Characterizing Water Composition with an Autonomous Robotic Team Employing Comprehensive In Situ Sensing, Hyperspectral Imaging, Machine Learning, and Conformal Prediction
<p>Configuration of the USV: (<b>a</b>) Frontal view of the USV showing the Eureka Manta + 40 multiprobes mounted on the underside of the boat. (<b>b</b>) The USV deployed in the water.</p> "> Figure 2
<p>Configuration of the UAV: (<b>a</b>) The hyperspectral imager and acquisition computer. (<b>b</b>) The assembled UAV with secondary processing computer and (upward facing) downwelling irradiance spectrometer.</p> "> Figure 3
<p>Hyperspectral image processing: Hyperspectral data cubes are collected one scan-line at a time (<b>left</b>). By utilizing downwelling irradiance spectra, we convert each pixel from spectral radiance to reflectance. By using orientation and position data from the on-board GPS and INS, we georeference each pixel to assign it a latitude and longitude on the ground. The final data product is the georectified hyperspectral reflectance data cube (<b>right</b>) visualized as a pseudo-color image with reflectance as a function of wavelength along the z-axis.</p> "> Figure 4
<p>A georectified reflectance data cube is visualized (center) with the <math display="inline"><semantics> <msub> <mo form="prefix">log</mo> <mn>10</mn> </msub> </semantics></math> reflectance along the z-axis and a pseudo-color image on the top. In the top left, we visualize the downwelling irradiance spectrum (the incident light). The surrounding plots showcase exemplar pixel reflectance spectra for open water, dry grass, algae, and a rhodamine dye plume used to test the system.</p> "> Figure 5
<p>The pond in Montague, Texas, where the robot team was deployed. The pond includes multiple distinct regions separated by small islands and grasses.</p> "> Figure 6
<p>Distribution of total downwelling intensity during each of the three HSI collection flights. The multi-modal nature of these distributions reflects the impact of the relative orientation of the drone to the sun as well as potential occlusion due to the presence of clouds.</p> "> Figure 7
<p>Scatter diagrams (<b>left</b>) and quantile–quantile plots (<b>right</b>) for the hyperparameter-optimized RFR models for the physical variables measured by the USV.</p> "> Figure 8
<p>Ranked permutation importance for each feature in the physical variable models. Permutation importance measured the decrease in the model’s <math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> value after replacing each feature in the prediction set with a random permutation of its values.</p> "> Figure 9
<p>Maps generated by applying each of the physical variable models to the hyperspectral data cubes collected on 23 November. Overlaid over the predictions are color-filled squares showing the associated in situ reference data for the same collection period. The size of the squares has been exaggerated for visualization. We note that there is good agreement between the model predictions and the reference data.</p> "> Figure 10
<p>Scatter diagrams (<b>left</b>) and quantile–quantile plots (<b>right</b>) for the hyperparameter-optimized RFR models for the ion measurements made by the USV.</p> "> Figure 11
<p>Ranked permutation importance for the top 25 features of the ion models. The permutation importance measures the decrease in the model’s <math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> value when each feature is replaced by a random permutation of its values.</p> "> Figure 12
<p>Maps generated by applying the trained ion models to the data cubes collected on 23 November. Overlaid on the maps are the in situ reference measurements for the same collection period. The size of the squares has been exaggerated for the visualization. We note that there is good agreement between the generated map and the reference data.</p> "> Figure 13
