Snow Avalanche Hazard Mapping Using a GIS-Based AHP Approach: A Case of Glaciers in Northern Pakistan from 2012 to 2022
"> Figure 1
<p>The occurrence of snow avalanches and damage due to snow avalanches in the study area.</p> "> Figure 2
<p>The study area map represents the location of Hispar, Gayari Sector, and Batura Glacier.</p> "> Figure 3
<p>Flowchart representation of the research methodology used.</p> "> Figure 4
<p>Thematic layers of avalanche occurrence factors at Hispar Glacier.</p> "> Figure 5
<p>Thematic layers of avalanche occurrence factors at Batura Glacier.</p> "> Figure 6
<p>Thematic layers of avalanche occurrence factors at Gayari Glacier.</p> "> Figure 7
<p>Snow avalanche susceptibility of Hispar, Gayari, and Batura Glaciers for 2012 and 2022.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology Chart
2.3. Remote Sensing and Ground Data
2.4. Evaluation of Avalanche Impact Variables and Formation of Thematic Layers
2.4.1. Slope
2.4.2. Aspect
2.4.3. Elevation
2.4.4. Curvature
2.4.5. Terrain Roughness
2.4.6. Land Cover
2.5. MCDA-AHP Model
2.6. Avalanche Susceptibility Mapping
3. Results
3.1. Hispar Glacier
3.2. Batura Glacier
3.3. Gayari Sector Glacier
3.4. Snow Avalanche Susceptibility
4. Discussion
Limitations and Future Prospective of Avalanches Susceptibility Mapping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahzad, L.; Tahir, A.; Sharif, F.; Khan, W.U.D.; Farooq, M.A.; Abbas, A.; Saqib, Z.A. Vulnerability well-being, and livelihood adaptation under changing environmental conditions: A case from mountainous region of Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 26748–26764. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, P.K.; Snehmani. GIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya. Geocarto Int. 2017, 32, 1254–1267. [Google Scholar] [CrossRef]
- Varol, N. Avalanche susceptibility mapping with the use of frequency ratio, fuzzy and classical analytical hierarchy process for Uzungol area, Turkey. Cold Reg. Sci. Technol. 2021, 194, 103439. [Google Scholar] [CrossRef]
- Bası, M.P.; Pereira, V.; Costa, H.G.; Santos, M.; Ghosh, A. A systematic review of the applications of multi-criteria decision aid methods (1977–2022). Electronics 2022, 11, 1720. [Google Scholar]
- McClung, D.M. Avalanche character and fatalities in the high mountains of Asia. Ann. Glaciol. 2016, 57, 114–118. [Google Scholar] [CrossRef]
- Yilmaz, B. Application of GIS-Based Fuzzy Logic and Analytical Hierarchy Process (AHP) to Snow Avalanche Susceptibility Mapping. Master’s Thesis, University of Colorado Boulder, North San Juan, CO, USA, 2016. [Google Scholar]
- Kumar, S.; Srivastava, P.K.; Snehmani. Geospatial modelling and mapping of snow avalanche susceptibility. J. Indian Soc. Remote. Sens. 2018, 46, 109–119. [Google Scholar] [CrossRef]
- Christophe, C.; Georges, R.; Jérôme, L.S.; Markus, S.; Pascal, P. Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena 2010, 83, 107–118. [Google Scholar] [CrossRef]
- Akay, H. Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques. CATENA 2021, 206, 105524. [Google Scholar] [CrossRef]
- Khan, H.; Vasilescu, L.G.; Khan, A. Disaster management cycle-a theoretical approach. J. Manag. Mark. 2008, 6, 43–50. [Google Scholar]
- Mosavi, A.; Shirzadi, A.; Choubin, B.; Taromideh, F.; Hosseini, F.S.; Borji, M.; Shahabi, H.; Salvati, A.; Dineva, A.A. Towards an ensemble machine learning model of random subspace based functional tree classifier for snow avalanche susceptibility mapping. IEEE Access 2020, 8, 145968–145983. [Google Scholar] [CrossRef]
