Integrating Multi-Point Geostatistics, Machine Learning, and Image Correlation for Characterizing Positional Errors in Remote-Sensing Images of High Spatial Resolution
<p>The flowchart for characterizing positional errors, where OSM stands for OpenStreetMap, SG represents simulation grid nodes, RCLV represents road centerline vertices, and RCLS represents road centerline segments.</p> "> Figure 2
<p>The reference-test image pair in this research: (<b>a</b>) the reference image with green dots indicating model-training sample points and (<b>b</b>) the test image in which road centerlines are shown as blue lines and test sample points are shown as red dots.</p> "> Figure 2 Cont.
<p>The reference-test image pair in this research: (<b>a</b>) the reference image with green dots indicating model-training sample points and (<b>b</b>) the test image in which road centerlines are shown as blue lines and test sample points are shown as red dots.</p> "> Figure 3
<p>Positional errors characterized through MPS: (<b>a</b>,<b>b</b>) show means in X and Y, respectively, and (<b>c</b>,<b>d</b>) show standard deviation in X and Y, respectively, and (<b>e</b>) shows covariance of errors in X and Y.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and Datasets
2.2. Semi-Automatic Construction of TD
2.3. GAM for De-Trending Positional Errors
2.4. DS for Simulating Positional Errors
2.5. Positional-Error Propagation in Road Centerlines
2.6. Realizations of References Positions for Road Centerlines
3. Results
3.1. Constructing TD
3.2. Trend-Surfacing CD and TD
3.3. Simulating Positional Errors
3.4. Characterizing Errors in Road Centerlines and Predicting Their Reference Positions
4. Discussion
4.1. Summary of the Work
4.2. Further Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Multi-View Stereo Image Matching in MicMac
Appendix A.2. Thin-Plate Spline Smooth in GAMs
Appendix A.3. Mismatch Metrics of DS/QS
References
- Arbia, G.; Griffith, D.A.; Haining, R.P. Spatial Error Propagation When Computing Linear Combinations of Spectral Bands: The Case of Vegetation Indices. Environ. Ecol. Stat. 2003, 10, 375–396. [Google Scholar] [CrossRef]
- Bastin, L.; Cornford, D.; Jones, R.; Heuvelink, G.B.M.; Pebesma, E.; Stasch, C.; Nativi, S.; Mazzetti, P.; Williams, M. Managing Uncertainty in Integrated Environmental Modelling: The UncertWeb Framework. Environ. Model. Softw. 2013, 39, 116–134. [Google Scholar] [CrossRef]
- Biljecki, F.; Heuvelink, G.B.M.; Ledoux, H.; Stoter, J. Propagation of Positional Error in 3D GIS: Estimation of the Solar Irradiation of Building Roofs. Int. J. Geogr. Inf. Sci. 2015, 29, 2269–2294. [Google Scholar] [CrossRef]
- Brown, J.D.; Heuvelink, G.B.M. The Data Uncertainty Engine (DUE): A Software Tool for Assessing and Simulating Uncertain Environmental Variables. Comput. Geosci. 2007, 33, 172–190. [Google Scholar] [CrossRef]
- Burnicki, A.C.; Brown, D.G.; Goovaerts, P. Simulating Error Propagation in Land-Cover Change Analysis: The Implications of Temporal Dependence. Comput. Environ. Urban Syst. 2007, 31, 282–302. [Google Scholar] [CrossRef]
- Goodchild, M.F. Spatial Accuracy 2.0. In Proceedings of the Spatial Uncertainty: Proceedings of the eighth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China, 25–27 June 2008; pp. 1–7. [Google Scholar]
