Effects of Equatorial Plasma Bubbles on Multi-GNSS Signals: A Case Study over South China
"> Figure 1
<p>An example of a post-processed airglow image at 15:24 UT on 3 April 2022. (<b>a</b>) Geographical distribution of relative airglow values with pseudocolor. The black star represents the location of the ground station, and the black triangle represents the ionospheric pierce point (IPP) location of BDS GEO satellite C03 at 300 km. The dashed and dash-dot lines mark the longitude and latitude of the IPP, respectively. (<b>b</b>) Airglow values at a fixed latitude of 21.2° extracted from panel (<b>a</b>). The black dashed line indicates the airglow value extracted at the fixed IPP.</p> "> Figure 2
<p>Comparison of the S<sub>4</sub> index (Galileo: L1C, GPS: L1C), airglow depletion, and deviation VTEC (Galileo: L1C-L5Q, GPS: L1C-L2W) for (<b>a</b>,<b>c</b>) Galileo and (<b>b</b>,<b>d</b>) GPS during 12–20 UT on 3 April 2022. The signal path with the highest elevation is selected among all the satellites at a certain epoch. (<b>a</b>,<b>b</b>) Distributions of the selected ionospheric pierce points (IPPs, color dots) at an effective height of 300 km. The selected area is at 19°–23°N, which is covered by the airglow image. The black stars represent the location of the GNSS receiver and airglow imager at Zhuhai, China. (<b>c</b>,<b>d</b>) Variations of the S<sub>4</sub> index (orange bar), airglow depletion (blue bar), and deviation VTEC (colored line) as a function of UT (LT ≈ UT + 7.5). The airglow values are the post-processed airglow values divided by a constant value (it is 200 in this work). The specific PRNs are also marked in the panels, and the colors used for specific PRNs are the same in panels (<b>a</b>,<b>c</b>).</p> "> Figure 3
<p>Comparison of the S<sub>4</sub> index (BDS: L2I, SBAS: L1C), airglow depletion, and deviation VTEC (BDS: L2I-L6I, SBAS: L1C-L5I) for eight GEO satellites during 12–20 UT on 3 April 2022. (<b>a</b>) Geographical distribution of ground-based station (red triangle) and IPPs (black pentagrams) for eight GEO satellites. From top to bottom (<b>b</b>–<b>i</b>) are eight GEO satellites distributed from west to east.</p> "> Figure 4
<p>Variations of signal quality parameters for L6I (1268.52 MHz) observations from the BDS-C03 GEO satellite during 12–20 UT on 3 April 2022. From top to bottom are the variations of (<b>a</b>) the S<sub>4</sub> index (L6I) and airglow depletion, (<b>b</b>) the deviation VTEC (L2I-L6I), (<b>c</b>) the signal-to-noise ratio (C/N0, S6I), (<b>d</b>) the number of cycle slips, and (<b>e</b>) the number of losses of lock as a function of UT.</p> "> Figure 5
<p>Comparison of the number of error epochs (cycle slip or loss of phase observation, blue bar), number of scintillation events (S<sub>4</sub> > 1.5* averaged S<sub>4</sub>, orange bar), and corresponding mean S<sub>4</sub> intensity (yellow bar) at L1 frequency (GPS L1C, Galileo L1C, GLONASS L1C: 1575.42 MHz, and BDS-2 and BDS-3 L2I: 1561.098 MHz) band for different constellations. For better comparison with the S<sub>4</sub> index, the error epochs are divided into 1 min time bins. The constellation is marked in the upper left corner of each subpanel, and the upper right corner indicates the average number of satellites observed at each epoch.</p> "> Figure 6
