Insighting Drivers of Population Exposure to Ambient Ozone (O3) Concentrations across China Using a Spatiotemporal Causal Inference Method
<p>The schematic diagram between outcome variable (dependent variable) and determinants and its proxy variables.</p> "> Figure 2
<p>Flow diagram of the spatiotemporal causal inference framework.</p> "> Figure 3
<p>The overall spatial pattern of the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>W</mi> <mi>G</mi> <mi>L</mi> <msub> <mrow> <mi>O</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math> concentrations in the early stage (<b>A</b>) and late-stage (<b>B</b>) and the transformation (<b>C</b>) of the composition of the five classes of <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>W</mi> <mi>G</mi> <mi>L</mi> <msub> <mrow> <mi>O</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math> levels between the two stages.</p> "> Figure 4
<p>The scatters and Bayesian multi-stage spatiotemporal evolution hierarchy model fitted polylines of the annual population-weighted ozone (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>O</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math>) concentrations in the example of 12 prefecture-level regions in China from 2005 to 2019.</p> "> Figure 5
<p>The local annual change of the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>W</mi> <mi>G</mi> <mi>L</mi> <msub> <mrow> <mi>O</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math> concentrations in China at the sub-provincial scale in the early stage.</p> "> Figure 6
<p>The local annual change in the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>W</mi> <mi>G</mi> <mi>L</mi> <msub> <mrow> <mi>O</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math> concentrations of China at a sub-provincial scale in the late stage.</p> "> Figure 7
<p>Normalised regression results of the Bayesian LASSO regression model between the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>W</mi> <mi>G</mi> <mi>L</mi> <msub> <mrow> <mi>O</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math> concentrations and the significant driving factors in the two stages.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Variable and Data
2.1.1. Population Exposure to
2.1.2. Influencing Factors
2.2. Bayesian Multi-Stage Spatiotemporal Evolution Hierarchy Model (BMSSTEHM)
2.3. Bayesian Spatiotemporal LASSO Regression Model (BST-LASSO-RM)
2.4. A Spatiotemporal Propensity Score Matching (STPSM) Method
2.5. A Spatiotemporal Causal Inference Method
- (i)
- Let = 1 if , = 0 if ;
- (ii)
- Then, the observed outcome, , can be divided into two groups, they can be called treatment and control group, according to the value of , i.e., and ;
- (iii)
- Calculate propensity scores ;
- (iv)
- Using STPSM to match the sample data between the treatment and control groups;
- (v)
- Adopt t-test to identify the significant difference between the treatment and control groups and consequently to recognise the causality of to ;
- (vi)
- Repeat the above five steps, (i)–(v), to recognise the causality of other significant correlated independent variables, .
3. Results
3.1. Descriptive Statistics
3.2. The Spatial Pattern and Its Transformation of the
3.3. The Local Trends of the Concentrations at the Sub-Provincial Level
3.4. Drivers of the Concentrations
