The Dunes of Belvedere–San Marco of Aquileia: Integrating High-Resolution Digital Terrain Models and Multispectral Images with Ground-Penetrating Radar Survey to Map the Largest System of Continental Dunes of Northern Italy
<p>(<b>a</b>) Square b indicates the location of the study area, south of the city of Aquileia, while c indicates the San Giuliano Isle. The basemap is a hillshade elaboration of the Shuttle Radar Topography Mission (SRTM) data [<a href="#B8-remotesensing-16-00765" class="html-bibr">8</a>]. (<b>b</b>,<b>c</b>) show the study area with the localities’ names used in this work. Red rectangles indicate the locations of Figure 6 (Rectangle 1), Figure 7 (Rectangle 2) and Figure 8 (Rectangle 3). Yellow rectangles indicate the location of Figure 4a (Rectangle 4), Figure 4b (Rectangle 5), Figure 4c (Rectangle 6) and Figure 4d (Rectangle 7). The white star indicates the location of the core BLG1. The green star indicates the location of the outcrop in Figure 9. The purple stars indicate the location of cemented sand samples in Figure 10.</p> "> Figure 2
<p>DTM of the main study area (<b>a</b>), and San Giuliano Isle (<b>b</b>). Profile a–a’’’ is parallel to the dunes’ ridges, profile b–b’’ is transverse. Name of localities: 1: Beligna; 2: Muson; 3: San Marco; 4: Belvedere; 5: Domine; 6: Viola.</p> "> Figure 3
<p>Elaborations of DTMs in the area of Belvedere Pineta Camp Ground (Centenera). (<b>a</b>) DTM and hillshading; (<b>b</b>) slope; (<b>c</b>) simple local relief model (SLRM); (<b>d</b>) local dominance; (<b>e</b>) multi-scale relief model (MSRM); and (<b>f</b>) principal component analysis of previous elaborations in RGB = pc1–pc2–pc3 composite.</p> "> Figure 4
<p>Examples of soilmarks and cropmarks evidencing the dunes in visible colors satellite images. (<b>a</b>) Planar morphology of the dunes near Isola Domine in a Planet image; (<b>b</b>) frontal lobes and ridges of dunes in the areas of Beligna and Muson in a satellite image available in Google Earth (Google/Maxar Technology); (<b>c</b>) levelled ridges of dunes in the Muson area in a satellite image from ESRI basemap; (<b>d</b>) satellite image from Google Earth (Google/Maxar Technology) that reveals a dense pattern of parallel traces (as indicated by arrows) forming an angle between 15 and 35°, with respect to the direction of the dune ridge, which corresponds to the intersection of the clinostratified layers of the levelled dunes with the flat ground surface.</p> "> Figure 5
<p>Box plot of the spectral signatures of the dunes and the surrounding distal plain (lagoon and alluvial deposits) on satellite imagery of Aster (<b>left</b>) and Sentinel-2 (<b>right</b>). For Aster, we used red (band 2), near infrared (band 3) and short-wave infrared (band 9). For Sentinel-2, we used green (band 3), vegetation red edge (band 6) and short-wave infrared (band 11).</p> "> Figure 6
<p>Area of San Marco, an example of integration of different data. (<b>a</b>) Historical cartography with red arrows indicating the slope of the dune ridges; (<b>b</b>) DTM; (<b>c</b>) satellite imagery (Planet: visible bands); (<b>d</b>) reconstruction of the planar morphology of the dunes (in yellow).</p> "> Figure 7
<p>Area of Belvedere, an example of integration of different data. (<b>a</b>) Historical cartography with red arrows indicating the scarps of the dunes’ ridges; (<b>b</b>) DTM; (<b>c</b>) satellite imagery (Planet: visible bands); (<b>d</b>) reconstruction of the planar morphology of the dunes (in yellow).</p> "> Figure 8
<p>Area of Beligna, an example of integration of different data. (<b>a</b>) Historical cartography with red arrows indicating the slopes of the dunes’ ridges; (<b>b</b>) DTM; (<b>c</b>) aerial photos (1993) (<b>d</b>) reconstruction of the planar morphology of the dunes (in yellow). The red star indicates the location of BLG1 borehole.</p> "> Figure 9