- Goovaerts, P. Geostatistical Modelling of Uncertainty in Soil Science. Geoderma 2001, 103, 3–26. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Wu, H. Spatial Data Quality and Beyond. Int. J. Geogr. Inf. Sci. 2012, 26, 2277–2290. [Google Scholar] [CrossRef]
- Shi, W.; Cheung, C.K.; Zhu, C. Modelling Error Propagation in Vector-Based Buffer Analysis. Int. J. Geogr. Inf. Sci. 2003, 17, 251–271. [Google Scholar] [CrossRef]
- Zhang, J.; Goodchild, M.F. Uncertainty in Geographical Information, 1st ed.; CRC Press: London, UK, 2002. [Google Scholar]
- Chrisman, N.R.; Yandell, B.S. Effects of Point Error on Area Calculations: A Statistical Model. Surv. Mapp. 1988, 48, 241–246. [Google Scholar]
- De Bruin, S.; Heuvelink, G.B.M.; Brown, J.D. Propagation of Positional Measurement Errors to Agricultural Field Boundaries and Associated Costs. Comput. Electron. Agric. 2008, 63, 245–256. [Google Scholar] [CrossRef]
- Delafontaine, M.; Nolf, G.; van de Weghe, N.; Antrop, M.; de Maeyer, P. Assessment of Sliver Polygons in Geographical Vector Data. Int. J. Geogr. Inf. Sci. 2009, 23, 719–735. [Google Scholar] [CrossRef]
- Gil de la Vega, P.; Ariza-López, F.J.; Mozas-Calvache, A.T. Models for Positional Accuracy Assessment of Linear Features: 2D and 3D Cases. Surv. Rev. 2016, 48, 347–360. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, Y.; Wieczorek, J. Georeferencing Locality Descriptions and Computing Associated Uncertainty Using a Probabilistic Approach. Int. J. Geogr. Inf. Sci. 2008, 22, 1067–1090. [Google Scholar] [CrossRef]
- Zimmerman, D.; Fang, X.; Mazumdar, S.; Rushton, G. Modeling the Probability Distribution of Positional Errors Incurred by Residential Address Geocoding. Int. J. Health Geogr. 2007, 6, 1. [Google Scholar] [CrossRef]
- Kharchenko, S.V.; Kazakov, S.G. The Experiment on Assessment of Point Position Accuracy at the Manual Digitizing of a Raster Map. Geod. Cartogr. 2018, 933, 35–45. [Google Scholar] [CrossRef]
- Kronenfeld, B.J. Beyond the Epsilon Band: Polygonal Modeling of Gradation/Uncertainty in Area-Class Maps. Int. J. Geogr. Inf. Sci. 2011, 25, 1749–1771. [Google Scholar] [CrossRef]
- Leung, Y.; Ma, J.-H.; Goodchild, M.F. A General Framework for Error Analysis in Measurement-Based GIS Part 4: Error Analysis in Length and Area Measurements. J. Geogr. Syst. 2004, 6, 403–428. [Google Scholar] [CrossRef]
- Leung, Y.; Yan, J. A Locational Error Model for Spatial Features. Int. J. Geogr. Inf. Sci. 1998, 12, 607–620. [Google Scholar] [CrossRef]
- Li, S.; Cai, H.; Kamat, V.R. Uncertainty-Aware Geospatial System for Mapping and Visualizing Underground Utilities. Autom. Constr. 2015, 53, 105–119. [Google Scholar] [CrossRef]
- Mozas-Calvache, A.T.; Ariza-López, F.J. Detection of Systematic Displacements in Spatial Databases Using Linear Elements. Cartogr. Geogr. Inf. Sci. 2014, 41, 309–322. [Google Scholar] [CrossRef]
- Ratcliffe, J. On the Accuracy of TIGER-Type Geocoded Address Data in Relation to Cadastral and Census Areal Units. Int. J. Geogr. Inf. Sci. 2001, 15, 473–485. [Google Scholar] [CrossRef]
- Seo, S.; O’Hara, C.G. Quality Assessment of Linear Data. Int. J. Geogr. Inf. Sci. 2009, 23, 1503–1525. [Google Scholar] [CrossRef]