3.5. Implications of the Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agathokleous, E.; Feng, Z.; Oksanen, E.; Sicard, P.; Wang, Q.; Saitanis, C.J.; Araminiene, V.; Blande, J.D.; Hayes, F.; Calatayud, V. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Sci. Adv. 2020, 6, eabc1176. [Google Scholar] [CrossRef] [PubMed]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anthr. 2018, 6, 27. [Google Scholar]
- Sicard, P.; Anav, A.; De Marco, A.; Paoletti, E. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmos. Chem. Phys. 2017, 17, 12177–12196. [Google Scholar]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Sicard, P. Ground-level ozone over time: An observation-based global overview. Curr. Opin. Environ. Sci. Health 2021, 19, 100226. [Google Scholar]
- Feng, L.; Liao, W. Legislation, plans, and policies for prevention and control of air pollution in China: Achievements, challenges, and improvements. J. Clean. Prod. 2016, 112, 1549–1558. [Google Scholar]
- Xue, W.; Wang, L.; Yang, Z.; Xiong, Z.; Li, X.; Xu, Q.; Cai, Z. Can clean heating effectively alleviate air pollution: An empirical study based on the plan for cleaner winter heating in northern China. Appl. Energy 2023, 351, 121923. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, J.; Tan, Y.; Guo, M.; Gu, Y.; Xu, S.; Zhou, Y. Temporospatial variations and Spearman correlation analysis of ozone concentrations to nitrogen dioxide, sulfur dioxide, particulate matters and carbon monoxide in ambient air, China. Atmos. Pollut. Res. 2019, 10, 1203–1210. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, S.; Gong, Z.; Li, H.; Yang, Q.; Wang, Y. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China. J. Environ. Sci. 2018, 67, 179–190. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, Z.; Wu, H.; Pang, X.; Qin, K.; Wang, B.; Ding, S.; Chen, D.; Chen, J. Tracking long-term population exposure risks to PM2. 5 and ozone in urban agglomerations of China 2015–2021. Sci. Total Environ. 2023, 854, 158599. [Google Scholar] [CrossRef]
- An, J.; Shi, Y.; Wang, J.; Zhu, B. Temporal variations of O3 and NOx in the urban background atmosphere of Nanjing, East China. Arch. Environ. Contam. Toxicol. 2016, 71, 224–234. [Google Scholar] [CrossRef]
- Wang, W.-N.; Cheng, T.-H.; Gu, X.-F.; Chen, H.; Guo, H.; Wang, Y.; Bao, F.-W.; Shi, S.-Y.; Xu, B.-R.; Zuo, X. Assessing spatial and temporal patterns of observed ground-level ozone in China. Sci. Rep. 2017, 7, 3651. [Google Scholar] [CrossRef]
- Zhang, A.; Lin, J.; Chen, W.; Lin, M.; Lei, C. Spatial-Temporal Distribution Variation of Ground-Level Ozone in China’s Pearl River Delta Metropolitan Region. Int. J. Environ. Res. Public. Health 2021, 18, 872. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Wang, Y.; Li, X.; Ji, D.; Gao, X. Spatial-temporal variations of surface ozone and ozone control strategy for Northern China. Atmos. Chem. Phys. Discuss. 2011, 11, 26057–26109. [Google Scholar]
- Gao, C.; Xiu, A.; Zhang, X.; Chen, W.; Liu, Y.; Zhao, H.; Zhang, S. Spatiotemporal characteristics of ozone pollution and policy implications in Northeast China. Atmos. Pollut. Res. 2020, 11, 357–369. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Liu, Y.; Yi, K.; Yang, H.; Xiang, S.; Ma, J.; Tao, S. Spatiotemporal variability and driving factors of ground-level summertime ozone pollution over eastern China. Atmos. Environ. 2021, 265, 118686. [Google Scholar] [CrossRef]