<p>(<b>a</b>) Cross-section location in Due Leoni estate. (<b>b</b>) Closer look at the cross-section with visible clinostratified bed. In (<b>c</b>) 1a–1f are the name of the foreset layers which were sampled during the field activity.</p> "> Figure 10
<p>Examples of cemented sands (“maltoni”) collected in the plough layer, but formerly formed as carbonate concretions in deeper pedogenetic horizons (Bk/Ck). The presence of a clinostratification is detectable in (<b>a</b>,<b>b</b>). In (<b>b</b>), the rectangle corresponds to the thin sections reported in <a href="#remotesensing-16-00765-f011" class="html-fig">Figure 11</a>. (<b>c</b>) Sample DueLeoni2, with evident lumpy morphology related to bioturbation features.</p> "> Figure 11
<p>Thin sections of sample Muson27 in crossed-polarized light. See <a href="#remotesensing-16-00765-f010" class="html-fig">Figure 10</a> for orientation of the sample. (<b>a</b>) The darker layers consist of finer grains; (<b>b</b>) particular of the transition from a layer of fine sands (<b>bottom</b>) to coarser sand and fine gravel (<b>top</b>).</p> "> Figure 12
<p>Historical photos of outcrops exposed in sand quarries, where the clinostratification of the cemented sands is evident. (<b>a</b>) Area of Belvedere at the end of the 19th century; in the foreground, a well of the Roman period was also exposed by the excavations (Archive of the National Archaeological Museum of Aquileia); (<b>b</b>) Gorgo Island in the Grado Lagoon [<a href="#B24-remotesensing-16-00765" class="html-bibr">24</a>]; (<b>c</b>) area of Belvedere Centenera [<a href="#B21-remotesensing-16-00765" class="html-bibr">21</a>].</p> "> Figure 13
<p>Stratigraphic log of the first 10 m of the core BLG1. Radiocarbon dates are calibrated (cal BP), as reported in <a href="#remotesensing-16-00765-t004" class="html-table">Table 4</a>.</p> "> Figure 14
<p>(<b>a</b>) BEL1 and (<b>b</b>) MARC5 radargrams with highlighted clinostratification. On the bottom, the location in Belvedere (<b>c</b>) and San Marco (<b>d</b>) of the highlighted radargrams (in red) and the other GPR lines (in white).</p> "> Figure 15
<p>Map of the reconstructed planar morphology of the Belvedere–San Marco dunes. The planar morphology was reconstructed by combining historical cartography, topographic data obtained from LiDAR and optical traces visible in aerial photos and satellite images. Examples of the integrated analyses are shown in <a href="#remotesensing-16-00765-f006" class="html-fig">Figure 6</a>, <a href="#remotesensing-16-00765-f007" class="html-fig">Figure 7</a> and <a href="#remotesensing-16-00765-f008" class="html-fig">Figure 8</a>. (<b>a</b>) Main study area; (<b>b</b>) San Giuliano Isle area.</p> "> Figure 16
<p>Map of the continental dunes of Belvedere–San Marco of Aquileia, with indications of the different morphological units and schematic reconstruction of the hypothetical depositional setting that favored their formation. Different colors of the dunes reflect a difference in the parabolic morphology. The source of the sediment blown by the Bora wind (light blue arrows) was likely corresponding to a braided paleochannel of Isonzo River flowing eastward of the dunes’ field and slightly entrenched with respect to the alluvial plain. (<b>a</b>) Main study area; (<b>b</b>) San Giuliano Isle area.</p> "> Figure 17
<p>Comparison with wind directions (orange arrows) of the aeolian landforms between Central Europe and the northern Adriatic in Moravia [<a href="#B17-remotesensing-16-00765" class="html-bibr">17</a>], the Transdanubian area [<a href="#B14-remotesensing-16-00765" class="html-bibr">14</a>], Deliblato [<a href="#B16-remotesensing-16-00765" class="html-bibr">16</a>], Walachia [<a href="#B77-remotesensing-16-00765" class="html-bibr">77</a>] and Este [<a href="#B18-remotesensing-16-00765" class="html-bibr">18</a>]. The basemap is hillshade, derived from SRTM data [<a href="#B8-remotesensing-16-00765" class="html-bibr">8</a>].</p> ">