<p>Scatter plots (<b>left</b>) and quantile–quantile plots (<b>right</b>) for the final hyperparameter-optimized models for the biochemical targets blue–green algae (phycoerythrin), CDOM, chlorophyll-a, and blue–green algae (phycocyanin).</p> "> Figure 14
<p>Ranked permutation importance for each feature in the trained biochemical models. The permutation importance measures the decrease in the model’s <math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> value after replacing each feature with a random permutation of its values.</p> "> Figure 15
<p>Maps generated by applying the trained biochemical models to the data cubes collected on 23 November. Overlaid are the in situ reference data for the same collection period. The size of the squares has been exaggerated for the visualization. We note there is good agreement between the predicted map and the reference data.</p> "> Figure 16
<p>Scatter diagrams (<b>left</b>) and quantile–quantile plots (<b>right</b>) for the hyperparameter-optimized RFR models for the chemical variables measured by the USV.</p> "> Figure 17
<p>Ranked permutation importance for the top 25 features of the chemical models. The permutation importance measures the decrease in the model’s <math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> value after replacing each feature in the prediction set with a random permutation of its values.</p> "> Figure 18
<p>Maps generated by applying the trained chemical variable models to the hyperspectral data cubes collected on 23 November. Overlaid are color-filled squares showing the in situ reference data for the same collection period. The size of the squares is exaggerated for the visualization. We note that there is good agreement between the model predictions and reference data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. USV: In Situ Measurements
2.2. UAV: Hyperspectral Data Cubes
2.3. Data Collection
2.4. Machine Learning Methods
3. Results
3.1. Physical Variables
3.2. Ions
3.3. Biochemical Variables
3.4. Chemical Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPS | Global Positioning System |
INS | Inertial Navigation System |
UTM | Universal Transverse Mercator |
UV | Ultraviolet |
ML | Machine Learning |
USV | Uncrewed Surface Vessel |
UAV | Unmanned Aerial Vehicle |
CDOM | Colored Dissolved Organic Matter |
CO | Crude Oil |
OB | Optical Brighteners |
FNU | Formazin Nephelometric Unit |
RFR | Random Forest Regressor |
MLJ | Machine Learning framework for Julia |
RMSE | Root Mean Square Error |
MAE | Mean Absolute Error |
RENDVI | Red-Edge Normalized Difference Vegetation Index |
Appendix A
Target | Number of Trees | Sampling Ratio | Maximum Tree Depth | Number of Sub-Features | Minimum Samples per Leaf | Minimum Samples per Split |
---|---|---|---|---|---|---|
Temperature | 153 | 0.979 | 20 | 5 | 1 | 2 |
Conductivity | 154 | 0.992 | 20 | 5 | 1 | 2 |
pH | 103 | 0.972 | 20 | 5 | 1 | 2 |
Turbidity | 158 | 0.998 | 20 | 5 | 1 | 2 |
172 | 0.984 | 20 | 5 | 1 | 2 | |
110 | 0.999 | 20 | 5 | 1 | 2 | |
103 | 0.972 | 20 | 5 | 1 | 2 | |
Phycoerythrin | 158 | 0.998 | 20 | 5 | 1 | 2 |
CDOM | 157 | 0.982 | 20 | 5 | 1 | 2 |
Chlorophyll-a | 158 | 0.998 | 20 | 5 | 1 | 2 |
Phycocyanin | 142 | 0.995 | 20 | 5 | 1 | 2 |
Crude Oil | 154 | 0.992 | 20 | 5 | 1 | 2 |
Optical Brighteners | 157 | 0.982 | 20 | 5 | 1 | 2 |
References
- Melesse, A.M.; Weng, Q.; Thenkabail, P.S.; Senay, G.B. Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors 2007, 7, 3209–3241. [Google Scholar] [CrossRef]
- Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. 2009, 33, 183–207. [Google Scholar] [CrossRef]
- Aurin, D.; Mannino, A.; Lary, D.J. Remote sensing of CDOM, CDOM spectral slope, and dissolved organic carbon in the global ocean. Appl. Sci. 2018, 8, 2687. [Google Scholar] [CrossRef]