- Lyu, Y.; Ju, Q.; Lv, F.; Feng, J.; Pang, X.; Li, X. Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021. Environ. Pollut. 2022, 306, 119420. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, Y.; Li, X. Spatiotemporal distribution of ground-level ozone in China at a city level. Sci. Rep. 2020, 10, 7229. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Zheng, Y.; Geng, G.; Xiao, Q.; Meng, X.; Wang, M.; Li, X.; Wu, N.; Zhang, Q.; Zhu, T. Estimating spatiotemporal variation in ambient ozone exposure during 2013–2017 using a data-fusion model. Environ. Sci. Technol. 2020, 54, 14877–14888. [Google Scholar] [CrossRef]
- Li, Y.; Shi, G.; Chen, Z. Spatial and temporal distribution characteristics of ground-level nitrogen dioxide and ozone across China during 2015–2020. Environ. Res. Lett. 2021, 16, 124031. [Google Scholar] [CrossRef]
- Liu, R.; Ma, Z.; Liu, Y.; Shao, Y.; Zhao, W.; Bi, J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environ. Int. 2020, 142, 105823. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sens. Environ. 2021, 270, 112775. [Google Scholar]
- Chang, C.-Y.; Faust, E.; Hou, X.; Lee, P.; Kim, H.C.; Hedquist, B.C.; Liao, K.-J. Investigating ambient ozone formation regimes in neighboring cities of shale plays in the Northeast United States using photochemical modeling and satellite retrievals. Atmos. Environ. 2016, 142, 152–170. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, H.; Tong, D.; Lee, P. Summertime weekly cycles of observed and modeled NOx and O3 concentrations as a function of satellite-derived ozone production sensitivity and land use types over the Continental United States. Atmos. Chem. Phys. 2012, 12, 6291–6307. [Google Scholar] [CrossRef]
- Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.; Hu, Y.; Pickering, K.E.; Retscher, C.; Allen, D.J. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmos. Environ. 2010, 44, 2213–2223. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.; Boersma, K.F.; Smedt, I.D.; Valin, L. Inferring Changes in Summertime Surface Ozone–NOx–VOC Chemistry over US Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef]
- Pusede, S.; Cohen, R. On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995–present. Atmos. Chem. Phys. 2012, 12, 8323–8339. [Google Scholar]
- Chi, X.; Liu, C.; Xie, Z.; Fan, G.; Wang, Y.; He, P.; Fan, S.; Hong, Q.; Wang, Z.; Yu, X. Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China. Atmos. Res. 2018, 213, 224–235. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Zeng, L.; Wu, R.; Li, J. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2015, 113, 247–254. [Google Scholar] [CrossRef]
- Wei, W.; Lv, Z.F.; Li, Y.; Wang, L.T.; Cheng, S.; Liu, H. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China. Atmos. Environ. 2018, 175, 44–53. [Google Scholar] [CrossRef]
- An, J.; Zou, J.; Wang, J.; Lin, X.; Zhu, B. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2015, 22, 19607–19617. [Google Scholar] [CrossRef]
- Geng, F.; Tie, X.; Xu, J.; Zhou, G.; Peng, L.; Gao, W.; Tang, X.; Zhao, C. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. Atmos. Environ. 2008, 42, 6873–6883. [Google Scholar] [CrossRef]
- Lu, H.; Lyu, X.; Cheng, H.; Ling, Z.; Guo, H. Overview on the spatial-temporal characteristics of the ozone formation regime in China. Environ. Sci. Process. Impacts 2019, 21, 916–929. [Google Scholar] [PubMed]