Abstract
:1. Introduction
2. Setting
3. Materials and Methods
4. Results
4.1. Remote Sensing, Light Detection and Ranging (LiDAR) and Comparison with Historical Cartography
4.2. Field Survey, Stratigraphic Cores and Sediment Samples
4.3. Ground-Penetrating Radar
5. Discussion
6. Conclusions
- The Belvedere–San Marco dunes extend for over 15 km2 and they represent the largest continental aeolian system ever identified in the Italian Peninsula. Their planar morphology is parabolic, with ridges up to 3 km long, joining in frontal lobes in the west. The internal structure is characterized by a clinostratification, and the total thickness of the dunes can reach 15 m in some ridges;
- The deposition of the dunes started at the end of the LGM (22.1–21.4 ka cal BP) and possibly continued during the first part of the Late Glacial. The radiocarbon samples indicate that the depositional events were short-lived;
- Chronology and parabolic shapes suggest that, during the deposition, the climate was characterized by low temperatures, less precipitation, and sparse, steppe-like vegetation. The orientation of the dunes permits us to link them with the Bora wind, an ENE katabatic wind, and one of the strongest winds in the Italian Peninsula;
- The sandy material of the reliefs has a local origin, probably supplied by a braided paleochannel, located east of the study area;
- We observed many similarities with other continental aeolian dunes located in Central and Northern Europe, which were partially deposited in the same time period or in periglacial conditions;
- This work opens new perspectives on the role and presence of other large aeolian landforms in Northern Italy.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OSMER. Il Clima del Friuli Venezia Giulia; Regione Friuli Venezia Giulia: Trieste, Italy, 2016; 27p. [Google Scholar]
- Ronchi, L.; Fontana, A.; Novak, A.; Correggiari, A.; Poglajen, S. Late-Quaternary Evolution of the Semi-Confined Alluvial Megafan of Isonzo River (Northern Adriatic): Where the Fluvial System of the Southern Alps Meets the Karst. Geosciences 2023, 13, 135. [Google Scholar] [CrossRef]
- Fontana, A.; Monegato, G.; Rossato, S.; Poli, M.E.; Furlani, S.; Stefani, C. Carta Delle Unità Geologiche della Pianura del Friuli Venezia Giulia alla Scale 1:150,000 e Note Illustrative; Regione Autonoma Friuli Venezia Giulia—Servizio Geologico: Trieste, Italy, 2019; 80p. [Google Scholar]
- D’Orefice, M.; Graciotti, R. Geomorphological and sedimentological features on the aeolian deposits in the western sector of the Mt. Calamita promontory (Elba Island, Italy). Mem. Descr. Carta Geol. d’It. 2008, 78, 113–126. [Google Scholar]
- Di Maggio, C.; Agate, M.; Contino, A.; Basilone, L.; Catalano, R. Unità a limiti inconformi utilizzate per la cartografia dei depositi quaternari nei fogli CARG della Sicilia nord-occidentale. Il Quat. Ital. J. Quat. Sci. 2009, 22, 345–364. [Google Scholar]
- Ferranti, L.; Burrato, P.; Sechi, D.; Andreucci, S.; Pepe, F.; Pascucci, V. Late Quaternary coastal uplift of southwestern Sicily, central Mediterranean sea. Qua. Sci. Rev. 2021, 255, 106812. [Google Scholar] [CrossRef]
- Melis, R.T.; Di Gregorio, F.; Panizza, V. The Coastal Dunes of Sardinia; Landscape Response to Climate and Sea Level Changes. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 365–376. [Google Scholar]
- SRTM 90m DEM Digital Elevation Database. Available online: https://srtm.csi.cgiar.org (accessed on 21 December 2023).
