Comparison of Three Active Microwave Models of Forest Growing Stock Volume Based on the Idea of the Water Cloud Model
<p>Location of study area. (<b>a</b>) The location of the study area in Sweden; (<b>b</b>) vegetation continuous fields (VCFs) in the study area, and (<b>c</b>) CGLS-LC100 Collection 3 2016 land cover data of the study area.</p> "> Figure 2
<p>General experimental procedure. The yellow part is the data, the blue part is the SAR processing and model processing, and the pink part is the result of each step.</p> "> Figure 3
<p>GSV model result distribution. (<b>a</b>) The accumulation dataset in 2010; (<b>b</b>) the multi-time-series result of IWCM; (<b>c</b>) the multi-time-series result of the Siberia model; (<b>d</b>) the BIMOASAR estimation result.</p> "> Figure 4
<p>The correlation heat map of the results. Model name_MT is the result of multiple time series. Vol_total represents the measured value. (<b>a</b>) The correlation of IWCM; (<b>b</b>) the correlation of Siberia model; (<b>c</b>) the correlation of BIOMASAR. The lighter the color, the stronger the correlation.</p> "> Figure 5
<p>The three models’ single-date data estimation results and the measurement data’s accuracy evaluation. (<b>a</b>) <span class="html-italic">MAE</span> distribution, and IWCM had the best performance. (<b>b</b>) <span class="html-italic">RMSE</span> distribution, and the Siberia model had the best performance. (<b>c</b>) <span class="html-italic">RRMSE</span> distribution, and the Siberia model had the best performance.</p> "> Figure 6
<p>Multi-time-series result correlation heat map. Dataset represents the results of existing datasets in 2010. The results of IWCM and the dataset had the strongest correlation with the measured values.</p> "> Figure 7
<p>The influence of precipitation on the results of the model. (<b>a</b>) <span class="html-italic">MAE</span> distribution, (<b>b</b>) <span class="html-italic">RMSE</span> distribution, (<b>c</b>) <span class="html-italic">RRMSE</span> distribution. The BIOMASAR results were the most sensitive to precipitation.</p> "> Figure 8
<p>The effect of tree species on results. (<b>a</b>) <span class="html-italic">MAE</span> distribution, (<b>b</b>) <span class="html-italic">RMSE</span> distribution, (<b>c</b>) <span class="html-italic">RRMSE</span> distribution. The IWCM model was the most sensitive to tree species, and the accuracy for deciduous forest was higher than that for coniferous forest.</p> "> Figure 9
<p>The effect of season on the results. (<b>a</b>) <span class="html-italic">MAE</span> distribution, (<b>b</b>) <span class="html-italic">RMSE</span> distribution, (<b>c</b>) <span class="html-italic">RRMSE</span> distribution. There was precipitation on the spring date of the BIOMASAR model, and the distribution span was large. The IWCM model was stable. The result of the Siberia model was the best in winter.</p> "> Figure 10
<p>The total distribution of the evaluation of single-date and multi-time-series results. (<b>a</b>) MAE distribution, (<b>b</b>) RMSE distribution, (<b>c</b>) RRMSE distribution. M_T represents multi-time-series data. The effects of the IWCM and BIOMASAR were slightly improved in the multi-time-series results, while the effect of the Siberia model was not improved.</p> "> Figure 11
<p>Vol is the measured GSV, CC represents coherence, BS represents backscattering, and the value on the graph represents the correlation coefficient. From the second column or row the correlation between GSV and coherence or backscattering can be obtained.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Ground Point Data
2.2.2. Sentinel Data
2.2.3. Digital Elevation Model (DEM)
2.2.4. Land Cover Data
2.2.5. Meteorological Data
2.3. Methods
2.3.1. Interferometric Water-Cloud Model (IWCM)
2.3.2. Siberia Model
2.3.3. BIOMASAR Model
2.4. Parameter Determination
2.5. Evaluation Method
3. Results
3.1. Result Accuracy Evaluation
3.2. The Effect of Precipitation
3.3. The Effect of Vegetation Type
3.4. The Effect of Season
4. Discussion
5. Conclusions
- (1)
- For this study area with many unknown conditions, among the three models, the IWCM model using both backscatter and coherence was more stable and more suitable. However, the model uses two parameters, backscatter and coherence. The acquisition of these two parameters also increases the time cost. Compared with the other two models, this model takes the longest time and is most sensitive to tree species type.