<p>Comparison of the number of error epochs, number of scintillation events, and corresponding mean S<sub>4</sub> intensity for three orbits (MEO, GEO, IGSO) of the BDS at L1 frequency (L2I, 1561.098 MHz). This figure is similar to <a href="#remotesensing-16-01358-f005" class="html-fig">Figure 5</a>.</p> "> Figure 7
<p>Occurrence rate of error epochs for (<b>a</b>) GPS, (<b>b</b>) Galileo, (<b>c</b>) GLONASS, and (<b>d</b>) BDS during 12–20 UT on 3 April 2022. The color of the bar indicates the frequency band and the signal types are marked in x-label. When the S<sub>4</sub> index exceeds the threshold, the signal is considered to have passed through the EPB at this time. The occurrence rate is defined as the total epoch of cycle slips and loss of phase observations divided by the total epoch in which the signal passes through the EPB in 1 min.</p> "> Figure 8
<p>Occurrence rate of error epochs for BDS-2 and BDS-3 and for different orbit types (MEO, GEO, IGSO). This figure is similar to <a href="#remotesensing-16-01358-f007" class="html-fig">Figure 7</a>.</p> ">
Abstract
:1. Introduction
2. Data and Methods
3. Comparison of GNSS and Airglow Data
4. Signal Quality Assessment
5. Conclusions
- (1)
- The joint airglow-GNSS observations reveal that the center part of the airglow depletion often corresponds to stronger GNSS scintillation, while the edge part of the bubble, which is considered to have the largest density gradient, corresponds to relatively smaller scintillation instead. The sharp fluctuations in dVTEC also correspond to the center of the airglow depletion.
- (2)
- EPBs have significant impacts on GNSS signals, including signal strength degradation, loss of lock, and cycle slip, and these impacts are dependent on signal modulation for different GNSS constellations. The overall stability of the L1 band is better than that of the L2 and L5 bands, and signal tracking stability of Galileo is better than that of the others. For frequency selection in dual-frequency positioning, L1C and L2L for GPS, L1C and L5Q for Galileo, L1P and L2C for GLONASS, and L1P and L5P for BDS exhibit great signal tracking stability and could be better combinations during EPB events.
- (3)
- The BDS signals are further assessed according to different generations and satellite orbits. The signal tracking of BDS-3 is more stable than that of BDS-2. The performance of the IGSO satellites in BDS is far worse than that of the MEO and GEO satellites, which is likely related to the special signal path trajectory of the IGSO satellite.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kintner, P.M.; Ledvina, B.M.; de Paula, E.R. GPS and ionospheric scintillations. Space Weather 2007, 5, S09003. [Google Scholar] [CrossRef]
- Wernik, A.W.; Secan, J.A.; Fremouw, E.J. Ionospheric irregularities and scintillation. Adv. Space Res. 2003, 31, 971–981. [Google Scholar] [CrossRef]
- Jacobsen, K.S.; Andalsvik, Y.L. Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway. J. Space Weather Space Clim. 2016, 6, A9. [Google Scholar] [CrossRef]