- Cremaschi, M. The LOESS in Northern and Central Italy: A Loess Basin between the Alps and the Mediterranean Region; Excursion Guidebook, September–October 1988; Editrice Gutemberg: Milano, Italy, 1990; 187p. [Google Scholar]
- Peresani, M.; Monegato, G.; Ravazzi, C.; Bertola, S.; Margaritora, D.; Breda, M.; Fontana, A.; Fontana, F.; Janković, I.; Karavanić, I.; et al. Hunter-gatherers across the great Adriatic-Po region during the Last Glacial Maximum: Environmental and cultural dynamics. Quat. Int. 2021, 581–582, 28–163. [Google Scholar] [CrossRef]
- Koster, E.A. The “European Aeolian Sand Belt”: Geoconservation of Drift Sand Landscapes. Geoheritage 2009, 1, 93–110. [Google Scholar] [CrossRef]
- Pierik, H.J.; van Lanen, R.J.; Gouw-Bouman, M.T.; Groenewoudt, B.J.; Wallinga, J.; Hoek, W.Z. Controls on late-Holocene drift-sand dynamics: The dominant role of human pressure in the Netherlands. Holocene 2018, 28, 1361–1381. [Google Scholar] [CrossRef] [PubMed]
- Kasse, C.; Woolderink, H.A.G.; Kloos, M.E.; Hoek, W.Z. Source-bordering aeolian dune formation along the Scheldt River (southern Netherlands—Northern Belgium) was caused by Younger Dryas cooling, high river gradient and southwesterly summer winds. Neth. J. Geosci. 2020, 99, e13. [Google Scholar] [CrossRef]
- Sebe, K.; Csillag, G.; Ruszkiczay-Rüdiger, Z.; Fodor, L.; Thamó-Bozsó, E.; Müller, P.; Braucher, R. Wind erosion under cold climate: A Pleistocene periglacial megayardang system in Central Eurpe (Western Pannonian Basin, Hungary). Geomorphology 2011, 134, 470–482. [Google Scholar] [CrossRef]
- Kiss, T.; Lóki, J. Parabolic dunes of the Southern Nyírség. Landscapes and landforms of Hungary. Parabolic dunes of the Southern Nyírség. In Landscapes and landforms of Hungary; Lóczy, D., Ed.; Springer: Cham, Switzerland, 2015; pp. 255–261. [Google Scholar] [CrossRef]
- Sipos, G.; Marković, S.B.; Gavrilov, M.B.; Balla, A.; Filyó, D.; Bartyik, T.; Mészáros, M.; Tóth, O.; van Leeuwen, B.; Lukić, T.; et al. Late Pleistocene and Holocene aeolian activity in the Deliblato Sands, Serbia. Quat. Res. 2021, 107, 113–124. [Google Scholar] [CrossRef]
- Holuša, J.; Nývlt, D.; Woronko, B.; Matějka, M.; Stuchlík, R. Environmental factors controlling the Last Glacial multi-phase development of the Moravian Sahara dune field, Lower Moravian Basin, Central Europe. Geomorphology 2022, 413, 108355. [Google Scholar] [CrossRef]
- Rizzetto, F.; Mycielska Dowgiallo, E.; Castiglioni, G.B. Some aeolian features in the Po plain near Este (North Italy). Geogr. Fis. Dinam. Quat. 1998, 21, 245–253. [Google Scholar]
- Taramelli, T. Dei terreni morenici e alluvionali del Friuli. Ann. Reg. Ist. Tecn. Udine 1875, 8, 1–91. [Google Scholar]
- Feruglio, E. La Zona Delle Risorgive Del Basso Friuli Fra Tagliamento e Torre: Studio Geologico, Idrologico e Agronomico; Stab. Tip. Friulano: Udine, Italy, 1925; 343p. [Google Scholar]
- Comel, A. Ricerche pedologiche sulle dune di Belvedere (Aquileia) e di Grado. N. Ann. Ist. Chim. Agr. Sperim. Gorizia 1951, 2, 18. [Google Scholar]
- Lenardon, G.; Marocco, R. Le dune di Belvedere-San Marco. Una antica linea di riva? (2) Considerazioni sedimentologiche. Atti Museo Friul. Storia Nat. 1995, 16, 5–24. [Google Scholar]
- Marocco, R. Prima ricostruzione paleo-idrografica del territorio della Bassa Pianura Friulano-Isontina e della Laguna di Grado nell’Olocene. Gortania Geol. Paleontol. Paletnol. 2010, 31, 69–86. [Google Scholar]
- Marocco, R. Le dune di Belvedere-San Marco. Una antica linea di riva? (1) Considerazioni geomorfologiche. Atti Museo Friul. Storia Nat. 1992, 13, 57–76. [Google Scholar]