- Ross, M.R.; Topp, S.N.; Appling, A.P.; Yang, X.; Kuhn, C.; Butman, D.; Simard, M.; Pavelsky, T.M. AquaSat: A data set to enable remote sensing of water quality for inland waters. Water Resour. Res. 2019, 55, 10012–10025. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C.E. A review of oil spill remote sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef]
- Koponen, S.; Attila, J.; Pulliainen, J.; Kallio, K.; Pyhälahti, T.; Lindfors, A.; Rasmus, K.; Hallikainen, M. A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland. Cont. Shelf Res. 2007, 27, 228–244. [Google Scholar] [CrossRef]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Absalon, D.; Matysik, M.; Woźnica, A.; Janczewska, N. Detection of changes in the hydrobiological parameters of the Oder River during the ecological disaster in July 2022 based on multi-parameter probe tests and remote sensing methods. Ecol. Indic. 2023, 148, 110103. [Google Scholar] [CrossRef]
- Lary, D.J. Artificial intelligence in geoscience and remote sensing. In Geoscience and Remote Sensing New Achievements; IntechOpen: London, UK, 2010. [Google Scholar]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GIScience Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Hruska, R.; Mitchell, J.; Anderson, M.; Glenn, N.F. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sens. 2012, 4, 2736–2752. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Raval, S.; Cullen, P. UAV-hyperspectral imaging of spectrally complex environments. Int. J. Remote Sens. 2020, 41, 4136–4159. [Google Scholar] [CrossRef]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Inamdar, D.; Soffer, R.; Lucanus, O.; Gorman, J.; Naprstek, T.; Schaaf, E.S.; Ifimov, G.; Elmer, K.; et al. Implementation of a UAV–hyperspectral pushbroom imager for ecological monitoring. Drones 2019, 3, 12. [Google Scholar] [CrossRef]
- Kurihara, J.; Ishida, T.; Takahashi, Y. Unmanned Aerial Vehicle (UAV)-based hyperspectral imaging system for precision agriculture and forest management. In Unmanned Aerial Vehicle: Applications in Agriculture and Environment; Springer International Publishing: Cham, Switzerland, 2020; pp. 25–38. [Google Scholar]
- Ehmann, K.; Kelleher, C.; Condon, L.E. Monitoring turbidity from above: Deploying small unoccupied aerial vehicles to image in-stream turbidity. Hydrol. Process. 2019, 33, 1013–1021. [Google Scholar] [CrossRef]
- Lu, Q.; Si, W.; Wei, L.; Li, Z.; Xia, Z.; Ye, S.; Xia, Y. Retrieval of water quality from UAV-borne hyperspectral imagery: A comparative study of machine learning algorithms. Remote Sens. 2021, 13, 3928. [Google Scholar] [CrossRef]
- Zhang, D.; Zeng, S.; He, W. Selection and Quantification of Best Water Quality Indicators Using UAV-Mounted Hyperspectral Data: A Case Focusing on a Local River Network in Suzhou City, China. Sustainability 2022, 14, 16226. [Google Scholar] [CrossRef]
- Lary, D.J.; Schaefer, D.; Waczak, J.; Aker, A.; Barbosa, A.; Wijeratne, L.O.H.; Talebi, S.; Fernando, B.; Sadler, J.Z.; Lary, T.; et al. Autonomous Learning of New Environments with a Robotic Team Employing Hyper-Spectral Remote Sensing, Comprehensive In-Situ Sensing and Machine Learning. Sensors 2021, 21, 2240. [Google Scholar] [CrossRef]
- Meier, L. QGroundControl. MAVLink Micro Air Vehicle Communication Protocol. 2010. Available online: http://qgroundcontrol.org/mavlink/start (accessed on 30 January 2019).
- De Marco, R.; Clarke, G.; Pejcic, B. Ion-selective electrode potentiometry in environmental analysis. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2007, 19, 1987–2001. [Google Scholar] [CrossRef]
- Trees, C.C.; Bidigare, R.R.; Karl, D.M.; Van Heukelem, L.; Dore, J. Fluorometric chlorophyll a: Sampling, laboratory methods, and data analysis protocols. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, NASA/TM-2002-210004/Rev3-Vol2; Mueller, J.L., Fargion, G.S., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002; pp. 269–283. [Google Scholar]
- Tillman, E.F. Evaluation of the Eureka Manta2 Water-Quality Multiprobe Sonde; Technical Report; US Geological Survey: Reston, VA, USA, 2017.