- Moreno, B.; Radicella, S.; de Lacy, M.C.; Herraiz, M.; Rodriguez-Caderot, G. On the effects of the ionospheric disturbances on precise point positioning at equatorial latitudes. GPS Solut. 2011, 15, 381–390. [Google Scholar] [CrossRef]
- Yousuf, M.; Dashora, N.; Sridhar, M.; Dutta, G. Long-term impact of ionospheric scintillations on kinematic precise point positioning: Seasonal and solar activity dependence over Indian low latitudes. GPS Solut. 2023, 27, 40. [Google Scholar] [CrossRef]
- Li, W.; Song, S.; Zhou, W.; Cheng, N.; Yu, C. Investigating the Impacts of Ionospheric Irregularities on Precise Point Positioning over China and Its Mechanism. Space Weather 2022, 20, e2022SW003236. [Google Scholar] [CrossRef]
- Sultan, P.J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. Space Phys. 1996, 101, 26875–26891. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L.; de Paula, E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res. Space Phys. 1999, 104, 19859–19869. [Google Scholar] [CrossRef]
- Carter, B.A.; Yizengaw, E.; Retterer, J.M.; Francis, M.; Terkildsen, M.; Marshall, R.; Norman, R.; Zhang, K. An analysis of the quiet time day-to-day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region. J. Geophys. Res. Space Phys. 2014, 119, 3206–3223. [Google Scholar] [CrossRef]
- Currie, J.L.; Carter, B.A.; Retterer, J.; Dao, T.; Pradipta, R.; Caton, R.; Groves, K.; Otsuka, Y.; Yokoyama, T.; Hozumi, K.; et al. On the Generation of an Unseasonal EPB over South East Asia. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028724. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’s Ionosphere Plasma Physics and Electrodynamics; Academic Press: San Diego, CA, USA, 2009; Volume 96. [Google Scholar]
- Ma, G.; Maruyama, T. A super bubble detected by dense GPS network at east Asian longitudes. Geophys. Res. Lett. 2006, 33, L21103. [Google Scholar] [CrossRef]
- Unnikrishnan, K.; Sreekumar, H.; Choudhary, R.K.; Ashna, V.M.; Ambili, K.M.; Shreedevi, P.R.; Rao, P.B. A study on the evolution of plasma bubbles using the single station-multisatellite and multistation-single satellite techniques. J. Geophys. Res. Space Phys. 2017, 122, 3678–3688. [Google Scholar] [CrossRef]
- Seo, J.; Walter, T.; Enge, P. Availability Impact on GPS Aviation due to Strong Ionospheric Scintillation. IEEE Trans. Aerosp. Electron Syst. 2011, 47, 1963–1973. [Google Scholar] [CrossRef]
- Kil, H.; Kintner, P.M.; de Paula, E.R.; Kantor, I.J. Latitudinal variations of scintillation activity and zonal plasma drifts in South America. Radio Sci. 2002, 37, 1006. [Google Scholar] [CrossRef]
- Klobuchar, J.A.; Anderson, D.N.; Doherty, P.H. Model Studies of the Latitudinal Extent of the Equatorial Anomaly during Equinoctial Conditions. Radio Sci. 1991, 26, 1025–1047. [Google Scholar] [CrossRef]
- Basu, S.; Kudeki, E.; Basu, S.; Valladares, C.E.; Weber, E.J.; Zengingonul, H.P.; Bhattacharyya, S.; Sheehan, R.; Meriwether, J.W.; Biondi, M.A.; et al. Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. J. Geophys. Res. Space Phys. 1996, 101, 26795–26809. [Google Scholar] [CrossRef]
- Basu, S.; MacKenzie, E.; Basu, S. Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci. 1988, 23, 363–378. [Google Scholar] [CrossRef]