- Statham, G.; Haegeli, P.; Greene, E.; Birkeland, K.; Israelson, C.; Tremper, B.; Stethem, C.; McMahon, B.; White, B.; Kelly, J. A conceptual model of avalanche hazard. Nat. Hazards 2018, 90, 663–691. [Google Scholar] [CrossRef]
- Yariyan, P.; Avand, M.; Abbaspour, R.A.; Karami, M.; Tiefenbacher, J.P. GIS-based spatial modeling of snow avalanches using four novel ensemble models. Sci. Total. Environ. 2020, 745, 141008. [Google Scholar] [CrossRef]
- Yang, J.; He, Q.; Liu, Y. Winter–spring prediction of snow avalanche susceptibility using optimisation multi-source heterogeneous factors in the Western Tianshan Mountains, China. Remote. Sens. 2022, 14, 1340. [Google Scholar] [CrossRef]
- Snehmani; Bhardwaj, A.; Pandit, A.; Ganju, A. Demarcation of potential avalanche sites using remote sensing and ground observations: A case study of Gangotri glacier. Geocarto Int. 2014, 29, 520–535. [Google Scholar] [CrossRef]
- Snehmani; Dharpure, J.K.; Kochhar, I.R.; Hari Ram, P.; Ganju, A. Analysis of snow cover and climatic variability in Bhaga basin located in western Himalaya. Geocarto Int. 2016, 31, 1094–1107. [Google Scholar] [CrossRef]
- Singh, D.K.; Gusain, H.S.; Mishra, V.; Gupta, N. Snow cover variability in North-West Himalaya during last decade. Arab. J. Geosci. 2018, 11, 579. [Google Scholar] [CrossRef]
- Singh, D.K.; Mishra, V.D.; Gusain, H.S.; Gupta, N.; Singh, A.K. Geo-spatial modeling for automated demarcation of snow avalanche hazard areas using Landsat-8 satellite images and in situ data. J. Indian Soc. Remote. Sens. 2019, 47, 513–526. [Google Scholar] [CrossRef]
- Singh, D.K.; Gusain, H.S.; Mishra, V.; Gupta, N.; Das, R.K. Automated mapping of snow/ice surface temperature using Landsat-8 data in Beas River basin, India, and validation with wireless sensor network data. Arab. J. Geosci. 2018, 11, 136. [Google Scholar] [CrossRef]
- Selcuk, L. An avalanche hazard model for Bitlis Province, Turkey, using GIS based multicriteria decision analysis. Turk. J. Earth Sci. 2013, 22, 523–535. [Google Scholar] [CrossRef]
- Sardar, T.; Raziq, A.; Rashid, A.; Saddiq, G. Snow avalanche-based susceptibility assessment of selected districts in northern zone of Pakistan applying MCDA approach in GIS. J. Himal. Earth Sci. 2019, 52, 64–73. [Google Scholar]
- Sappington, J.M.; Longshore, K.M.; Thompson, D.B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert. J. Wildl. Manag. 2007, 71, 1419–1426. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the Analytic Hierarchy Process? Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Parshad, R.; Kumar, P.; Snehmani; Srivastva, P.K. Seismically induced snow avalanches at Nubra–Shyok region of Western Himalaya, India. Nat. Hazards 2019, 99, 843–855. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B.; Millan, R. Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote. Sens. 2017, 9, 364. [Google Scholar] [CrossRef]
- Mahboob, M.A.; Iqbal, J.; Atif, I. Modeling and simulation of glacier avalanche: A case study of gayari sector glaciers hazards assessment. IEEE Trans. Geosci. Remote. Sens. 2015, 53, 5824–5834. [Google Scholar] [CrossRef]
- Landrø, M.; Pfuhl, G.; Engeset, R.; Jackson, M.; Hetland, A. Avalanche decision-making frameworks: Classification and description of underlying factors. Cold Reg. Sci. Technol. 2020, 169, 102903. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, P.K.; Bhatiya, S. Geospatial probabilistic modelling for release area mapping of snow avalanches. Cold Reg. Sci. Technol. 2019, 165, 102813. [Google Scholar] [CrossRef]