- Arnaud-Fassetta, G.; Carre, M.B.; Marocco, R.; Maselli Scotti, F.; Pugliese, N.; Zaccaria, C.; Bandelli, A.; Bresson, V.; Manzoni, G.; Montenegro, M.E.; et al. The site of Aquileia (Northeastern Italy): Example of fluvial geoarchaeology in a Mediterranean deltaic plain. Géomorphologie 2003, 4, 227–246. [Google Scholar] [CrossRef]
- Siché, I.; Arnaud-Fassetta, G. Anthropogenic activities since the end of the Little Ice Age: A critical factor driving fluvial changes on the Isonzo River (Italy, Slovenia). Méditerranée 2014, 122, 183–199. [Google Scholar] [CrossRef]
- Cimolino, A.; Della Vedova, B.; Nicolich, R.; Barison, E.; Brancatelli, G. New evidence of the outer Dinaric deformation front in the Grado area (NE-Italy). Rend. Fis. Acc. Lincei 2010, 21, 167–179. [Google Scholar] [CrossRef]
- Fontana, A.; Mozzi, P.; Bondesan, A. Late Pleistocene evolution of the Venetian-Friulian Plain. Rend. Lincei Sci. Fis. Nat. 2010, 21, 181–196. [Google Scholar] [CrossRef]
- Fontana, A.; Monegato, G.; Devoto, S.; Zavagno, E.; Burla, I.; Cucchi, F. Evolution of an Alpine fluvioglacial system at the LGM decay: The Cormor type megafan (NE Italy). Geomorphology 2014, 204, 136–153. [Google Scholar] [CrossRef]
- Dal Gobbo, C.; Colucci, R.R.; Monegato, G.; Žebre, M.; Giorgi, F. Atmosphere-cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps. Clim. Past 2023, 19, 1805–1823. [Google Scholar] [CrossRef]
- Bavec, M.; Tulaczyk, S.M.; Mahan, S.A.; Stock, G.M. Late Quaternary glaciation of the Upper Soča River Region (Southern Julian Alps, NW Slovenia). Sediment. Geol. 2004, 165, 265–283. [Google Scholar] [CrossRef]
- Ronchi, L.; Fontana, A.; Cohen, K.M.; Stouthamer, E. Late Quaternary landscape evolution of the buried incised valley of Concordia Sagittaria (Tagliamento River, NE Italy): A reconstruction of incision and transgression. Geomorphology 2021, 373, 107509. [Google Scholar] [CrossRef]
- Marocco, R. Evoluzione Quaternaria della Laguna di Marano (Friuli-Venezia Giulia). Quaternario 1989, 2, 125–137. [Google Scholar]
- Marocco, R. Evoluzione Tardopleistocenica-Olocenica del Delta del F. Tagliamento e delle Lagune di Marano e Grado (Golfo di Trieste) Quaternario 1991, 4, 223–232. [Google Scholar]
- Amorosi, A.; Fontana, A.; Antonioli, F.; Primon, S.; Bondesan, A. Post-LGM sedimentation and Holocene shoreline evolution in the NW Adriatic coastal area. GeoActa 2008, 7, 41–67. [Google Scholar]
- Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 2016, 155, 172–197. [Google Scholar] [CrossRef]
- Fontana, A.; Vinci, G.; Tasca, G.; Mozzi, P.; Vacchi, M.; Bivi, G.; Salvador, S.; Rossato, S.; Antonioli, F.; Asioli, A.; et al. Lagoonal settlements and relative sea level during Bronze Age in Northern Adriatic: Geoarchaeological evidence and paleogeographic constraints. Quat. Int. 2017, 439, 17–36. [Google Scholar] [CrossRef]
- Cerrone, C.; Vacchi, M.; Fontana, A.; Rovere, A. Last Interglacial sea-level proxies in the western Mediterranean. Earth Syst. Sci. Data 2021, 13, 4485–4527. [Google Scholar] [CrossRef]
- Geoprodotti—IGM E-Commerce Site. Available online: https://www.igmi.org/geoprodotti (accessed on 6 October 2023).
- Planet Team. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA, USA. 2017. Available online: https://api.planet.com (accessed on 6 October 2023).
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Publishing Compagny: Reading, UK, 1977; 677p. [Google Scholar]
- Shennan, S. Quantifying Archaeology; Edimburgh University Press: Edimburgh, UK, 1988; 364p. [Google Scholar]
- Eagle FVG. Available online: https://eaglefvg.regione.fvg.it (accessed on 6 October 2023).