- de Paula, E.R.; Rodrigues, F.S.; Iyer, K.N.; Kantor, I.J.; Abdu, M.A.; Kintner, P.M.; Ledvina, B.M.; Kil, H. Equatorial anomaly effects on GPS scintillations in brazil. Adv. Space Res. 2003, 31, 749–754. [Google Scholar] [CrossRef]
- Muella, M.T.A.H.; Duarte-Silva, M.H.; Moraes, A.O.; de Paula, E.R.; de Rezende, L.F.C.; Alfonsi, L.; Affonso, B.J. Climatology and modeling of ionospheric scintillations and irregularity zonal drifts at the equatorial anomaly crest region. Ann. Geophys. 2017, 35, 1201–1218. [Google Scholar] [CrossRef]
- Damaceno, J.G.; Bolmgren, K.; Bruno, J.; De Franceschi, G.; Mitchell, C.; Cafaro, M. GPS loss of lock statistics over Brazil during the 24th solar cycle. Adv. Space Res. 2020, 66, 219–225. [Google Scholar] [CrossRef]
- Srinivasu, V.K.D.; Dashora, N.; Prasad, D.S.V.V.D.; Niranjan, K. Loss of lock on GNSS signals and its association with ionospheric irregularities observed over Indian low latitudes. GPS Solut. 2022, 26, 34. [Google Scholar] [CrossRef]
- Mulugeta, S.; Kassa, T. Investigation of GPS Loss of Lock occurrence and Its characteristics over Ethiopia using Geodetic GPS receivers of the IGS network. Adv. Space Res. 2022, 69, 939–950. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, M.; Xiao, Z.; Hao, Y.; Shi, L.; Yang, G.; Suo, Y. The seasonal dependence of cycle slip occurrence of GPS data over China low latitude region. Sci. China Ser. E Technol. Sci. 2007, 50, 422–429. [Google Scholar] [CrossRef]
- Zhang, D.H.; Cai, L.; Hao, Y.Q.; Xiao, Z.; Shi, L.Q.; Yang, G.L.; Suo, Y.C. Solar cycle variation of the GPS cycle slip occurrence in China low-latitude region. Space Weather 2010, 8, S10D10. [Google Scholar] [CrossRef]
- Srinivasu, V.K.D.; Dashora, N.; Prasad, D.S.V.V.D.; Niranjan, K.; Gopi Krishna, S. On the occurrence and strength of multi-frequency multi-GNSS Ionospheric Scintillations in Indian sector during declining phase of solar cycle 24. Adv. Space Res. 2018, 61, 1761–1775. [Google Scholar] [CrossRef]
- Biswas, T.; Ghosh, S.; Paul, A.; Sarkar, S. Interfrequency Performance Characterizations of GPS during Signal Outages from an Anomaly Crest Location. Space Weather 2019, 17, 803–815. [Google Scholar] [CrossRef]
- Salles, L.A.; Vani, B.C.; Moraes, A.; Costa, E.; de Paula, E.R. Investigating Ionospheric Scintillation Effects on Multifrequency GPS Signals. Surv. Geophys. 2021, 42, 999–1025. [Google Scholar] [CrossRef]
- Salles, L.A.; Moraes, A.; Vani, B.; Sousasantos, J.; Affonso, B.J.; Monico, J.F.G. A deep fading assessment of the modernized L2C and L5 signals for low-latitude regions. GPS Solut. 2021, 25, 122. [Google Scholar] [CrossRef]
- Song, K.; Meziane, K.; Kashcheyev, A.; Jayachandran, P.T. Multifrequency Observation of High Latitude Scintillation: A Comparison With the Phase Screen Model. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5801209. [Google Scholar] [CrossRef]
- Liu, H.; Ren, X.; Zhang, X.; Mei, D.; Yang, P. Investigating the Effects of Ionospheric Scintillation on Multi-Frequency BDS-2/BDS-3 Signals at Low Latitudes. Space Weather 2023, 21, e2022SW003362. [Google Scholar] [CrossRef]
- Sleewaegen, J.-M.; Wilde, W.D.; Hollreiser, M. Galileo AltBOC Receiver. In Proceedings of the ION GNSS 2004, Rotterdam, The Netherlands, 16–19 May 2004. [Google Scholar]
