationary satellite. J. Indian Soc. Remote Sens. 2013, 41, 855–864. [Google Scholar] [CrossRef]
- Ren, J.; Campbell, J.B.; Shao, Y. Estimation of SOS and EOS for Midwestern US corn and soybean crops. Remote Sens. 2017, 9, 722. [Google Scholar] [CrossRef]
Region | Area (ha) | Percentual | p-Value | Bias (Mean) | S.D. of Bias | RMSE (Median) | |ME| (Median) |
---|---|---|---|---|---|---|---|
Start of Season (SOS) | |||||||
Apucarana | 127,750 | 2% | 0.38 | −10.5 | 16.8 | 1.3 | 1.3 |
Campo Mourão | 690,000 | 12% | 0.46 | −0.7 | 11.8 | 3.2 | 3.2 |
Cascavel | 516,000 | 9% | 0.36 | −10.6 | 14.5 | 2.6 | 2.6 |
Cornélio Procópio | 352,500 | 6% | 0.64 | −9.6 | 12.6 | 4.4 | 4.4 |
Curitiba | 169,160 | 3% | 0.42 | −10.9 | 8.4 | 12.1 | 12.1 |
Francisco Beltrão | 281,130 | 5% | 0.40 | −7.0 | 10.1 | 0.3 | 0.3 |
Guarapuava | 288,750 | 5% | 0.67 | −8.3 | 11.7 | 1.4 | 1.4 |
Irati | 190,000 | 3% | 0.74 | 5.1 | 8.9 | 2.5 | 2.5 |
Ivaiporã | 163,000 | 3% | 0.39 | −6.6 | 10.8 | 1.0 | 1.0 |
Jacarezinho | 171,550 | 3% | 0.59 | −3.2 | 4.6 | 1.1 | 1.1 |
Laranjeiras do Sul | 138,500 | 2% | 0.94 | −0.9 | 3.5 | 0.6 | 0.6 |
Londrina | 324,600 | 6% | 0.64 | −5.9 | 10.5 | 0.9 | 0.9 |
Maringá | 296,500 | 5% | 0.42 | −13.0 | 20.0 | 2.6 | 2.5 |
Paranavaí | 66,746 | 1% | 0.31 | −11.9 | 16.8 | 4.4 | 4.4 |
Pato Branco | 321,130 | 6% | 0.31 | −11.3 | 14.3 | 3.1 | 3.1 |
Pitanga | 162,250 | 3% | 0.64 | −6.2 | 7.8 | 2.9 | 2.9 |
Ponta Grossa | 558,200 | 10% | 0.57 | −7.2 | 7.9 | 4.9 | 4.9 |
Toledo | 487,420 | 9% | 0.52 | −9.7 | 19.0 | 0.9 | 0.9 |
Umuarama | 186,511 | 3% | 0.43 | −5.6 | 9.8 | 1.5 | 1.5 |
União da Vitória | 90,000 | 2% | 0.96 | 1.2 | 5.9 | 3.0 | 3.0 |
Paraná | 5,581,697 | 100% | 0.62 | −6.5 | 9.7 | 1.6 | 1.6 |
Peak of Season (POS) | |||||||
Apucarana | 127,750 | 2% | 0.82 | −1.7 | 4.6 | 1.7 | 1.4 |
Campo Mourão | 690,000 | 12% | 0.38 | 13.1 | 19.3 | 2.2 | 2.2 |
Cascavel | 516,000 | 9% | 0.60 | −6.2 | 7.5 | 3.3 | 3.2 |
Cornélio Procópio | 352,500 | 6% | 0.89 | −0.8 | 13.5 | 1.8 | 1.8 |
Curitiba | 169,160 | 3% | 0.24 | 10.8 | 11.1 | 8.5 | 8.0 |
Francisco Beltrão | 281,130 | 5% | 0.94 | 1.8 | 9.7 | 5.2 | 5.2 |
Guarapuava | 288,750 | 5% | 0.90 | −0.7 | 6.7 | 1.2 | 1.2 |
Irati | 190,000 | 3% | 0.24 | 14.6 | 15.0 | 13.8 | 13.8 |
Ivaiporã | 163,000 | 3% | 0.49 | 5.7 | 7.3 | 3.8 | 3.8 |
Jacarezinho | 171,550 | 3% | 0.10 | 18.5 | 18.5 | 14.9 | 14.2 |
Laranjeiras do Sul | 138,500 | 2% | 0.79 | 2.0 | 5.3 | 4.6 | 4.6 |
Londrina | 324,600 | 6% | 0.63 | 6.1 | 9.2 | 2.1 | 2.0 |
Maringá | 296,500 | 5% | 0.97 | −0.6 | 5.0 | 0.7 | 0.7 |
Paranavaí | 66,746 | 1% | 0.53 | 10.8 | 16.9 | 0.8 | 0.7 |
Pato Branco | 321,130 | 6% | 0.93 | −1.6 | 2.7 | 0.8 | 0.8 |