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-View Factor as a Relief Visualization Technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Somrak, M. Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote Sens. 2019, 11, 747. [Google Scholar] [CrossRef]
- Hesse, R. Visualisierung hochauflösender Digitaler Geländemodelle mit LiVT. In Computeranwendungen und Quantitative Methoden in der Archäologie. 4. Workshop der AG CAA 2013; Lieberwirth, U., Herzog, I., Eds.; Edition Topoi: Berlin, Germany, 2016; pp. 109–128. [Google Scholar]
- Kokalj, Ž.; Hesse, R. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice; Založba ZRC: Ljubljana, Slovenia, 2017; 88p. [Google Scholar]
- Orengo, H.A.; Petrie, C.A. Multi-scale relief model (MSRM): A new algorithm for the visualization of subtle topographic change of variable size in digital elevation models. Earth Surf. Process. Landf. 2018, 43, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Arcanum Maps—The Historical Map Portal. Available online: https://maps.arcanum.com (accessed on 30 October 2023).
- Rossi, M. Kriegskarte, 1798–1805: Il Ducato di Venezia Nella Carta di Anton von Zach; Fondazione Benetton Studi Ricerche-Grafiche V. Bernardi: Treviso, Italy, 2005; 788p. [Google Scholar]
- Busetti, M.; Baradello, L.; Caburlotto, A.; Gordini, E.; Zanolla, C.; Accettella, D.; Antonioli, F.; Paganini, P. Indagini geofisiche per lo studio dell’evoluzione Tardo-Pleistocenica ed Olocenica della Laguna di Grado e Marano (Adriatico Settentrionale). In Proceedings of the Workshop finale Project VECTOR (Vulnerability of the Italian Coastal Area and Marine Ecosystems to CLIMATIC Changes and Their Role in the Mediterranean Carbon Cycles), Rome, Italy, 18–19 October 2010. [Google Scholar]
- Reimer, P.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Edwards, R.L.; Friedrich, M.; Grootes, P.M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kB). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Daniels, D.J. Surface-Penetrating Radar; Institut. Electric. Engineers: London, UK, 1996. [Google Scholar]
- Francke, J. A review of selected ground penetrating radar applications to mineral resource evaluations. J. Appl. Geophy. 2012, 81, 29–37. [Google Scholar] [CrossRef]
- Michelutti, G.; Zanolla, S.; Barbieri, S. Suoli e Paesaggi del Friuli Venezia Giulia: 1. Pianura e Colline del Pordenonese. Note Illustrative; Agenzia regionale per lo sviluppo rurale—Servizio della sperimentazione agraria—Ufficio del suolo: Udine, Italy, 2003; p. 512. [Google Scholar]
- Bagalini, M. Geomorphological and Stratigraphical Evolution of the Post-LGM Incised Valleys of the Eastern Low Friulian Plain (NE Italy). Master’s Thesis, University of Padova, Padova, Italy, 2022. [Google Scholar]
- Schenk, C.D.; Gautier, D.; Olhoeft, G.R.; Lucius, J.E. Internal Structure of an Aeolian Dune using Ground-Penetrating Radar. In Aeolian Sediments: Ancient and Modern; Pye, K., Lancaster, N., Eds.; Blackwell Scientific Publications: Oxford, UK, 2009; pp. 61–71. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Moorman, B.J.; Hugenholtz, C.H. Effects of sand supply on the morphodynamics and stratigraphy of active parabolic dunes, Bigstick Sand Hills, southwestern Saskatchewan. Can. J. Earth Sci. 2008, 45, 321–335. [Google Scholar] [CrossRef]
- Pye, K. Morphological Development of coastal dunes in a humid tropical environment, Cape Bedford and Cape Flattery, North Queensland. Geogr. Ann. 1982, A64, 213–227. [Google Scholar] [CrossRef]