- Padokhin, A.M.; Mylnikova, A.A.; Yasyukevich, Y.V.; Morozov, Y.V.; Kurbatov, G.A.; Vesnin, A.M. Galileo E5 AltBOC Signals: Application for Single-Frequency Total Electron Content Estimations. Remote Sens. 2021, 13, 3973. [Google Scholar] [CrossRef]
- de Oliveira Moraes, A.; Muella, M.T.A.H.; de Paula, E.R.; de Oliveira, C.B.A.; Terra, W.P.; Perrella, W.J.; Meibach-Rosa, P.R.P. Statistical evaluation of GLONASS amplitude scintillation over low latitudes in the Brazilian territory. Adv. Space Res. 2018, 61, 1776–1789. [Google Scholar] [CrossRef]
- Goswami, S.; Paul, A.; Haldar, S. Study of Relative Performance of Different Navigational Satellite Constellations under Adverse Ionospheric Conditions. Space Weather 2018, 16, 667–675. [Google Scholar] [CrossRef]
- Blewitt, G. An automatic editing algorithm for GPS data. Geophys. Res. Lett. 1990, 17, 199–202. [Google Scholar] [CrossRef]
- Keshin, M. A new algorithm for single receiver DCB estimation using IGS TEC maps. GPS Solut. 2012, 16, 283–292. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1A–121A. [Google Scholar] [CrossRef]
- Conker, R.S.; El-Arini, M.B.; Hegarty, C.J.; Hsiao, T. Modeling the effects of ionospheric scintillation on GPS/Satellite-Based Augmentation System availability. Radio Sci. 2003, 38, 1001. [Google Scholar] [CrossRef]
- Dousa, P.V.J. G-Nut Anubis Open Source Tool for Multi-GNSS Data Monitoring with a Multipath Detection for New Signals, Frequencies and Constellations; Springer: Berlin/Heidelberg, Germany, 2016; Volume 143, pp. 775–782. [Google Scholar]
- Zhao, Q.; Sun, B.; Dai, Z.; Hu, Z.; Shi, C.; Liu, J. Real-time detection and repair of cycle slips in triple-frequency GNSS measurements. GPS Solut. 2014, 19, 381–391. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shiokawa, K.; Ogawa, T.; Wilkinson, P. Geomagnetic conjugate observations of equatorial airglow depletions. Geophys. Res. Lett. 2002, 29, 1753. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, J.; Hao, Y.; Zhang, M.; Niu, J.; Wan, X.; Huang, F.; Han, H.; Song, X.; Chen, J. Assessment of the orbital variations of GNSS GEO and IGSO satellites for monitoring ionospheric TEC. GPS Solut. 2023, 27, 62. [Google Scholar] [CrossRef]
- Demyanov, V.V.; Yasyukevich, Y.V.; Ishin, A.B.; Astafyeva, E.I. Ionospheric super-bubble effects on the GPS positioning relative to the orientation of signal path and geomagnetic field direction. GPS Solut. 2011, 16, 181–189. [Google Scholar] [CrossRef]
- Carrano, C.S.; Rino, C.L. A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results. Radio Sci. 2016, 51, 789–813. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Kakad, B.; Gurram, P.; Sripathi, S.; Sunda, S. Development of intermediate-scale structure at different altitudes within an equatorial plasma bubble: Implications for L-band scintillations. J. Geophys. Res. Space Phys. 2017, 122, 1015–1030. [Google Scholar] [CrossRef]
- de O. Moraes, A.; Vani, B.C.; Costa, E.; Sousasantos, J.; Abdu, M.A.; Rodrigues, F.; Gladek, Y.C.; de Oliveira, C.B.A.; Monico, J.F.G. Ionospheric Scintillation Fading Coefficients for the GPS L1, L2, and L5 Frequencies. Radio Sci. 2018, 53, 1165–1174. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Z.; Lou, Y.; Gu, S.; Chen, B. A study of multi-GNSS ionospheric scintillation and cycle-slip over Hong Kong region for moderate solar flux conditions. Adv. Space Res. 2017, 60, 1039–1053. [Google Scholar] [CrossRef]