- Kumar, S.; Snehmani; Srivastava, P.K.; Gore, A.; Singh, M.K. Fuzzy–frequency ratio model for avalanche susceptibility mapping. Int. J. Digit. Earth 2016, 9, 1168–1184. [Google Scholar] [CrossRef]
- Karim, R.; Tan, G.; Ayugi, B.; Babaousmail, H.; Liu, F. Evaluation of historical CMIP6 model simulations of seasonal mean temperature over Pakistan during 1970–2014. Atmosphere 2020, 11, 1005. [Google Scholar] [CrossRef]
- Sarhangi, E.J.; Lorestani, G.; Falah, V. Avalanche Hazard Zoning Using LNRF and Shannon Entropy Models Case Study: Part of Haraz Road, Poldokhtar-Vana. Hydrogeomorphology 2023, 10, 66–81. [Google Scholar]
- Giacona, F.; Eckert, N.; Corona, C.; Mainieri, R.; Morin, S.; Stoffel, M.; Martin, B.; Naaim, M. Upslope migration of snow avalanches in a warming climate. Proc. Natl. Acad. Sci. USA 2021, 118, e2107306118. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, K. Regions of Risk: A Geographical Introduction to Disasters; Routledge: London, UK, 2014. [Google Scholar]
- Ganju, A.; Thakur, N.K.; Rana, V. Characteristics of avalanche accidents in western Himalayan region, India. In Proceedings of the International Snow Science Workshop, Penticton, BC, Canada, 29 September–4 October 2002; pp. 200–207. [Google Scholar]
- Germain, D. Snow avalanche hazard assessment and risk management in northern Quebec, eastern Canada. Nat. Hazards 2015, 80, 1303–1321. [Google Scholar] [CrossRef]
- Atkins, D. Snow, Weather, and Avalanches: Observational Guidelines for Avalanche Programs in the United States; American Avalanche Association: Bozeman, MT, USA, 2010. [Google Scholar]
- Lundquist, J.; Hughes, M.; Gutmann, E.; Kapnick, S. Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Am. Meteorol. Soc. 2019, 100, 2473–2490. [Google Scholar] [CrossRef]
- Rawat, M.; Karwariya, S.; Raushan, R.; Kanga, S.; Taloor, A.K.; Thapliyal, A. Snow cover and land surface temperature assessment of Mana basin Uttarakhand India using MODIS satellite data. In Water, Cryosphere, and Climate Change in the Himalayas: A Geospatial Approach; Springer: Berlin/Heidelberg, Germany, 2021; pp. 159–174. [Google Scholar]
- Xi, N.; Mei, G. Avalanche Susceptibility Mapping by Investigating Spatiotemporal Characteristics of Snow Cover Based on Remote Sensing Imagery along the Pemo Highway—A Critical Transportation Road in Tibet, China. Water 2023, 15, 2743. [Google Scholar] [CrossRef]
Date/Year | Latitude | Longitude | Type | Fatalities | Source |
---|---|---|---|---|---|
16 February 2010 | 35.41191 | 72.94035 | Snow Avalanche | 120 | |
4 July 2012 | 35.49801 | 76.75336 | Ice and Rock Avalanche | 140 | [10] |
14 January 2020 | 34.82701 | 74.35855 | Snow Avalanche | 65 |
Locations | Year | Satellite | Spectral Resolution | Spatial Resolution (m) | Cloud Coverage |
---|---|---|---|---|---|
Hispar, Batura, Gayari Glaciers | 2012 | Landsat 5 (TM) | 1–7 | 30 × 30 | 0–5% |
2022 | Landsat 8 (OLI) | 1–7 | 30 × 30 | 0–5% |
Importance | Definition | Explanation |
---|---|---|
1 | Equal Importance | Contribution to the objective is equal |
9 | Extreme Importance | One attribute is of the highest possible order of affirmation |
3 | Moderate Importance | The attribute is slightly favored over another |
5 | Strong Importance | The attribute is strongly favored over another |
