An Adaptive Tracking Method for Moving Target in Fluctuating Reverberation Environment
<p>Flow chart for the proposed method.</p> "> Figure 2
<p>Illustration of the suppression of the steady component of reverberation principles. The green asterisks represent the target echo, the blue triangles represent the steady component of reverberation, and the red circles represent the dynamic component of reverberation. Note that the target echoes and the dynamic component are kept in matrix <math display="inline"><semantics> <mrow> <msub> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold-sans-serif">S</mi> </mstyle> <mi>k</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 3
<p>One frame of bearing-range spatial spectral with different SRRs: (<b>a</b>) SRR = −5 dB; and (<b>b</b>) SRR = −15 dB. The target echo is marked by a red rectangle.</p> "> Figure 4
<p>The results of reverberation suppression using LRSD under different SRRs in two tracking experiments: (<b>a</b>) the 13th frame (SRR = −5 dB); (<b>b</b>) the 14th frame (SRR = −5 dB); (<b>c</b>) the 13th frame (SRR = −15 dB); and (<b>d</b>) the 14th frame (SRR = −15 dB). The target echo is marked by a red rectangle and the high-energy clutters is marked by white rectangles.</p> "> Figure 4 Cont.
<p>The results of reverberation suppression using LRSD under different SRRs in two tracking experiments: (<b>a</b>) the 13th frame (SRR = −5 dB); (<b>b</b>) the 14th frame (SRR = −5 dB); (<b>c</b>) the 13th frame (SRR = −15 dB); and (<b>d</b>) the 14th frame (SRR = −15 dB). The target echo is marked by a red rectangle and the high-energy clutters is marked by white rectangles.</p> "> Figure 5
<p>Tracking results of one target moving from far to near: (<b>a</b>) the background of clutter overlaying true trajectory; (<b>b</b>) tracking results of PF-tracker and APF-tracker under SRR of −5 dB; and (<b>c</b>) tracking results of PF-tracker and APF-tracker under SRR of −15 dB. The arrows represent the direction of moving target.</p> "> Figure 6
<p>The evolution of parameters with tracking frames: (<b>a</b>) Experiment 1 (SRR = −5 dB); and (<b>b</b>) Experiment 2 (SRR = −15 dB).</p> "> Figure 7
<p>Box plots of the posterior probability <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </semantics></math> in 100 Monte Carlo runs for both trackers: (<b>a</b>) the PF-tracker with SRR of −5 dB; (<b>b</b>) the APF-tracker with SRR of −5 dB; (<b>c</b>) the PF-tracker with SRR of −15 dB; and (<b>d</b>) the APF-tracker with SRR of −15 dB. The median represents the middle value of the <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </semantics></math>. The IQR represents the distribution of the central 50% value of the <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p>Multi-target tracking simulation results when SRR is −10 dB: (<b>a</b>) trajectory comparison; (<b>b</b>) comparison of posterior probabilities of two methods for multi-target tracking.</p> "> Figure 9
<p>Experimental results: (<b>a</b>) the pseudo color image by summing the reverberation suppression results of each frame; (<b>b</b>) tracking results of the PF-tracker and APF-tracker (the value of bearing-range points of trajectories are presented by posterior probabilities). The arrows represent the direction of the moving target.</p> "> Figure 10
<p>The evolution of parameters with tracking frames.</p> "> Figure 11
<p>Comparison of tracking results for two trackers: (<b>a</b>) Dataset A; (<b>b</b>) Dataset B; (<b>c</b>) Dataset C; and (<b>d</b>) Dataset D. The arrows represent the direction of moving target.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. State Equation