- Li, M.; Song, Y.; Mao, Z.; Liu, M.; Huang, X. Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China. Atmos. Environ. 2016, 127, 382–392. [Google Scholar] [CrossRef]
- Liu, P.; Song, H.; Wang, T.; Wang, F.; Li, X.; Miao, C.; Zhao, H. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environ. Pollut. 2020, 262, 114366. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe surface ozone pollution in China: A global perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Chen, Y.; Zhou, M.; Zheng, B.; Li, K.; Liu, Y.; Lin, J.; Fu, T.-M.; Zhang, Q. Exploring 2016–2017 surface ozone pollution over China: Source contributions and meteorological influences. Atmos. Chem. Phys. 2019, 19, 8339–8361. [Google Scholar]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef]
- Li, J.; Han, X.; Jin, M.; Zhang, X.; Wang, S. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population’s PM2.5 exposure from 1998 to 2016. Environ. Int. 2019, 128, 46–62. [Google Scholar] [CrossRef]
- Li, G.; Haining, R.; Richardson, S.; Best, N. Space-time variability in burglary risk: A Bayesian spatio-temporal modelling approach. Spat. Stat. 2014, 9, 180–191. [Google Scholar] [CrossRef]
- Malash, G.F.; El-Khaiary, M.I. Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem. Eng. J. 2010, 163, 256–263. [Google Scholar] [CrossRef]
- Besag, J.; York, J.; Mollié, A.; Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin, Germany, 1988. [Google Scholar]
- Brueckner, J.K. Strategic interaction among governments: An overview of empirical studies. Int. Reg. Sci. Rev. 2003, 26, 175–188. [Google Scholar] [CrossRef]
- Elhorst, P.; Piras, G.; Arbia, G. Growth and Convergence in a Multiregional Model with Space-Time Dynamics. Geogr. Anal. 2010, 42, 338–355. [Google Scholar] [CrossRef]
- Hans, C. Bayesian lasso regression. Biometrika 2009, 96, 835–845. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Ding, D.; Xing, J.; Wang, S.; Chang, X.; Hao, J. Impacts of emissions and meteorological changes on China’s ozone pollution in the warm seasons of 2013 and 2017. Front. Environ. Sci. Eng. 2019, 13, 1–9. [Google Scholar]
- Liu, J.; Wang, L.; Li, M.; Liao, Z.; Sun, Y.; Song, T.; Gao, W.; Wang, Y.; Li, Y.; Ji, D. Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmos. Chem. Phys. 2019, 19, 14477–14492. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; He, T.; Meng, X.; Xie, S.; Yu, H. Driving factors of the significant increase in surface ozone in the Yangtze River Delta, China, during 2013–2017. Atmos. Pollut. Res. 2019, 10, 1357–1364. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Chen, X.; Li, C.; Sun, Y.; Wang, J.; Lyapustin, A.; Brasseur, G.; Jiang, M.; Sun, L.; et al. Separating daily 1 km PM2.5 inorganic chemical composition in China since 2000 via deep learning integrating ground, satellite, and model data. Environ. Sci. Technol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Churkina, G.; Kuik, F.; Bonn, B.; Lauer, A.; Grote, R.d.; Tomiak, K.; Butler, T.M. Effect of VOC emissions from vegetation on air quality in Berlin during a heatwave. Environ. Sci. Technol. 2017, 51, 6120–6130. [Google Scholar] [CrossRef] [PubMed]
- Haagen-Smit, A.J. Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem. 1952, 44, 1342–1346. [Google Scholar] [CrossRef]
- Ma, M.; Gao, Y.; Ding, A.; Su, H.; Liao, H.; Wang, S.; Wang, X.; Zhao, B.; Zhang, S.; Fu, P. Development and assessment of a high-resolution biogenic emission inventory from urban green spaces in China. Environ. Sci. Technol. 2021, 56, 175–184. [Google Scholar] [CrossRef]