- Tong, X.; Sun, T.; Fan, J.; Goodchild, M.F.; Shi, W. A Statistical Simulation Model for Positional Error of Line Features in Geographic Information Systems (GIS). Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 136–148. [Google Scholar] [CrossRef]
- Wernette, P.; Shortridge, A.; Lusch, D.P.; Arbogast, A.F. Accounting for Positional Uncertainty in Historical Shoreline Change Analysis without Ground Reference Information. Int. J. Remote Sens. 2017, 38, 3906–3922. [Google Scholar] [CrossRef]
- Xavier, E.M.A.; Ariza-López, F.J.; Ureña-Cámara, M.A. A Survey of Measures and Methods for Matching Geospatial Vector Datasets. ACM Comput. Surv. 2016, 49, 1–34. [Google Scholar] [CrossRef]
- Zandbergen, P.A. Influence of Street Reference Data on Geocoding Quality. Geocarto Int. 2011, 26, 35–47. [Google Scholar] [CrossRef]
- Zelasco, J.F.; Donayo, J. Effectiveness of Geometric Quality Control Using a Distance Evaluation Method. Int. J. Image Data Fusion 2019, 10, 263–279. [Google Scholar] [CrossRef]
- Zhang, W.; Leung, Y.; Ma, J. Analysis of Positional Uncertainty of Road Networks in Volunteered Geographic Information with a Statistically Defined Buffer-Zone Method. Int. J. Geogr. Inf. Sci. 2019, 33, 1807–1828. [Google Scholar] [CrossRef]
- van Zoest, V.; van Buul, J.; Osei, F.; Stein, A. A Note on the Propagation of Positional Uncertainty in Environmental Models. Trans. GIS 2021, 25, 3119–3131. [Google Scholar] [CrossRef]
- Liu, C.; Jia, S.; Wu, H.; Huang, W.; Zheng, N.; Akram, A. Scene Cognition Pattern of Point Cloud-Generalization Point Cloud. Cehui Xuebao/Acta Geod. Cartogr. Sin. 2022, 51, 556–567. [Google Scholar]
- Aguilar, M.A.; del Saldaña, M.; Aguilar, F.J. Assessing Geometric Accuracy of the Orthorectification Process from GeoEye-1 and WorldView-2 Panchromatic Images. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 427–435. [Google Scholar] [CrossRef]
- Bicheron, P.; Amberg, V.; Bourg, L.; Petit, D.; Huc, M.; Miras, B.; Brockmann, C.; Hagolle, O.; Delwart, S.; Ranera, F.; et al. Geolocation Assessment of MERIS GlobCover Orthorectified Products. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2972–2982. [Google Scholar] [CrossRef]
- Han, Y.; Oh, J. Automated Geo/Co-Registration of Multi-Temporal Very-High-Resolution Imagery. Sensors 2018, 18, 1599. [Google Scholar] [CrossRef]
- Jeong, J.; Yang, C.; Kim, T. Geo-Positioning Accuracy Using Multiple-Satellite Images: IKONOS, QuickBird, and KOMPSAT-2 Stereo Images. Remote Sens. 2015, 7, 4549–4564. [Google Scholar] [CrossRef]
- Loghin, A.-M.; Otepka-Schremmer, J.; Ressl, C.; Pfeifer, N. Improvement of VHR Satellite Image Geometry with High Resolution Elevation Models. Remote Sens. 2022, 14, 2303. [Google Scholar] [CrossRef]
- Nwilo, P.C.; Okolie, C.J.; Onyegbula, J.C.; Arungwa, I.D.; Ayoade, O.Q.; Daramola, O.E.; Orji, M.J.; Maduako, I.D.; Uyo, I.I. Positional Accuracy Assessment of Historical Google Earth Imagery in Lagos State, Nigeria. Appl. Geomat. 2022, 14, 545–568. [Google Scholar] [CrossRef]
- Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal Accuracy Assessment of Very High Resolution Google Earth Images in the City of Rome, Italy. Int. J. Digit. Earth 2016, 9, 342–362. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Pradhan, B. Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries. Remote Sens. 2019, 11, 692. [Google Scholar] [CrossRef]