- Pye, K.; Lancaster, N. Aeolian Sediment, Ancient and Modern; Blackwell Scientific Publications: Oxford, UK, 1993; 169p. [Google Scholar]
- Livingstone, I.; Warren, A. Aeolian Geomorphology: A New Introduction; Wiley-Blackwell: Oxford, UK, 2019; 318p. [Google Scholar]
- Yan, N.; Baas, A.C.W. Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction. Glob. Planet. Chang. 2015, 124, 123–148. [Google Scholar] [CrossRef]
- Durán, O.; Herrmann, H.J. Vegetation Against Dune Mobility. Phys. Rev. Lett. 2006, 97, 188001. [Google Scholar] [CrossRef]
- Filion, L.; Morriset, P. Eolian landforms along the eastern coast of Hudson Bay, Northern Québec. Collect. Nord. 1983, 47, 73–94. [Google Scholar]
- Dal Moro, G.; Stemberk, J. Tools for the efficient analysis of surface waves from active and passive seismic data: Exploring an NE-Italy perilagoon area with significant lateral variations. Earth Planets Space 2022, 74, 140. [Google Scholar] [CrossRef]
- Schaffernicht, E.J.; Ludwig, P.; Shao, Y. Linkage between dust cycle and loess of the last Glacial Maximum in Europe. Atmos. Chem. Phys. 2020, 20, 4969–4986. [Google Scholar] [CrossRef]
- Miola, A.; Bondesan, A.; Corain, L.; Favaretto, S.; Mozzi, P.; Piovan, S.; Sostizzo, I. Wetlands in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: Interplay between vegetation, hydrology and sedimentary environment. Rev. Palaeobot. Palynol. 2006, 141, 53–81. [Google Scholar] [CrossRef]
- Donegana, M.; Fontana, A.; Paiero, G.; Ravazzi, C. Le torbe tardiglaciali di Bannia—Palazzine di Sopra: Palinologia e ricostruzione ambientale. Quad. Del Mus. Archaeol. Del Friuli Occident. 2005, 5, 15–18. [Google Scholar]
- Vescovi, E.; Ravazzi, C.; Arpenti, E.; Finsinger, W.; Pini, R.; Valsecchi, V.; Wick, L.; Ammann, B.; Tinner, W. Interactions between climate and vegetation during the Lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat. Sci. Rev. 2007, 26, 1650–1669. [Google Scholar] [CrossRef]
- Vandenberghe, J. Changing conditions of aeolian sand deposition during the last deglaciation period. Z. Für Geomorphol. 1991, 90, 193–207. [Google Scholar]
- Fontana, A.; Mozzi, P.; Marchetti, M. Alluvial fans and megafans along the southern side of the Alps. Sediment. Geol. 2014, 301, 150–171. [Google Scholar] [CrossRef]
- Haase, D.; Fink, J.; Haase, G.; Ruske, R.; Pećsi, M.; Richter, H.; Altermann, M.; Jäger, K.D. Loess in Europe—Its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quat. Sci. Rev. 2007, 26, 1301–1312. [Google Scholar] [CrossRef]
- Lehmkuhl, F.; Nett, J.J.; Pötter, S.; Schulte, P.; Sprafke, T.; Jary, Z.; Antoine, P.; Wacha, L.; Wolf, D.; Zerboni, A.; et al. Loess landscapes of Europe—Mapping, geomorphology, and zonal differentiation Loess landscapes of Europe—Mapping, geomorphology, and zonal differentiation. Earth Sci. Rev. 2021, 215, 103496. [Google Scholar] [CrossRef]
- Berendsen, H.J.A.; Stouthamer, E. Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta, The Netherlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 161, 311–335. [Google Scholar] [CrossRef]
- Kasse, C.K. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and Central Europe. Prog. Phys. Geogr. 2002, 24, 507–532. [Google Scholar] [CrossRef]
- Badea, L.; Niculescu, G.; Sencu, V. Atlasul Republicii Socialiste Romania: Harta Geomorfologica, III-1; Institutul de Geographie: București, Romania, 1976. [Google Scholar]
- Borsy, Z. Blown sand territories in Hungary. Z. Für Geomorphol. 1991, 90, 1–14. [Google Scholar]