- Brient, L.; Lengronne, M.; Bertrand, E.; Rolland, D.C.; Sipel, A.; Steinmann, D.; Baudin, I.; Legeas, M.; Rouzic, B.L.; Bormans, M. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. J. Environ. Monit. JEM 2008, 10, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.N.; Kelble, C.R.; Ortner, P.B.; Rudnick, D.T. Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol. Indic. 2009, 9, S56–S67. [Google Scholar] [CrossRef]
- Brown, C.E.; Fingas, M.F. Review of the development of laser fluorosensors for oil spill application. Mar. Pollut. Bull. 2003, 47, 477–484. [Google Scholar] [CrossRef]
- Cao, Y.; Griffith, J.F.; Weisberg, S.B. Evaluation of optical brightener photodecay characteristics for detection of human fecal contamination. Water Res. 2009, 43, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar]
- Dordoni, M.; Zappalà, P.; Barth, J.A. A preliminary global hydrochemical comparison of lakes and reservoirs. Front. Water 2023, 5, 1084050. [Google Scholar] [CrossRef]
- Pace, M.L.; Reche, I.; Cole, J.J.; Fernández-Barbero, A.; Mazuecos, I.P.; Prairie, Y.T. pH change induces shifts in the size and light absorption of dissolved organic matter. Biogeochemistry 2012, 108, 109–118. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Voss, K.; Banks, A.C.; Boss, E.; Castagna, A.; Frouin, R.; Hieronymi, M.; Jamet, C.; Johnson, B.C.; Kuusk, J.; et al. A review of protocols for fiducial reference measurements of downwelling irradiance for the validation of satellite remote sensing data over water. Remote Sens. 2019, 11, 1742. [Google Scholar] [CrossRef]
- Müller, R.; Lehner, M.; Muller, R.; Reinartz, P.; Schroeder, M.; Vollmer, B. A Program for Direct Georeferencing of Airborne and Spaceborne Line Scanner Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 148–153. [Google Scholar]
- Bäumker, M.; Heimes, F. New calibration and computing method for direct georeferencing of image and scanner data using the position and angular data of an hybrid inertial navigation system. In Proceedings of the OEEPE Workshop, Integrated Sensor Orientation, Hannover, Germany, 17–18 September 2001; pp. 1–17. [Google Scholar]
- Mostafa, M.M.R.; Schwarz, K.P. A Multi-Sensor System for Airborne Image Capture and Georeferencing. Photogramm. Eng. Remote Sens. 2000, 66, 1417–1424. [Google Scholar]
- Bezanson, J.; Karpinski, S.; Shah, V.B.; Edelman, A. Julia: A fast dynamic language for technical computing. arXiv 2012, arXiv:1209.5145. [Google Scholar]
- Vegetation Indices Background. 2023. Available online: https://www.nv5geospatialsoftware.com/docs/backgroundvegetationindices.html (accessed on 3 January 2024).
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Hyperspectral Indices and Image Classifications for Agriculture and Vegetation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef] [PubMed]
- Blaom, A.D.; Kiraly, F.; Lienart, T.; Simillides, Y.; Arenas, D.; Vollmer, S.J. MLJ: A Julia package for composable machine learning. J. Open Source Softw. 2020, 5, 2704. [Google Scholar] [CrossRef]
- Sadeghi, B.; Chiarowongse, P.; Squire, K.; Jones, D.C.; Noack, A.; St-Jean, C.; Huijzer, R.; Schätzle, R.; Butterworth, I.; Peng, Y.; et al. DecisionTree.jl—A Julia implementation of the CART Decision Tree and Random Forest algorithms. Zenodo 2022. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on typical tabular data? Adv. Neural Inf. Process. Syst. 2022, 35, 507–520. [Google Scholar]
- Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [Google Scholar] [CrossRef]
- Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. Adv. Neural Inf. Process. Syst. 2013, 26, 431–439. [Google Scholar]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef]
- Parr, T.; Turgutlu, K.; Csiszar, C.; Howard, J. Beware default random forest importances. March 2018, 26, 2018. [Google Scholar]
- Shafer, G.; Vovk, V. A Tutorial on Conformal Prediction. J. Mach. Learn. Res. 2008, 9, 371–421. [Google Scholar]
- Angelopoulos, A.N.; Bates, S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv 2021, arXiv:2107.07511. [Google Scholar]
- Fontana, M.; Zeni, G.; Vantini, S. Conformal prediction: A unified review of theory and new challenges. Bernoulli 2023, 29, 1–23. [Google Scholar] [CrossRef]
- Papadopoulos, H. Inductive conformal prediction: Theory and application to neural networks. In Tools in Artificial Intelligence; IntechOpen: London, UK, 2008. [Google Scholar]
- Vogt, M.C.; Vogt, M.E. Near-remote sensing of water turbidity using small unmanned aircraft systems. Environ. Pract. 2016, 18, 18–31. [Google Scholar] [CrossRef]
- Vakili, T.; Amanollahi, J. Determination of optically inactive water quality variables using Landsat 8 data: A case study in Geshlagh reservoir affected by agricultural land use. J. Clean. Prod. 2020, 247, 119134. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.J.; Chen, B.; Guo, X.; Singh, V.P. A machine learning-based strategy for estimating non-optically active water quality parameters using Sentinel-2 imagery. Int. J. Remote Sens. 2021, 42, 1841–1866. [Google Scholar] [CrossRef]
- Niu, C.; Tan, K.; Jia, X.; Wang, X. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Environ. Pollut. 2021, 286, 117534. [Google Scholar] [CrossRef]
- Valle, D.; Izbicki, R.; Leite, R.V. Quantifying uncertainty in land-use land-cover classification using conformal statistics. Remote Sens. Environ. 2023, 295, 113682. [Google Scholar] [CrossRef]
- Zhu, N.; Xi, Z.; Wu, C.; Zhong, F.; Qi, R.; Chen, H.; Xu, S.; Ji, W. Inductive Conformal Prediction Enhanced LSTM-SNN Network: Applications to Birds and UAVs Recognition. IEEE Geosci. Remote Sens. Lett. 2024, 21, 3502705. [Google Scholar] [CrossRef]
- Horstrand, P.; Guerra, R.; Rodríguez, A.; Díaz, M.; López, S.; López, J.F. A UAV platform based on a hyperspectral sensor for image capturing and on-board processing. IEEE Access 2019, 7, 66919–66938. [Google Scholar] [CrossRef]
- Storch, T.; Honold, H.P.; Chabrillat, S.; Habermeyer, M.; Tucker, P.; Brell, M.; Ohndorf, A.; Wirth, K.; Betz, M.; Kuchler, M.; et al. The EnMAP imaging spectroscopy mission towards operations. Remote Sens. Environ. 2023, 294, 113632. [Google Scholar] [CrossRef]
Sensor | Units | Resolution | Sensor Type | Target Category |
---|---|---|---|---|
Temperature | °C | 0.01 | Thermistor | Physical |
Conductivity | μS/cm | 0.01 | Four-Electrode Graphite Sensor | Physical |
pH | logarithmic (0–14) | 0.01 | Flowing-Junction Reference Electrode | Physical |
Turbidity | FNU | 0.01 | Ion-Selective Electrode | Physical |
mg/L | 0.1 | Ion-Selective Electrode | Ions | |
mg/L | 0.1 | Ion-Selective Electrode | Ions | |