- Sánchez, M.; Cuartero, A.; Barrena, M.; Plaza, A. A New Method for Positional Accuracy Analysis in Georeferenced Satellite Images without Independent Ground Control Points. Remote Sens. 2020, 12, 4132. [Google Scholar] [CrossRef]
- Song, A.; Kim, Y.; Han, Y. Uncertainty Analysis for Object-Based Change Detection in Very High-Resolution Satellite Images Using Deep Learning Network. Remote Sens. 2020, 12, 2345. [Google Scholar] [CrossRef]
- Yilmaz, A.; Erdogan, M. Modelling the Orthoimage Accuracy Using DEM Accuracy and Off-Nadir Angle. Geocarto Int. 2020, 35, 1–16. [Google Scholar] [CrossRef]
- Zhou, L.; Stein, A. Application of Random Sets to Model Uncertainty of Road Polygons Extracted from Airborne Laser Points. Comput. Environ. Urban Syst. 2013, 41, 289–298. [Google Scholar] [CrossRef]
- Brown, K.M.; Foody, G.M.; Atkinson, P.M. Modelling Geometric and Misregistration Error in Airborne Sensor Data to Enhance Change Detection. Int. J. Remote Sens. 2007, 28, 2857–2879. [Google Scholar] [CrossRef]
- Mundy, J.L.; Theiss, H.J. Error Propagation in Satellite Multi-Image Geometry. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Dai, X.; Khorram, S. The Effects of Image Misregistration on the Accuracy of Remotely Sensed Change Detection. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1566–1577. [Google Scholar] [CrossRef]
- Gábor, L.; Jetz, W.; Lu, M.; Rocchini, D.; Cord, A.; Malavasi, M.; Zarzo-Arias, A.; Barták, V.; Moudrý, V. Positional Errors in Species Distribution Modelling Are Not Overcome by the Coarser Grains of Analysis. Methods Ecol. Evol. 2022, 13, 2289–2302. [Google Scholar] [CrossRef]
- Glick, H.B.; Routh, D.; Bettigole, C.; Oliver, C.D.; Seegmiller, L.; Kuhn, C. Modeling the Effects of Horizontal Positional Error on Classification Accuracy Statistics. Photogramm. Eng. Remote Sens. 2016, 82, 789–802. [Google Scholar] [CrossRef]
- Gu, J.; Congalton, R.G.; Pan, Y. The Impact of Positional Errors on Soft Classification Accuracy Assessment: A Simulation Analysis. Remote Sens. 2015, 7, 579–599. [Google Scholar] [CrossRef]
- McRoberts, R.E. The Effects of Rectification and Global Positioning System Errors on Satellite Image-Based Estimates of Forest Area. Remote Sens. Environ. 2010, 114, 1710–1717. [Google Scholar] [CrossRef]
- Zhang, J.; Kirby, R.P. A Geostatistical Approach to Modelling Positional Errors in Vector Data. Trans. GIS 2000, 4, 145–159. [Google Scholar] [CrossRef]
- Mariethoz, G.; Caers, J. Multiple-Point Geostatistics: Stochastic Modeling with Training Images; Wiley-Blackwell: Hoboken, NJ, USA, 2014; ISBN 9781118662755. [Google Scholar]
- Rasera, L.G.; Gravey, M.; Lane, S.N.; Mariethoz, G. Downscaling Images with Trends Using Multiple-Point Statistics Simulation: An Application to Digital Elevation Models. Math. Geosci. 2020, 52, 145–187. [Google Scholar] [CrossRef]
- Straubhaar, J.; Malinverni, D. Addressing Conditioning Data in Multiple-Point Statistics Simulation Algorithms Based on a Multiple Grid Approach. Math. Geosci. 2014, 46, 187–204. [Google Scholar] [CrossRef]