- (2)
- The Siberia model only uses coherence to calculate the GSV. In this study, the single-date result of this model had the best accuracy. However, a stable effect could not be obtained in multi-time-series data. The stability of the model estimation results ranked second among the three models. The data time baseline used in the experiment was 12 days. Reducing the space and time baseline may lead to better results.
- (3)
- The establishment of BIOMASAR model equations only uses SAR backscatter coefficients to estimate the GSV. The principle of the model is simple, easy to understand, and easy to reproduce. Because no SAR coherent computation is required, the time consumption is the least among the three models. It is more suitable for national, world-scale, or large-scale GSV collection. However, due to the introduction of fewer parameters, the stability of the model is poor. This study area is small, and the accuracy of this method ranked third. The amount of precipitation affected the accuracy of the model.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McKinnon, G.; Webber, S. Climate Change Impacts and Adaptation in Canada: Is the Forest Sector Prepared? For. Chron. 2005, 81, 653–654. [Google Scholar] [CrossRef]
- Gamfeldt, L.; Snall, T.; Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.; Froberg, M.; Stendahl, J.; Philipson, C.D.; et al. Higher Levels of Multiple Ecosystem Services Are Found in Forests with More Tree Species. Nat. Commun. 2013, 4, 1340. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Jo, I.; Guo, Q.; Wardle, D.A.; Fang, J.; Chen, A.; Oswalt, C.M.; Brockerhoff, E.G. Impacts of Climate on the Biodiversity-Productivity Relationship in Natural Forests. Nat. Commun. 2018, 9, 5436. [Google Scholar] [CrossRef] [PubMed]
- Gschwantner, T.; Alberdi, I.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Breidenbach, J.; Donis, J.; Fischer, C.; et al. Growing Stock Monitoring by European National Forest Inventories: Historical Origins, Current Methods and Harmonisation. For. Ecol. Manag. 2022, 505, 119868. [Google Scholar] [CrossRef]
- Heinonen, T.; Pukkala, T.; Mehtatalo, L.; Asikainen, A.; Kangas, J.; Peltola, H. Scenario Analyses for the Effects of Harvesting Intensity on Development of Forest Resources, Timber Supply, Carbon Balance and Biodiversity of Finnish Forestry. For. Policy Econ. 2017, 80, 80–98. [Google Scholar] [CrossRef]
- Schmid, S.; Thurig, E.; Kaufmann, E.; Lischke, H.; Bugmann, H. Effect of Forest Management on Future Carbon Pools and Fluxes: A Model Comparison. For. Ecol. Manag. 2006, 237, 65–82. [Google Scholar] [CrossRef]
- Alberdi, I.; Michalak, R.; Fischer, C.; Gasparini, P.; Brandli, U.; Tomter, S.; Kuliesis, A.; Snorrason, A.; Redmond, J.; Hernandez, L.; et al. Towards Harmonized Assessment of European Forest Availability for Wood Supply in Europe. For. Policy Econ. 2016, 70, 20–29. [Google Scholar] [CrossRef]
- Boechat Soares, C.P.; Romarco de Oliveira, M.L.; Martins, F.B.; Moreira de Figueiredo, L.T. Equations to Estimate the Carbon Stock per Hectare in Stems of Trees in Seasonal Semidecidual Forest. Cienc. Florest. 2016, 26, 579–588. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Carvalhais, N.; Rozendaal, D.M.A.; Avitabile, V.; Araza, A.; de Bruin, S.; Herold, M.; Quegan, S.; Rodríguez-Veiga, P.; et al. The Global Forest Above-Ground Biomass Pool for 2010 Estimated from High-Resolution Satellite Observations. Earth Syst. Sci. Data 2021, 13, 3927–3950. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Rombach, M.; Walker, W. Mapping Canopy Height and Growing Stock Volume Using Airborne Lidar, ALOS PALSAR and Landsat ETM. Remote Sens. 2012, 4, 3320–3345. [Google Scholar] [CrossRef]