Variables | 2005–2014 | 2015–2019 | ||||
---|---|---|---|---|---|---|
RR | RD (μg/m3) | p Value | RR | RD (μg/m3) | p Value | |
1.011 | 1.18 | 0.019 | 1.112 | 2.08 | 0.002 | |
1.025 | 2.03 | 0.017 | 1.023 | 2.15 | 0.018 | |
1.016 | 1.19 | 0.011 | 1.015 | 2.08 | 0.008 | |
TIP | 1.001 | 0.52 | 0.289 | 1.044 | 3.68 | <0.001 |
/ | / | / | 1.026 | 2.66 | 0.001 | |
1.025 | 1.87 | 0.158 | 1.042 | 3.81 | 0.048 | |
/ | / | / | 1.021 | 2.78 | <0.001 | |
1.061 | 5.07 | <0.001 | 1.106 | 8.96 | <0.001 | |
1.022 | 3.57 | 0.006 | 1.058 | 6.61 | 0.002 | |
0.973 | −3.20 | 0.001 | 0.957 | −4.97 | <0.001 | |
0.962 | −5.19 | <0.001 | 1.048 | 4.30 | <0.001 | |
0.958 | −3.20 | <0.001 | 1.002 | 0.49 | 0.281 | |
/ | / | / | 1.044 | 3.68 | <0.001 | |
1.036 | 2.75 | 0.009 | / | / | / | |
1.024 | 1.88 | 0.015 | 1.008 | 0.76 | 0.016 | |
1.043 | 3.34 | 0.001 | 1.150 | 11.75 | <0.001 | |
/ | / | / | 1.089 | 6.87 | 0.001 | |
1.006 | 1.88 | 0.011 | 1.076 | 2.88 | <0.001 | |
/ | / | / | 0.951 | −2.06 | 0.047 | |
WAAWS | 1.002 | 1.061 | 0.125 | 1.008 | 1.94 | 0.033 |
AARH | 0.991 | −0.85 | 0.038 | 0.950 | −2.25 | 0.002 |
Drivers | 2005–2014 | 2015–2019 |
---|---|---|
Mean (2.5%th, 97.5%th) | Mean (2.5%th, 97.5%th) | |
) | 0.76 (0.18, 1.17) | 1.86 (0.55, 2.19) |
China Yuan) | 0.45 (0.23, 0.76) | 0.19 (0.26, 0.39) |
China Yuan) | 0.12 (0.05, 0.51) | 0.33 (0.12, 0.56) |
) | / | 0.12 (0.07, 0.17) |
W·TIP (%) | / | 0.08 (0.03, 0.14) |
) | / | 0.81 (0.07, 2.21) |
) | / | 0.62 (0.37, 0.99) |
) | 0.91 (0.42, 1.54) | 2.34 (1.67, 3.18) |
) | 0.62 (0.22, 1.08) | 1.94 (1.01, 2.30) |
Passengers) | −3.11 (−5.15, −0.99) | −0.96 (−1.31, −0.58) |
NTPC (Vehicles) | −0.13 (−0.30, −0.03) | 0.08 (0.01, 0.16) |
NBPC (Vehicles) | −0.14 (−0.30, −0.02) | / |
UGCR (%) | / | 0.04 (0.01, 0.06) |
) | 0.61 (0.15, 1.11) | / |
) | 0.08 (0.03, 0.12) | 0.16 (0.09, 0.21) |
) | 0.31 (0.20, 0.44) | 0.65 (0.55, 0.74) |
) | / | 0.29 (0.09, 0.80) |
) | 0.03 (0.01, 0.06) | 0.12 (0.06, 0.22) |
) | / | 0.08 (0.04, 0.18) |
) | / | 0.04 (0.02, 0.07) |
) | −0.07 (−0.12, −0.03) | −0.21 (−0.36, −0.10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xue, J.; Wei, J.; Ren, Z.; Yu, Y.; An, H.; Yang, X.; Yang, Y. Insighting Drivers of Population Exposure to Ambient Ozone (O3) Concentrations across China Using a Spatiotemporal Causal Inference Method. Remote Sens. 2023, 15, 4871. https://doi.org/10.3390/rs15194871
Li J, Xue J, Wei J, Ren Z, Yu Y, An H, Yang X, Yang Y. Insighting Drivers of Population Exposure to Ambient Ozone (O3) Concentrations across China Using a Spatiotemporal Causal Inference Method. Remote Sensing. 2023; 15(19):4871. https://doi.org/10.3390/rs15194871
Chicago/Turabian StyleLi, Junming, Jing Xue, Jing Wei, Zhoupeng Ren, Yiming Yu, Huize An, Xingyan Yang, and Yixue Yang. 2023. "Insighting Drivers of Population Exposure to Ambient Ozone (O3) Concentrations across China Using a Spatiotemporal Causal Inference Method" Remote Sensing 15, no. 19: 4871. https://doi.org/10.3390/rs15194871
APA StyleLi, J., Xue, J., Wei, J., Ren, Z., Yu, Y., An, H., Yang, X., & Yang, Y. (2023). Insighting Drivers of Population Exposure to Ambient Ozone (O3) Concentrations across China Using a Spatiotemporal Causal Inference Method. Remote Sensing, 15(19), 4871. https://doi.org/10.3390/rs15194871