2.2. Measurement Equation
2.3. Adaptive Bayesian Filter
3. Implementation with Particle Filter
Algorithm 1: Flow of Our Tracking Algorithm |
Initialization: , , , ; |
State Predict: |
1. Evolve particles with Equation (1), to obtain . |
2. Draw a set of newborn particles from . |
3. Compute with Equation (6). |
4. Compute the weights of particles with Equations (15) and (16) at k + 1: and . |
5. Draw newborn particles from at k + 1. |
6. Union the set of predict particles with Equation (17). |
Measurement Update: |
7. Compute the likelihood for each particle and measurement with Equation (12). |
8. Compute with Equations (11) and (18). |
9. Update with Equation (8). |
10. Update the weight of particles and normalize weights according to Equations (19) and (20). |
Resampling: |
11. Resample times from to obtain a new set of particles . |
Output: |
12. If , output the quantities , and , repeating the above steps. |
4. Simulation Study
5. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Karoui, I.; Quidu, I.; Legris, M. Automatic Sea-Surface Obstacle Detection and Tracking in Forward-Looking Sonar Image Sequences. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4661–4669. [Google Scholar] [CrossRef]
- Bates, J.R.; Canepa, G.; Tesei, A. Improved Tracking Of A Surrogate Target Using Continuous Active Sonar. In Proceedings of the UACE 2019 Proceedings, Virtual, 30 June–5 July 2019. [Google Scholar]
- Mellema, G.R. Improved Active Sonar Tracking in Clutter Using Integrated Feature Data. IEEE J. Ocean. Eng. 2020, 45, 304–318. [Google Scholar] [CrossRef]
- LeNoach, J.; Lexa, M.; Coraluppi, S. Feature-Aided Tracking Techniques for Active Sonar Applications. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1–4 November 2021; pp. 1–7. [Google Scholar]
- Yang, T.C.; Schindall, J.; Huang, C.-F.; Liu, J.-Y. Clutter Reduction Using Doppler Sonar in a Harbor Environment. J. Acoust. Soc. Am. 2012, 132, 3053–3067. [Google Scholar] [CrossRef]
- Abraham, D.A.; Gelb, J.M.; Oldag, A.W. Background and Clutter Mixture Distributions for Active Sonar Statistics. IEEE J. Ocean. Eng. 2011, 36, 231–247. [Google Scholar] [CrossRef]
- Bates, J.R.; Murphy, S.M.; Maranda, B.H.; Abraham, D.A. Signal-to-Reverberation Ratio Comparison of Linear Frequency Modulated Continuous Active Sonar and Pulsed Active Sonar. IEEE J. Ocean. Eng. 2021, 46, 654–664. [Google Scholar] [CrossRef]
- Lo, K.W.; Ferguson, B.G. Automatic Detection and Tracking of a Small Surface Watercraft in Shallow Water Using a High-Frequency Active Sonar. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1377–1388. [Google Scholar] [CrossRef]
- Yang, R.; Bar-Shalom, Y.; Jauffret, C.; Perez, A.-C.; Ng, G.W. Maneuvering Target Tracking Using Continuous Wave Bistatic Sonar with Propagation Delay. J. Adv. Inf. Fusion 2018, 13, 36–49. [Google Scholar]
- Musicki, D.; Wang, X.; Ellem, R.; Fletcher, F. Efficient Active Sonar Multitarget Tracking. In Proceedings of the OCEANS 2006-Asia Pacific, Singapore, 16–19 May 2006; IEEE: Piscataway, NJ, USA; pp. 1–8. [Google Scholar]
- Blanding, W.R.; Willett, P.K.; Bar-Shalom, Y.; Lynch, R.S. Directed Subspace Search ML-PDA with Application to Active Sonar Tracking. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 201–216. [Google Scholar] [CrossRef]
- Vo, B.-T.; Vo, B.-N.; Cantoni, A. Bayesian Filtering With Random Finite Set Observations. IEEE Trans. Signal Process. 2008, 56, 1313–1326. [Google Scholar] [CrossRef]