- Zharko, V.; Bartalev, S.; Sidorenkov, V. Forest Growing Stock Volume Estimation Using Optical Remote Sensing over Snow-Covered Ground: A Case Study for Sentinel-2 Data and the Russian Southern Taiga Region. Remote Sens. Lett. 2020, 11, 677–686. [Google Scholar] [CrossRef]
- Hüttich, C.; Korets, M.; Bartalev, S.; Zharko, V.; Schepaschenko, D.; Shvidenko, A.; Schmullius, C. Exploiting Growing Stock Volume Maps for Large Scale Forest Resource Assessment: Cross-Comparisons of ASAR- and PALSAR-Based GSV Estimates with Forest Inventory in Central Siberia. Forests 2014, 5, 1753–1776. [Google Scholar] [CrossRef]
- Askne, J.; Santoro, M.; Smith, G.; Fransson, J.E.S. Multitemporal Repeat-Pass Sar Interferometry of Boreal Forests. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1540–1550. [Google Scholar] [CrossRef]
- Li, X.; Long, J.; Zhang, M.; Liu, Z.; Lin, H. Coniferous Plantations Growing Stock Volume Estimation Using Advanced Remote Sensing Algorithms and Various Fused Data. Remote Sens. 2021, 13, 3468. [Google Scholar] [CrossRef]
- Li, X.; Lin, H.; Long, J.; Xu, X. Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method. Remote Sens. 2021, 13, 2740. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef]
- Parkitna, K.; Krok, G.; Miscicki, S.; Ukalski, K.; Lisanczuk, M.; Mitelsztedt, K.; Magnussen, S.; Markiewicz, A.; Sterenczak, K. Modelling Growing Stock Volume of Forest Stands with Various ALS Area-Based Approaches. Forestry 2021, 94, 630–650. [Google Scholar] [CrossRef]
- Khati, U.; Lavalle, M.; Shiroma, G.H.X.; Meyer, V.; Chapman, B. Assessment of Forest Biomass Estimation from Dry and Wet SAR Acquisitions Collected during the 2019 UAVSAR AM-PM Campaign in Southeastern United States. Remote Sens. 2020, 12, 3397. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Fontanelli, G.; Mura, M.; Zolli, C.; Maselli, F.; Chiesi, M.; Bottai, L.; Chirici, G. The Potential of Multifrequency SAR Images for Estimating Forest Biomass in Mediterranean Areas. Remote Sens. Environ. 2017, 200, 63–73. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Fransson, J.E.S. Dynamics of the Swedish Forest Carbon Pool between 2010 and 2015 Estimated from Satellite L-Band SAR Observations. Remote Sens. Environ. 2022, 270, 112846. [Google Scholar] [CrossRef]
- Cartus, O.; Santoro, M.; Wegmuller, U.; Labriere, N.; Chave, J. Sentinel-1 Coherence for Mapping Above-Ground Biomass in Semiarid Forest Areas. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5. [Google Scholar] [CrossRef]
- Ramanujam, S.; Chandrasekar, R.; Chakravarthy, B. A New PCA-ANN Algorithm for Retrieval of Rainfall Structure in a Precipitating Atmosphere. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 1002–1025. [Google Scholar] [CrossRef]
- Sharma, A.; Kannan, S.R. Intercomparison between IMD Ground Radar and TRMM PR Observations Using Alignment Methodology and Artificial Neural Network. J. Earth Syst. Sci. 2021, 130, 1–13. [Google Scholar] [CrossRef]
- Sharma, A.; Kannan, S.R. A Methodology to Upscale IMD Ground Radar Observations at the Same Resolution with TRMM PR Reflectivity Using ANN. Remote Sens. Appl. Soc. Environ. 2023, 30, 100940. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Fransson, J.E.S. Integration of Allometric Equations in the Water Cloud Model towards an Improved Retrieval of Forest Stem Volume with L-Band SAR Data in Sweden. Remote Sens. Environ. 2021, 253, 112235. [Google Scholar] [CrossRef]