- Brezsnyánszky, K.; Síkhegyi, F. Geology. Map at 1:2,350,000 scale. In Hungary in Maps; Kocsis, K., Schweitzer, F., Eds.; Geographical Research Institute, Hungarian Academy of Sciences: Budapest, Hungary, 2009; 35p. [Google Scholar]
Year | Frames | Flight Strip | Scale | Format | Format (cm) | Channels | Flight Season |
---|---|---|---|---|---|---|---|
1938 | 89c–91c | 5 | 1:12,500 | Analog | 13 × 18 | Black/White | April |
1945 | 85 | 2 | 1:48,000 | Analog | 20 × 20 | Black/White | September |
1954 | 212,662,663 | 13A, 12 | 1:29,000 | Analog | 23 × 23 | Black/White | April–May |
1984 | 225 | 17 | 1:32,000 | Analog | 23 × 23 | Black/White | June |
1993 | 1058–1061, 1087–1090 | 77, 75 | 1:33,000 | Analog | 23 × 23 | Black/White | March–April |
Year | Date | Resolution (m) | Bands | Spectral Resolution |
---|---|---|---|---|
Aster | 15 March 2003 14 April 2007 | 15, 30, 90 | 14 | VNIR, SWIR, TIR |
Sentinel-2 | 1 March 2021 24 March 2021 | 10, 20, 30 | 13 | VNIR, SWIR |
Planet | 29 April 2017 6 March 2021 | 3 | 4 | VNIR |
Map | Year | Scale | Format | Source |
---|---|---|---|---|
Innerösterreich— 1st Military Survey | 1784–1785 | 1:28,800 | Colours | Maps Arcanum |
Von Zach | 1809 | 1:28,800 | Colours | Rossi |
2nd Military Survey | 1821–1824 | 1:28,800 | Colours | Maps Arcanum |
3rd Military Survey—Austroungarico | 1869–1887 | 1:25,000 | Colours | Maps Arcanum |
Tavoletta 25V—Grado | 1917 | 1:25,000 | Black/White | IGM |
Tavoletta 25V—Grado | 1927 | 1:25,000 | Black/White | IGM |
Tavoletta 25V—Grado | 1949 | 1:25,000 | Colours | IGM |
Depth (m) | Lab Number | Description | Age 14C BP | Calibrated Age 2σ cal-BP |
---|---|---|---|---|
5.50 | ETH-114380 | Plant fragment | 17,867 ± 88 | 22,119–21,255 |
9.73 | ETH-55393 | Wood | 17,912 ± 70 | 21,915–21,464 |
9.93 | ETH-55394 | Wood | 17,877 ± 69 | 21,881–21,427 |
28.62–28.64 | ETH-55384 | Peat | 22,589 ± 108 | 27,113–26,729 |
32.51–32.52 | ETH-55385 | Peat | 28,333 ± 176 | 32,561–31,868 |
33.58–33.59 | ETH-55388 | Peat | 43,980 ± 1032 | 48,394–46,180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanzani, F.; Fontana, A.; Ronchi, L.; Boaga, J.; Chiarini, V.; Hajdas, I. The Dunes of Belvedere–San Marco of Aquileia: Integrating High-Resolution Digital Terrain Models and Multispectral Images with Ground-Penetrating Radar Survey to Map the Largest System of Continental Dunes of Northern Italy. Remote Sens. 2024, 16, 765. https://doi.org/10.3390/rs16050765
Vanzani F, Fontana A, Ronchi L, Boaga J, Chiarini V, Hajdas I. The Dunes of Belvedere–San Marco of Aquileia: Integrating High-Resolution Digital Terrain Models and Multispectral Images with Ground-Penetrating Radar Survey to Map the Largest System of Continental Dunes of Northern Italy. Remote Sensing. 2024; 16(5):765. https://doi.org/10.3390/rs16050765
Chicago/Turabian StyleVanzani, Federica, Alessandro Fontana, Livio Ronchi, Jacopo Boaga, Veronica Chiarini, and Irka Hajdas. 2024. "The Dunes of Belvedere–San Marco of Aquileia: Integrating High-Resolution Digital Terrain Models and Multispectral Images with Ground-Penetrating Radar Survey to Map the Largest System of Continental Dunes of Northern Italy" Remote Sensing 16, no. 5: 765. https://doi.org/10.3390/rs16050765
APA StyleVanzani, F., Fontana, A., Ronchi, L., Boaga, J., Chiarini, V., & Hajdas, I. (2024). The Dunes of Belvedere–San Marco of Aquileia: Integrating High-Resolution Digital Terrain Models and Multispectral Images with Ground-Penetrating Radar Survey to Map the Largest System of Continental Dunes of Northern Italy. Remote Sensing, 16(5), 765. https://doi.org/10.3390/rs16050765