7 | Very Strong Importance | The attribute is very strongly favored over another |
2, 4, 6, 8 | Intermediate Values | When compromise is needed |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | 0 | 0 | 0.5 | 0.9 | 1.1 | 1.2 | 1.3 | 1.4 | 1.4 | 1.4 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
I | 0 | 0 | 8 | 0 | 2 | 4 | 2 | 1 | 5 | 9 | 1 | 3 | 6 | 7 | 9 |
Thematic Layer | Category | Rating | Weight |
---|---|---|---|
Slope | <20° | 1 | 0.40 |
12–28° | 3 | ||
28–45° | 9 | ||
45–55° | 5 | ||
>55 | 3 | ||
Elevation (m) | <3800 | 1 | 0.05 |
3800–5000 | 3 | ||
5000–5600 | 7 | ||
5600–6200 | 5 | ||
>6200 | 2 | ||
Aspect | Flat | 1 | 0.14 |
North or Northeast | 9 | ||
East or South | 3 | ||
Southeast | 5 | ||
West and Southwest | 2 | ||
Northwest | 7 | ||
Curvature | Concave | 2 | 0.28 |
Flat | 3 | ||
Convex | 5 | ||
Terrain Roughness | <0.39 | 2 | 0.09 |
0.39–0.46 | 5 | ||
0.46–0.53 | 4 | ||
0.53–0.60 | 7 | ||
>0.61 | 3 | ||
Land Cover | Snow/Ice | 5 | 0.03 |
Other (Rocky, Barren, Marines, etc.) | 3 |
Layers | S | C | A | TR | E | LC | Weight Value |
---|---|---|---|---|---|---|---|
S | 1 | 2 | 3 | 5 | 7 | 9 | 0.404 |
C | 1/2 | 1 | 3 | 4 | 5 | 7 | 0.281 |
A | 1/3 | 1/3 | 1 | 2 | 3 | 5 | 0.143 |
TR | 1/5 | 1/4 | 1/2 | 1 | 2 | 3 | 0.085 |
E | 1/7 | 1/5 | 1/3 | 1/2 | 1 | 2 | 0.054 |
LC | 1/9 | 1/7 | 1/5 | 1/3 | 1/2 | 1 | 0.033 |
Consistency Ratio | 0.0178 |
Glacier | Classes | Area km2 | Percentage |
---|---|---|---|
Hispar 2012 | Very low | 50.3 | 12.65 |
Low | 28.61 | 7.20 | |
High | 136.61 | 34.37 | |
Very high | 182.01 | 45.76 | |
Hispar 2022 | Very low | 52.71 | 13.25 |
Low | 25.03 | 6.29 | |
High | 106.95 | 26.92 | |
Very high | 212.84 | 53.52 |
Glacier | Classes | Area km2 | Percentage |
---|---|---|---|
Batura 2012 | Very low | 16.24 | 13.08 |
Low | 7.46 | 6.06 | |
High | 40.70 | 33.56 | |
Very high | 60.57 | 48.46 | |
Batura 2022 | Very low | 10.04 | 15.95 |
Low | 20.18 | 7.93 | |
High | 45.11 | 35.67 | |
Very high | 51.11 | 40.41 |
Glacier | Classes | Area km2 | Percentage |
---|---|---|---|
Gayari 2012 | Very low | 16.24 | 13.08 |
Low | 7.46 | 6.06 | |
High | 40.70 | 33.56 | |
Very high | 60.57 | 48.46 | |
Gayari 2022 | Very low | 10.04 | 15.95 |
Low | 20.18 | 7.93 | |
High | 45.11 | 35.67 | |
Very high | 51.11 | 40.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafique, A.; Dasti, M.Y.S.; Ullah, B.; Awwad, F.A.; Ismail, E.A.A.; Saqib, Z.A. Snow Avalanche Hazard Mapping Using a GIS-Based AHP Approach: A Case of Glaciers in Northern Pakistan from 2012 to 2022. Remote Sens. 2023, 15, 5375. https://doi.org/10.3390/rs15225375
Rafique A, Dasti MYS, Ullah B, Awwad FA, Ismail EAA, Saqib ZA. Snow Avalanche Hazard Mapping Using a GIS-Based AHP Approach: A Case of Glaciers in Northern Pakistan from 2012 to 2022. Remote Sensing. 2023; 15(22):5375. https://doi.org/10.3390/rs15225375
Chicago/Turabian StyleRafique, Afia, Muhammad Y. S. Dasti, Barkat Ullah, Fuad A. Awwad, Emad A. A. Ismail, and Zulfiqar Ahmad Saqib. 2023. "Snow Avalanche Hazard Mapping Using a GIS-Based AHP Approach: A Case of Glaciers in Northern Pakistan from 2012 to 2022" Remote Sensing 15, no. 22: 5375. https://doi.org/10.3390/rs15225375
APA StyleRafique, A., Dasti, M. Y. S., Ullah, B., Awwad, F. A., Ismail, E. A. A., & Saqib, Z. A. (2023). Snow Avalanche Hazard Mapping Using a GIS-Based AHP Approach: A Case of Glaciers in Northern Pakistan from 2012 to 2022. Remote Sensing, 15(22), 5375. https://doi.org/10.3390/rs15225375