mg/L | 0.1 | Ion-Selective Electrode | Ions | |
Blue–Green Algae (phycoerythrin) | ppb | 0.01 | Fluorometer | Biochemical |
Blue–Green Algae (phycocyanin) | ppb | 0.01 | Fluorometer | Biochemical |
CDOM | ppb | 0.01 | Fluorometer | Biochemical |
Chlorophyll-a | ppb | 0.01 | Fluorometer | Biochemical |
Optical Brighteners | ppb | 0.01 | Fluorometer | Chemical |
Crude Oil | ppb | 0.01 | Fluorometer | Chemical |
Target | Units | R2 | RMSE | MAE | Estimated Uncertainty | Empirical Coverage (%) |
---|---|---|---|---|---|---|
Temperature | °C | 1.0 ± 6.04 × 10−6 | 0.0289 ± 0.000466 | 0.0162 ± 0.00016 | ±0.039 | 90.3 |
Conductivity | μS/cm | 1.0 ± 1.54 × 10−5 | 0.574 ± 0.0128 | 0.322 ± 0.00579 | ±0.76 | 90.6 |
pH | 0–14 | 0.994 ± 0.000288 | 0.0145 ± 0.000304 | 0.00739 ± 9.49 × 10−5 | ±0.017 | 89.5 |
Turbidity | FNU | 0.897 ± 0.00611 | 3.13 ± 0.084 | 0.736 ± 0.0156 | ±1.1 | 89.8 |
mg/L | 1.0 ± 1.06 × 10−5 | 0.285 ± 0.00357 | 0.137 ± 0.00224 | ±0.33 | 89.8 | |
mg/L | 0.995 ± 0.000196 | 0.895 ± 0.0202 | 0.516 ± 0.00759 | ±1.2 | 90.1 | |
mg/L | 0.993 ± 0.000229 | 6.16 ± 0.102 | 2.83 ± 0.0303 | ±7.3 | 90.0 | |
Blue–Green Algae (Phycoerythrin) | ppb | 0.995 ± 0.000601 | 0.783 ± 0.0489 | 0.287 ± 0.00959 | ±0.73 | 89.3 |
CDOM | ppb | 0.965 ± 0.00352 | 0.248 ± 0.0142 | 0.0921 ± 0.0024 | ±0.15 | 89.9 |
Chlorophyll-a | ppb | 0.908 ± 0.00664 | 0.37 ± 0.00934 | 0.131 ± 0.00228 | ±0.27 | 89.2 |
Blue–Green Algae (Phycocyanin) | ppb | 0.708 ± 0.00689 | 0.749 ± 0.0129 | 0.446 ± 0.00405 | ±0.93 | 89.8 |
Crude Oil | ppb | 0.949 ± 0.00267 | 0.247 ± 0.00597 | 0.0935 ± 0.00114 | ±0.17 | 89.8 |
Optical Brighteners | ppb | 0.943 ± 0.00122 | 0.0806 ± 0.0014 | 0.0481 ± 0.000416 | ±0.095 | 89.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waczak, J.; Aker, A.; Wijeratne, L.O.H.; Talebi, S.; Fernando, A.; Dewage, P.M.H.; Iqbal, M.; Lary, M.; Schaefer, D.; Lary, D.J. Characterizing Water Composition with an Autonomous Robotic Team Employing Comprehensive In Situ Sensing, Hyperspectral Imaging, Machine Learning, and Conformal Prediction. Remote Sens. 2024, 16, 996. https://doi.org/10.3390/rs16060996
Waczak J, Aker A, Wijeratne LOH, Talebi S, Fernando A, Dewage PMH, Iqbal M, Lary M, Schaefer D, Lary DJ. Characterizing Water Composition with an Autonomous Robotic Team Employing Comprehensive In Situ Sensing, Hyperspectral Imaging, Machine Learning, and Conformal Prediction. Remote Sensing. 2024; 16(6):996. https://doi.org/10.3390/rs16060996
Chicago/Turabian StyleWaczak, John, Adam Aker, Lakitha O. H. Wijeratne, Shawhin Talebi, Ashen Fernando, Prabuddha M. H. Dewage, Mazhar Iqbal, Matthew Lary, David Schaefer, and David J. Lary. 2024. "Characterizing Water Composition with an Autonomous Robotic Team Employing Comprehensive In Situ Sensing, Hyperspectral Imaging, Machine Learning, and Conformal Prediction" Remote Sensing 16, no. 6: 996. https://doi.org/10.3390/rs16060996
APA StyleWaczak, J., Aker, A., Wijeratne, L. O. H., Talebi, S., Fernando, A., Dewage, P. M. H., Iqbal, M., Lary, M., Schaefer, D., & Lary, D. J. (2024). Characterizing Water Composition with an Autonomous Robotic Team Employing Comprehensive In Situ Sensing, Hyperspectral Imaging, Machine Learning, and Conformal Prediction. Remote Sensing, 16(6), 996. https://doi.org/10.3390/rs16060996