- Yin, Z.; Zuo, C.; MacKie, E.J.; Caers, J. Mapping High-Resolution Basal Topography of West Antarctica from Radar Data Using Non-Stationary Multiple-Point Geostatistics (MPS-BedMappingV1). Geosci. Model Dev. 2022, 15, 1477–1497. [Google Scholar] [CrossRef]
- Zakeri, F.; Mariethoz, G. A Review of Geostatistical Simulation Models Applied to Satellite Remote Sensing: Methods and Applications. Remote Sens. Environ. 2021, 259, 112381. [Google Scholar] [CrossRef]
- Mariethoz, G.; Renard, P.; Straubhaar, J. The Direct Sampling Method to Perform Multiple-Point Geostatistical Simulations. Water Resour. Res. 2010, 46, 9515170. [Google Scholar] [CrossRef]
- Mariethoz, G.; Renard, P. Reconstruction of Incomplete Data Sets or Images Using Direct Sampling. Math. Geosci. 2010, 42, 245–268. [Google Scholar] [CrossRef]
- Gravey, M.; Mariethoz, G. QuickSampling v1.0: A Robust and Simplified Pixel-Based Multiple-Point Simulation Approach. Geosci. Model Dev. 2020, 13, 2611–2630. [Google Scholar] [CrossRef]
- Cao, J.; Fu, J.; Yuan, X.; Gong, J. Nonlinear Bias Compensation of ZiYuan-3 Satellite Imagery with Cubic Splines. ISPRS J. Photogramm. Remote Sens. 2017, 133, 174–185. [Google Scholar] [CrossRef]
- Topan, H.; Oruç, M.; Taşkanat, T.; Cam, A. Combined Efficiency of RPC and DEM Accuracy on Georeferencing Accuracy of Orthoimage: Case Study with Pléiades Panchromatic Mono Image. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1148–1152. [Google Scholar] [CrossRef]
- Beekhuizen, J.; Heuvelink, G.B.M.; Biesemans, J.; Reusen, I. Effect of DEM Uncertainty on the Positional Accuracy of Airborne Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1567–1577. [Google Scholar] [CrossRef]
- Reinartz, P.; Müller, R.; Lehner, M.; Schroeder, M. Accuracy Analysis for DSM and Orthoimages Derived from SPOT HRS Stereo Data Using Direct Georeferencing. ISPRS J. Photogramm. Remote Sens. 2006, 60, 160–169. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, Q.-Q. Correcting Bias in the Rational Polynomial Coefficients of Satellite Imagery Using Thin-Plate Smoothing Splines. ISPRS J. Photogramm. Remote Sens. 2017, 125, 125–131. [Google Scholar] [CrossRef]
- Boer, E.P.J.; de Beurs, K.M.; Hartkamp, A.D. Kriging and Thin Plate Splines for Mapping Climate Variables. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 146–154. [Google Scholar] [CrossRef]
- Huang, C.; Zheng, X.; Tait, A.; Dai, Y.; Yang, C.; Chen, Z.; Li, T.; Wang, Z. On Using Smoothing Spline and Residual Correction to Fuse Rain Gauge Observations and Remote Sensing Data. J. Hydrol. 2014, 508, 410–417. [Google Scholar] [CrossRef]
- Hutchinson, M.F. Interpolating Mean Rainfall Using Thin Plate Smoothing Splines. Int. J. Geogr. Inf. Syst. 1995, 9, 385–403. [Google Scholar] [CrossRef]
- Oldoni, L.V.; Del’Arco Sanches, I.; Picoli, M.C.A.; Rohden Prudente, V.H.; Adami, M. Geometric Accuracy Assessment and a Framework for Automatic Sub-Pixel Registration of WFI Images from CBERS-4, CBERS-4A, and Amazonia-1 Satellites over Brazil. Remote Sens. Appl. Soc. Environ. 2022, 28, 100844. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Improving Landsat Multispectral Scanner (MSS) Geolocation by Least-Squares-Adjustment Based Time-Series Co-Registration. Remote Sens. Environ. 2021, 252, 112181. [Google Scholar] [CrossRef]