- Tanase, M.A.; Borlaf-Mena, I.; Santoro, M.; Aponte, C.; Marin, G.; Apostol, B.; Badea, O. Growing Stock Volume Retrieval from Single and Multi-Frequency Radar Backscatter. Forests 2021, 12, 944. [Google Scholar] [CrossRef]
- Tanase, M.A.; Marin, G.; Belenguer-Plomer, M.A.; Borlaf, I.; Popescu, F.; Badea, O. Deep Neural Networks for Forest Growing Stock Volume Retrieval: A Comparative Analysis for L-Band Sar Data. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4975–4978. [Google Scholar]
- Ataee, M.S.; Maghsoudi, Y.; Latifi, H.; Fadaie, F. Improving Estimation Accuracy of Growing Stock by Multi-Frequency SAR and Multi-Spectral Data over Iran’s Heterogeneously-Structured Broadleaf Hyrcanian Forests. Forests 2019, 10, 641. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest Aboveground Biomass Estimation Using Landsat 8 and Sentinel-1A Data with Machine Learning Algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Ge, S.; Tomppo, E.; Rauste, Y.; Su, W.; Gu, H.; Praks, J.; Antropov, O. Predicting Growing Stock Volume of Boreal Forests Using Very Long Time Series of Sentinel-1 Data. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September 2020; pp. 4509–4512. [Google Scholar]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Xi, Y. Estimation of Forest Above-Ground Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery. Forests 2018, 9, 582. [Google Scholar] [CrossRef]
- Carreiras, J.M.B.; Vasconcelos, M.J.; Lucas, R.M. Understanding the Relationship between Aboveground Biomass and ALOS PALSAR Data in the Forests of Guinea-Bissau (West Africa). Remote Sens. Environ. 2012, 121, 426–442. [Google Scholar] [CrossRef]
- Thiel, C.; Schmullius, C. The Potential of ALOS PALSAR Backscatter and InSAR Coherence for Forest Growing Stock Volume Estimation in Central Siberia. Remote Sens. Environ. 2016, 173, 258–273. [Google Scholar] [CrossRef]
- Koskinen, J.T.; Palliainen, J.T.; Hyyppa, J.M.; Engdahl, M.E.; Hallikainen, M.T. The Seasonal Behavior of Interferometric Coherence in Boreal Forest. IEEE Trans. Geosci. Remote Sens. 2001, 39, 820–829. [Google Scholar] [CrossRef]
- Michelakis, D.; Stuart, N.; Brolly, M.; Woodhouse, I.H.; Lopez, G.; Linares, V. Estimation of Woody Biomass of Pine Savanna Woodlands From ALOS PALSAR Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 244–254. [Google Scholar] [CrossRef]
- Askne, J.I.H.; Dammert, P.B.G.; Ulander, L.M.H.; Smith, G. C-Band Repeat-Pass Interferometric SAR Observations of the Forest. IEEE Trans. Geosci. Remote Sens. 1997, 35, 25–35. [Google Scholar] [CrossRef]
- Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. The Biomasar Algorithm: An Approach for Retrieval of Forest Growing Stock Volume Using Stacks of Multi-Temporal Sar Data. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010; Volume 28. [Google Scholar]
- Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of Growing Stock Volume in Boreal Forest Using Hyper-Temporal Series of Envisat ASAR ScanSAR Backscatter Measurements. Remote Sens. Environ. 2011, 115, 490–507. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation Modeled as a Water Cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Askne, J.; Dammert, P.B.G.; Smith, G. Understanding ERS InSAR Coherence of Boreal Forests. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; Volume 4, pp. 2111–2114. [Google Scholar]
- Santoro, M.; Askne, J.; Smith, G.; Dammert, P.B.G.; Fransson, J.E.S. Boreal Forest Monitoring with ERS Coherence. In Proceedings of the ERS-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Cartus, O.; Santoro, M. Large Area Forest Stem Volume Mapping in the Boreal Zone Using Synergy of ERS-1/2 Tandem Coherence and MODIS Vegetation Continuous Fields. Remote Sens. Environ. 2011, 115, 931–943. [Google Scholar] [CrossRef]