- Anderson, P.C.; Straus, P.R. Magnetic field orientation control of GPS occultation observations of equatorial scintillation. Geophys. Res. Lett. 2005, 32, L21107. [Google Scholar] [CrossRef]
PRN | Satellite Name | Longitude (°E) | Lauch Date |
---|---|---|---|
C04 | BDS-2 GEO4 | 160 | 31 October 2010 |
C05 | BDS-2 GEO5 | 59 | 24 February 2012 |
C02 | BDS-2 GEO6 | 84 | 25 October 2012 |
C03 | BDS-2 GEO7 | 110.5 | 12 June 2016 |
C01 | BDS-2 GEO8 | 144.5 | 17 May 2019 |
C06 | BDS-2 IGSO1 | 105.5 | 31 July 2010 |
C07 | BDS-2 IGSO2 | 106.5 | 17 December 2010 |
C08 | BDS-2 IGSO3 | 105 | 9 April 2011 |
C09 | BDS-2 IGSO4 | 95.9 | 26 July 2011 |
C10 | BDS-2 IGSO5 | 94 | 1 December 2011 |
C13 | BDS-2 IGSO6 | 96 | 11 October 2016 |
C16 | BDS-2 IGSO7 | 113.5 | 9 July 2018 |
C11 | BDS-2 MEO3 | - | 29 April 2012 |
C12 | BDS-2 MEO4 | - | 29 April 2012 |
C14 | BDS-2 MEO6 | - | 18 September 2012 |
PRN | Satellite Name | Longitude (°E) | Lauch Date |
---|---|---|---|
C59 | BDS-3 GEO1 | 140 | 1 November 2018 |
C60 | BDS-3 GEO2 | 80 | 9 March 2020 |
C38 | BDS-3 IGSO1 | 119 | 20 April 2019 |
C39 | BDS-3 IGSO2 | 118.5 | 24 June 2019 |
C40 | BDS-3 IGSO3 | 119.5 | 5 November 2019 |
C19 | BDS-3 MEO1 | - | 5 November 2017 |
C28 | BDS-3 MEO8 | - | 11 January 2018 |
C21 | BDS-3 MEO3 | - | 12 February 2018 |
C22 | BDS-3 MEO4 | - | 12 February 2018 |
C29 | BDS-3 MEO9 | - | 29 March 2018 |
C23 | BDS-3 MEO5 | - | 29 July 2018 |
C24 | BDS-3 MEO6 | - | 29 July 2018 |
C26 | BDS-3 MEO11 | - | 24 August 2018 |
C25 | BDS-3 MEO12 | - | 24 August 2018 |
C33 | BDS-3 MEO14 | - | 19 September 2018 |
C35 | BDS-3 MEO15 | - | 15 October 2018 |
C34 | BDS-3 MEO16 | - | 15 October 2018 |
C45 | BDS-3 MEO23 | - | 23 September 2019 |
C43 | BDS-3 MEO21 | - | 23 November 2019 |
C44 | BDS-3 MEO22 | - | 23 November 2019 |
C41 | BDS-3 MEO19 | - | 16 December 2019 |
C42 | BDS-3 MEO20 | - | 16 December 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Zhong, J.; Hao, Y.; Wang, N.; Wan, X.; Huang, F.; Li, Q.; Song, X.; Chen, J.; Wang, K.; et al. Effects of Equatorial Plasma Bubbles on Multi-GNSS Signals: A Case Study over South China. Remote Sens. 2024, 16, 1358. https://doi.org/10.3390/rs16081358
Han H, Zhong J, Hao Y, Wang N, Wan X, Huang F, Li Q, Song X, Chen J, Wang K, et al. Effects of Equatorial Plasma Bubbles on Multi-GNSS Signals: A Case Study over South China. Remote Sensing. 2024; 16(8):1358. https://doi.org/10.3390/rs16081358
Chicago/Turabian StyleHan, Hao, Jiahao Zhong, Yongqiang Hao, Ningbo Wang, Xin Wan, Fuqing Huang, Qiaoling Li, Xingyan Song, Jiawen Chen, Kang Wang, and et al. 2024. "Effects of Equatorial Plasma Bubbles on Multi-GNSS Signals: A Case Study over South China" Remote Sensing 16, no. 8: 1358. https://doi.org/10.3390/rs16081358
APA StyleHan, H., Zhong, J., Hao, Y., Wang, N., Wan, X., Huang, F., Li, Q., Song, X., Chen, J., Wang, K., Tang, Y., Ou, Z., & Du, W. (2024). Effects of Equatorial Plasma Bubbles on Multi-GNSS Signals: A Case Study over South China. Remote Sensing, 16(8), 1358. https://doi.org/10.3390/rs16081358