- Vo, B.T.; See, C.M.; Ma, N.; Ng, W.T. Multi-Sensor Joint Detection and Tracking with the Bernoulli Filter. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1385–1402. [Google Scholar] [CrossRef]
- Edelson, G.S. Two-Stage Active Sonar Network Track-before-Detect Processing in a High Clutter Harbor Environment. J. Acoust. Soc. Am. 2016, 140, 3349. [Google Scholar] [CrossRef]
- Wang, J.; Jiao, J. Track Before Detect for Low Frequency Active Towed Array Sonar. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Diamant, R.; Kipnis, D.; Bigal, E.; Scheinin, A.; Tchernov, D.; Pinchasi, A. An Active Acoustic Track-Before-Detect Approach for Finding Underwater Mobile Targets. IEEE J. Sel. Top. Signal Process. 2019, 13, 104–119. [Google Scholar] [CrossRef]
- Xu, C.; He, Z.; Liu, H.; Li, Y. Bayesian Track-before-Detect Algorithm for Nonstationary Sea Clutter. J. Syst. Eng. Electron. 2021, 32, 1338–1344. [Google Scholar] [CrossRef]
- Rutten, M.G.; Ristic, B.; Gordon, N.J. A Comparison of Particle Filters for Recursive Track-before-Detect. In Proceedings of the 2005 7th International Conference on Information Fusion, Philadelphia, PA, USA, 25–28 July 2005; Volume 1, p. 7. [Google Scholar]
- Jing, C.; Lin, Z.; Li, J. Detection and Tracking of an Underwater Target Using the Combination of a Particle Filter and Track-before-Detect. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Duan, R.; Yang, K.; Wu, F.; Ma, Y. Particle Filter for Multipath Time Delay Tracking from Correlation Functions in Deep Water. J. Acoust. Soc. Am. 2018, 144, 397–411. [Google Scholar] [CrossRef]
- Yi, W.; Fu, L.; García-Fernández, Á.F.; Xu, L.; Kong, L. Particle Filtering Based Track-before-Detect Method for Passive Array Sonar Systems. Signal Process. 2019, 165, 303–314. [Google Scholar] [CrossRef]
- Saucan, A.-A.; Sintes, C.; Chonavel, T.; Caillec, J.-M.L. Robust, Track before Detect Particle Filter for Bathymetric Sonar Application. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014. [Google Scholar]
- Saucan, A.-A.; Chonavel, T.; Sintes, C.; Le Caillec, J.-M. CPHD-DOA Tracking of Multiple Extended Sonar Targets in Impulsive Environments. IEEE Trans. Signal Process. 2016, 64, 1147–1160. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, L.; Teng, T.; Jia, Z. Underwater Moving Target Detection Using Track-before-Detect Method with Low Power and High Refresh Rate Signal. Appl. Acoust. 2021, 174, 107750. [Google Scholar] [CrossRef]
- Li, W.; Subrahmanya, N.; Xu, F. Online Subspace and Sparse Filtering for Target Tracking in Reverberant Environment. In Proceedings of the 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, NJ, USA, 17–20 June 2012; IEEE: Piscataway, NJ, USA; pp. 329–332. [Google Scholar]
- Ge, F.-X.; Chen, Y.; Li, W. Target Detecton and Tracking via Structured Convex Optimization. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; IEEE: Piscataway, NJ, USA; pp. 426–430. [Google Scholar]
- Wan, M.; Gu, G.; Qian, W.; Ren, K.; Chen, Q.; Zhang, H.; Maldague, X. Total Variation Regularization Term-Based Low-Rank and Sparse Matrix Representation Model for Infrared Moving Target Tracking. Remote Sens. 2018, 10, 510. [Google Scholar] [CrossRef]
- Liu, B.; Yin, J.; Zhu, G. An Active Detection Method for an Underwater Intruder Using the Alternating Direction Method of Multipliers. J. Acoust. Soc. Am. 2019, 146, 4324–4332. [Google Scholar] [CrossRef]