- Zitová, B.; Flusser, J. Image Registration Methods: A Survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef]
- Wood, S. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wood, S. Mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. In R Package Version; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Aati, S.; Milliner, C.; Avouac, J.-P. A New Approach for 2-D and 3-D Precise Measurements of Ground Deformation from Optimized Registration and Correlation of Optical Images and ICA-Based Filtering of Image Geometry Artifacts. Remote Sens. Environ. 2022, 277, 113038. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Avouac, J.-P. Co-Registration and Correlation of Aerial Photographs for Ground Deformation Measurements. ISPRS J. Photogramm. Remote Sens. 2009, 64, 551–560. [Google Scholar] [CrossRef]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.-P. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Oh, J.; Toth, C.; Grejner-Brzezinska, D. Automatic Georeferencing of Aerial Images Using Stereo High-Resolution Satellite Images. Photogramm. Eng. Remote Sens. 2011, 77, 1157–1168. [Google Scholar] [CrossRef]
- Rupnik, E.; Daakir, M.; Pierrot Deseilligny, M. MicMac—A Free, Open-Source Solution for Photogrammetry. Open Geospatial Data, Softw. Stand. 2017, 2, 14. [Google Scholar] [CrossRef]
- Sedaghat, A.; Mohammadi, N. High-Resolution Image Registration Based on Improved SURF Detector and Localized GTM. Int. J. Remote Sens. 2019, 40, 2576–2601. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.-P.; Delacourt, C. Correlation of Satellite Image Time-Series for the Detection and Monitoring of Slow-Moving Landslides. Remote Sens. Environ. 2017, 189, 40–55. [Google Scholar] [CrossRef]
- Marsetič, A. Robust Automatic Generation of True Orthoimages from Very High-Resolution Panchromatic Satellite Imagery Based on Image Incidence Angle for Occlusion Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3733–3749. [Google Scholar] [CrossRef]
- Yoo, E.J.; Lee, D.-C. True Orthoimage Generation by Mutual Recovery of Occlusion Areas. GISci. Remote Sens. 2016, 53, 227–246. [Google Scholar] [CrossRef]
- Modis, K.; Papaodysseus, K. Theoretical Estimation of the Critical Sampling Size for Homogeneous Ore Bodies with Small Nugget Effect. Math. Geol. 2006, 38, 489–501. [Google Scholar] [CrossRef]
- Carmel, Y.; Dean, D.; Flather, C. Combining Location and Classification Error Sources for Estimating Mult-Temporal Database Accuracy. Photogramm. Eng. Remote Sens. 2001, 67, 865–872. [Google Scholar]
- Guan, L.; Pan, H.; Zou, S.; Hu, J.; Zhu, X.; Zhou, P. The Impact of Horizontal Errors on the Accuracy of Freely Available Digital Elevation Models (DEMs). Int. J. Remote Sens. 2020, 41, 7383–7399. [Google Scholar] [CrossRef]
- Li, W.; Goodchild, M.F. An Optimization Technique for Addressing DEM Misregistration in Hilly Terrain. Ann. GIS 2016, 22, 43–55. [Google Scholar] [CrossRef]
- Livne, E.; Svoray, T. Components of Uncertainty in Primary Production Model: The Study of DEM, Classification and Location Error. Int. J. Geogr. Inf. Sci. 2011, 25, 473–488. [Google Scholar] [CrossRef]
- Mas, J.F. Change Estimates by Map Comparison: A Method to Reduce Erroneous Changes Due to Positional Error. Trans. GIS 2005, 9, 619–629. [Google Scholar] [CrossRef]