Pitanga | 162,250 | 3% | 0.99 | 0.5 | 4.2 | 1.4 | 1.4 |
Ponta Grossa | 558,200 | 10% | 0.81 | −0.6 | 4.5 | 2.2 | 2.2 |
Toledo | 487,420 | 9% | 0.59 | −2.9 | 5.7 | 2.7 | 2.7 |
Umuarama | 186,511 | 3% | 0.85 | −0.4 | 8.9 | 6.7 | 6.7 |
União da Vitória | 90,000 | 2% | 0.75 | 4.8 | 7.3 | 4.4 | 4.4 |
Paraná | 5,581,697 | 100% | 0.70 | 2.5 | 3.9 | 0.9 | 0.9 |
End of Season (EOS) | |||||||
Apucarana | 127,750 | 2% | 0.71 | −1.3 | 3.7 | 1.8 | 1.8 |
Campo Mourão | 690,000 | 12% | 0.83 | 5.4 | 8.6 | 1.7 | 1.7 |
Cascavel | 516,000 | 9% | 0.57 | 0.1 | 3.0 | 1.7 | 1.7 |
Cornélio Procópio | 352,500 | 6% | 0.89 | −0.7 | 5.9 | 1.3 | 1.3 |
Curitiba | 169,160 | 3% | 0.45 | 5.7 | 6.0 | 7.0 | 6.7 |
Francisco Beltrão | 281,130 | 5% | 0.92 | 1.5 | 2.6 | 0.4 | 0.4 |
Guarapuava | 288,750 | 5% | 0.98 | 1.9 | 5.8 | 2.0 | 2.0 |
Irati | 190,000 | 3% | 0.98 | 4.3 | 9.5 | 2.8 | 2.8 |
Ivaiporã | 163,000 | 3% | 0.81 | 3.2 | 5.4 | 1.6 | 1.6 |
Jacarezinho | 171,550 | 3% | 0.76 | 4.2 | 8.0 | 1.2 | 1.2 |
Laranjeiras do Sul | 138,500 | 2% | 0.56 | 7.7 | 9.2 | 3.1 | 3.1 |
Londrina | 324,600 | 6% | 0.76 | −4.3 | 7.6 | 2.1 | 2.1 |
Maringá | 296,500 | 5% | 0.89 | 1.0 | 3.4 | 1.1 | 1.1 |
Paranavaí | 66,746 | 1% | 0.92 | 1.6 | 4.9 | 1.4 | 1.4 |
Pato Branco | 321,130 | 6% | 0.83 | 1.0 | 3.1 | 1.0 | 0.9 |
Pitanga | 162,250 | 3% | 0.83 | 6.1 | 8.9 | 3.4 | 3.3 |
Ponta Grossa | 558,200 | 10% | 0.74 | 1.0 | 4.1 | 2.7 | 2.7 |
Toledo | 487,420 | 9% | 0.67 | 0.2 | 2.9 | 1.7 | 1.7 |
Umuarama | 186,511 | 3% | 0.74 | 4.0 | 7.1 | 1.5 | 1.5 |
União da Vitória | 90,000 | 2% | 0.36 | 11.4 | 13.2 | 8.4 | 7.8 |
Paraná | 5,581,697 | 100% | 0.87 | 2.5 | 4.1 | 1.7 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, C.T.C.; Sanches, I.D.; Caldas, M.M.; Adami, M. A Method for Estimating Soybean Sowing, Beginning Seed, and Harvesting Dates in Brazil Using NDVI-MODIS Data. Remote Sens. 2024, 16, 2520. https://doi.org/10.3390/rs16142520
Santana CTC, Sanches ID, Caldas MM, Adami M. A Method for Estimating Soybean Sowing, Beginning Seed, and Harvesting Dates in Brazil Using NDVI-MODIS Data. Remote Sensing. 2024; 16(14):2520. https://doi.org/10.3390/rs16142520
Chicago/Turabian StyleSantana, Cleverton Tiago Carneiro de, Ieda Del’Arco Sanches, Marcellus Marques Caldas, and Marcos Adami. 2024. "A Method for Estimating Soybean Sowing, Beginning Seed, and Harvesting Dates in Brazil Using NDVI-MODIS Data" Remote Sensing 16, no. 14: 2520. https://doi.org/10.3390/rs16142520
APA StyleSantana, C. T. C., Sanches, I. D., Caldas, M. M., & Adami, M. (2024). A Method for Estimating Soybean Sowing, Beginning Seed, and Harvesting Dates in Brazil Using NDVI-MODIS Data. Remote Sensing, 16(14), 2520. https://doi.org/10.3390/rs16142520