- Zhu, Y.; Duan, R.; Yang, K.; Xue, R.; Wang, N. Reverberation Reduction Based on Multi-Ping Association in a Moving Target Scenario. J. Acoust. Soc. Am. 2020, 148, 2195–2208. [Google Scholar] [CrossRef]
- Zhu, Y.; Duan, R.; Yang, K. Robust Shallow Water Reverberation Reduction Methods Based on Low-Rank and Sparsity Decomposition. J. Acoust. Soc. Am. 2022, 151, 2826–2842. [Google Scholar] [CrossRef]
- Mahler, R.P.S. Statistical Multisource-Multitarget Information Fusion; Artech House Information Warfare Library; Artech House: Boston, MA, USA, 2007; ISBN 978-1-59693-092-6. [Google Scholar]
- Gning, A.; Ristic, B.; Mihaylova, L. Bernoulli Particle/Box-Particle Filters for Detection and Tracking in the Presence of Triple Measurement Uncertainty. IEEE Trans. Signal Process. 2012, 60, 2138–2151. [Google Scholar] [CrossRef]
- Boyd, S.P. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers; Now Publishers Inc: Hanover, MA, USA, 2011; ISBN 978-1-60198-460-9. [Google Scholar]
- Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications; Artech House: Boston, MA, USA, 2004; ISBN 1-58053-631-X. [Google Scholar]
- Mardani, M.; Mateos, G.; Giannakis, G.B. Decentralized Sparsity-Regularized Rank Minimization: Algorithms and Applications. IEEE Trans. Signal Process. 2013, 61, 5374–5388. [Google Scholar] [CrossRef]
- Sileshi, B.G.; Ferrer, C.; Oliver, J. Particle Filters and Resampling Techniques: Importance in Computational Complexity Analysis. In Proceedings of the 2013 Conference on Design and Architectures for Signal and Image Processing, Cagliari, Italy, 8–10 October 2013. [Google Scholar]
- Daum, F.E.; Huang, J. Mysterious Computational Complexity of Particle Filters; Drummond, O.E., Ed.; SPIE Digital Library: Orlando, FL, USA, 2002; pp. 418–426. [Google Scholar]
- Borodin, A. Computational Complexity-Theory and Applications. In Currents in Theory of Computing; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Limentani, G.B.; Ringo, M.C.; Ye, F.; Bergquist, M.L.; McSorley, E.O. Beyond the T-Test: Statistical Equivalence Testing. Anal. Chem. 2005, 77, 221–226. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust Principal Component Analysis? J. ACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
SRRs (dB) | <−25 | −20 | −17.5 | −15 | −12.5 | −10 | −7.5 | −5 | >−2.5 |
---|---|---|---|---|---|---|---|---|---|
of APF (%) | 0 | 16 | 43 | 81 | 90 | 97 | 99 | 100 | 100 |
of PF (%) | 0 | 2 | 9 | 41 | 71 | 85 | 91 | 96 | 100 |
Exceed (%) | 0 | 14 | 34 | 40 | 19 | 12 | 8 | 4 | 0 |
Datasets | Target | No. of Frames | with PF-Tracker | with APF-Tracker |
---|---|---|---|---|
A | 1 | 120 | 0.7919 | 0.9500 |
B | 2 | 87 | 0.7586 | 0.9425 |
C | 3 | 100 | 0.7700 | 0.9100 |
D | 4 | 85 | 0.7176 | 0.8824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Duan, R.; Yang, K.; Li, Z.; Liu, Z. An Adaptive Tracking Method for Moving Target in Fluctuating Reverberation Environment. Remote Sens. 2024, 16, 1569. https://doi.org/10.3390/rs16091569
Wang N, Duan R, Yang K, Li Z, Liu Z. An Adaptive Tracking Method for Moving Target in Fluctuating Reverberation Environment. Remote Sensing. 2024; 16(9):1569. https://doi.org/10.3390/rs16091569
Chicago/Turabian StyleWang, Ning, Rui Duan, Kunde Yang, Zipeng Li, and Zhanchao Liu. 2024. "An Adaptive Tracking Method for Moving Target in Fluctuating Reverberation Environment" Remote Sensing 16, no. 9: 1569. https://doi.org/10.3390/rs16091569
APA StyleWang, N., Duan, R., Yang, K., Li, Z., & Liu, Z. (2024). An Adaptive Tracking Method for Moving Target in Fluctuating Reverberation Environment. Remote Sensing, 16(9), 1569. https://doi.org/10.3390/rs16091569