- Santoro, M.; Askne, J.; Dammert, P.B.G.; Fransson, J.E.S.; Smith, G. Retrieval of biomass in boreal forest from multi-temporal ERS-1/2 interferometry. In Proceedings of the Second International Workshop on ERS SAR Interferometry, Liège, Belgium, 10–12 November 1999. [Google Scholar]
- Schmullius, C.; Holz, A.; Vietmeier, J.; Zimmermann, R.; Etzroth, N. SIBERIA—Sar Imaging for Boreal Ecology and Radar Interferometry Applications: First ERS Tandem Results from the IGBP Boreal Forest Transect. In Proceedings of the Symposium on Retrieval of Bio- & Geo-physical Parameters from SAR Data for Land Applications, Noordwijk, The Netherlands, 21 October 1998; Volume 441, pp. 365–370. [Google Scholar]
- Schmullius, C.; Thiel, C.; Pathe, C.; Santoro, M. Radar Time Series for Land Cover and Forest Mapping. In Remote Sensing Time Series; Kuenzer, C., Dech, S., Wagner, W., Eds.; Remote Sensing and Digital Image Processing; Springer International Publishing: Cham, Switzerland, 2015; Volume 22, pp. 323–356. ISBN 978-3-319-15966-9. [Google Scholar]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Santoro, M.; Eriksson, L.; Askne, J.; Schmullius, C. Assessment of Stand-wise Stem Volume Retrieval in Boreal Forest from JERS-1 L-band SAR Backscatter. Int. J. Remote Sens. 2006, 27, 3425–3454. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Mikhela, P.J.; Hallikainen, M.T.; Ikonen, J.-P. Seasonal Dynamics of C-Band Backscatter of Boreal Forests with Applications to Biomass and Soil Moisture Estimation. IEEE Trans. Geosci. Remote Sens. 1996, 34, 758–770. [Google Scholar] [CrossRef]
- Wagner, W. Large-Scale Mapping of Boreal Forest in SIBERIA Using ERS Tandem Coherence and JERS Backscatter Data. Remote Sens. Environ. 2003, 85, 125–144. [Google Scholar] [CrossRef]
- Santoro, M.; Askne, J.; Smith, G.; Fransson, J.E.S. Stem Volume Retrieval in Boreal Forests from ERS-1/2 Interferometry. Remote Sens. Environ. 2002, 81, 19–35. [Google Scholar] [CrossRef]
- Dammert, P.B.G.; Askne, J. Interferometric Tree Height Observations in Boreal Forests with SAR Interferometry. In Proceedings of the IGARSS ’98, Sensing and Managing the Environment, 1998 IEEE International Geoscience and Remote Sensing, Symposium Proceedings, (Cat. No.98CH36174), Seattle, WA, USA, 6–10 July 1998; Volume 3, pp. 1363–1366. [Google Scholar]
Metric | IWCM | Siberia | BIOMASAR |
---|---|---|---|
MAE (m3/ha) | 119.47 | 171.14 | 138.99 |
RMSE (m3/ha) | 186.88 | 300.52 | 246.32 |
RRMSE | 1.26 | 2.03 | 1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Sun, H.; Xu, Z.; Xu, H.; Wu, D.; Wu, L. Comparison of Three Active Microwave Models of Forest Growing Stock Volume Based on the Idea of the Water Cloud Model. Remote Sens. 2023, 15, 2848. https://doi.org/10.3390/rs15112848
Zhang T, Sun H, Xu Z, Xu H, Wu D, Wu L. Comparison of Three Active Microwave Models of Forest Growing Stock Volume Based on the Idea of the Water Cloud Model. Remote Sensing. 2023; 15(11):2848. https://doi.org/10.3390/rs15112848
Chicago/Turabian StyleZhang, Tian, Hao Sun, Zhenheng Xu, Huanyu Xu, Dan Wu, and Ling Wu. 2023. "Comparison of Three Active Microwave Models of Forest Growing Stock Volume Based on the Idea of the Water Cloud Model" Remote Sensing 15, no. 11: 2848. https://doi.org/10.3390/rs15112848
APA StyleZhang, T., Sun, H., Xu, Z., Xu, H., Wu, D., & Wu, L. (2023). Comparison of Three Active Microwave Models of Forest Growing Stock Volume Based on the Idea of the Water Cloud Model. Remote Sensing, 15(11), 2848. https://doi.org/10.3390/rs15112848