- Mi, J.; Liu, L.; Zhang, X.; Chen, X.; Gao, Y.; Xie, S. Impact of Geometric Misregistration in GlobeLand30 on Land-Cover Change Analysis, a Case Study in China. J. Appl. Remote Sens. 2022, 16. [Google Scholar] [CrossRef]
- Uhl, J.H.; Leyk, S.; McShane, C.M.; Braswell, A.E.; Connor, D.S.; Balk, D. Fine-Grained, Spatiotemporal Datasets Measuring 200 Years of Land Development in the United States. Earth Syst. Sci. Data 2021, 13, 119–153. [Google Scholar] [CrossRef] [PubMed]
Min | Max | Mean | Standard Deviation | |
---|---|---|---|---|
Model-training data_X | −3.43 | 2.33 | −0.05 | 0.75 |
Model-training data_Y | −5.40 | 5.59 | −0.78 | 0.99 |
Test sample data_X | −2.49 | 2.23 | −0.10 | 0.86 |
Test sample data_Y | −5.64 | 5.29 | −1.08 | 1.48 |
Min | Max | Mean | Standard Deviation | |
---|---|---|---|---|
displacement_X | −4.63 | 2.62 | −1.04 | 0.46 |
displacement_Y | −7.01 | 3.15 | −1.92 | 0.86 |
filtered displacement_X | −4.0 | 1.54 | −1.05 | 0.43 |
filtered displacement_Y | −4.0 | 1.40 | −1.92 | 0.73 |
GCV_X | GCV_Y | |
---|---|---|
CD (smoothing splines) | 0.52 | 0.92 |
TD (smoothing splines + displacements) | 0.49 | 0.81 |
Variogram Model | |
---|---|
Auto-variogram in X | 0.3148 × Nugget + 0.17428 × Stable (1911.2,2) |
Auto-variogram in Y | 0.4671 × Nugget + 0.48685 × Stable (5248.5,0.63418) |
Cross-variogram between X and Y | 0.33837*Nugget + 0.14993*Stable (2019.5,2) |
Selected RCL Segments | Reference Values | Means | Standard Deviation |
---|---|---|---|
1 | 1605.15 | 1605.07 | 1.08 |
2 | 729.47 | 729.45 | 0.51 |
3 | 3092.66 | 3092.57 | 1.23 |
4 | 5839.37 | 5839.49 | 0.50 |
5 | 3597.71 | 3597.57 | 0.69 |
6 | 3450.23 | 3450.49 | 1.02 |
7 | 2878.63 | 2878.85 | 1.06 |
ME | MAE | RMSE | |
---|---|---|---|
TIN_X | 0.10 | 0.38 | 0.96 |
TIN_Y | −0.81 | 0.91 | 1.61 |
SGSIM_X | 0.02 | 0.66 | 0.89 |
SGSIM_Y | −0.74 | 0.96 | 1.57 |
DS_X | 0.10 | 0.69 | 0.91 |
DS_Y | −0.72 | 0.91 | 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, L.; Zhang, W.; Wang, J.; Wang, S.; Zhang, J. Integrating Multi-Point Geostatistics, Machine Learning, and Image Correlation for Characterizing Positional Errors in Remote-Sensing Images of High Spatial Resolution. Remote Sens. 2023, 15, 4734. https://doi.org/10.3390/rs15194734
Xin L, Zhang W, Wang J, Wang S, Zhang J. Integrating Multi-Point Geostatistics, Machine Learning, and Image Correlation for Characterizing Positional Errors in Remote-Sensing Images of High Spatial Resolution. Remote Sensing. 2023; 15(19):4734. https://doi.org/10.3390/rs15194734
Chicago/Turabian StyleXin, Liang, Wangle Zhang, Jianxu Wang, Sijian Wang, and Jingxiong Zhang. 2023. "Integrating Multi-Point Geostatistics, Machine Learning, and Image Correlation for Characterizing Positional Errors in Remote-Sensing Images of High Spatial Resolution" Remote Sensing 15, no. 19: 4734. https://doi.org/10.3390/rs15194734
APA StyleXin, L., Zhang, W., Wang, J., Wang, S., & Zhang, J. (2023). Integrating Multi-Point Geostatistics, Machine Learning, and Image Correlation for Characterizing Positional Errors in Remote-Sensing Images of High Spatial Resolution. Remote Sensing, 15(19), 4734. https://doi.org/10.3390/rs15194734