Assessment of the Radiometric Calibration Consistency of Reflective Solar Bands between Terra and Aqua MODIS in Upcoming Collection-7 L1B
"> Figure 1
<p>Image of region surrounding the Libya-4 site (highlighted red area of 20 km × 20 km) obtained from Terra MODIS band 1 at GMT 9:05 on 27 January 2022.</p> "> Figure 2
<p>Image of region surrounding the Dome C site (highlighted red area of 20 km × 20 km) obtained from Terra MODIS band 1 at GMT 00:10 on 30 January 2022.</p> "> Figure 3
<p>Relationship between reflectance factor and solar zenith angle for Aqua MODIS band 1 over the Dome C site. Each point in triangle represents one overpass, and data are collected from overpasses after 2018. Also shown are a linear regression line and the standard error.</p> "> Figure 4
<p>Monthly DCC PDF in reflectance from the near nadir view for Aqua MODIS band 1. The month of July every two years is selected.</p> "> Figure 5
<p>Images of one matched SNO pair of Aqua MODIS band 8 (<b>a</b>) and SNPP VIIRS band M1 (<b>b</b>). The Aqua image is obtained from an overpass at GMT 14:05 on 3 March 2022, and the SNPP image is at GMT 14:06 on the same date. To illustrate the overlapping of the two images, two small sub-sets of images extracted from a coast region in the Antarctica ocean near longitude 20.0°E are selected.</p> "> Figure 6
<p>Example of pixel-to-pixel comparison of reflectance between Aqua MODIS band 8 and SNPP VIIRS band M1 obtained from one SNO event at 14:05 GMT on 3 March 2022. Numbers shown in the figure are values of the averaged VIIRS to MODIS reflectance ratio and standard error.</p> "> Figure 7
<p>Normalized reflectance trends for Terra (solid triangle) and Aqua (open circle) MODIS band 8 (0.41 µm) obtained from Libya-4 (<b>a</b>), Dome C (<b>b</b>), and SNO with SNPP VIIRS (<b>c</b>). Error bars are the standard deviation.</p> "> Figure 8
<p>Normalized reflectance trends for Terra (solid triangle) and Aqua (open circle) MODIS band 2 (0.865 µm) obtained from Libya-4 (<b>a</b>), Dome C (<b>b</b>), and SNO with SNPP VIIRS (<b>c</b>).</p> "> Figure 9
<p>Normalized reflectance trends for Terra (solid triangle) and Aqua (open circle) MODIS band 5 (1.24 µm) obtained from Libya-4 (<b>a</b>), DCC (<b>b</b>), and SNO with SNPP VIIRS (<b>c</b>).</p> "> Figure 9 Cont.
<p>Normalized reflectance trends for Terra (solid triangle) and Aqua (open circle) MODIS band 5 (1.24 µm) obtained from Libya-4 (<b>a</b>), DCC (<b>b</b>), and SNO with SNPP VIIRS (<b>c</b>).</p> "> Figure 10
<p>Normalized reflectance trends for Terra (solid triangle) and Aqua (open ciecle) MODIS band 8 for Libya-4 (<b>a</b>) and Dome C (<b>b</b>) and band 3 for DCC (<b>c</b>). The left side of the panel is from BOS, and the right side is from EOS.</p> "> Figure 11
<p>Normalized reflectance trends for Terra (solid triangle) and Aqua (open circle) MODIS band 5 for Libya-4 (<b>a,b</b>) and DCC (<b>c</b>,<b>d</b>). The left side of the panel is from BOS, and the right side is from EOS.</p> ">
Abstract
:1. Introduction
2. MODIS RSB Calibration
2.1. MODIS RSB Calibration Algorithm
2.2. C7 Calibration Improvement over C6
3. Methodology for Terra and Aqua Intercomparison
3.1. Libya-4 Desert
3.2. Dome C
3.3. DCC
3.4. SNO
4. Results
4.1. VIS and NIR Bands
4.2. SWIR Bands
4.3. Beginning and End of Scan
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Esaias, W.E.; Abbott, M.R.; Barton, I.; Brown, O.B.; Campbell, J.W.; Carder, K.L.; Clark, D.K.; Evans, R.H.; Hoge, F.E.; Gordon, H.R.; et al. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1250–1265. [Google Scholar] [CrossRef]
- Parkinson, C. Aqua: An earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens. 2003, 41, 173–183. [Google Scholar] [CrossRef]
- King, M.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Twedt, K.; Chen, H.; Link, D.; Geng, X.; Aldoretta, E.; Mu, Q. MODIS Reflective Solar Bands On-Orbit Calibration and Performance. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6355–6371. [Google Scholar] [CrossRef]
- Xiong, X.; Sun, J.; Esposito, J.A.; Guenther, B.; Barnes, W.L. MODIS reflective solar bands calibration algorithm and on-orbit performance. In Proceedings Volume 4891, Optical Remote Sensing of the Atmosphere and Clouds III; SPIE: Bellingham, WA, USA, 2003. [Google Scholar] [CrossRef]
- Biggar, S.F.; Thome, K.J.; Wisniewski, W. Vicarious radiometric calibration of EO-1 sensors by reference to high-reflectance ground targets. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1174–1179. [Google Scholar] [CrossRef]
- Thome, K.; Biggar, S.; Choi, H. Vicarious calibration of Terra ASTER, MISR, and MODIS. Proc. SPIE Earth Obs. Syst. IX 2004, 5542, 290–299. [Google Scholar]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for intersatellite calibration of radiometers. J. Atmos. Ocean. Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Wu, A.; Xiong, X.; Cao, C. Terra and Aqua MODIS inter-comparison of three reflective solar bands using AVHRR onboard the NOAAKLM satellites. Int. J. Remote Sens. 2008, 29, 1997–2010. [Google Scholar] [CrossRef]
- Doelling, D.R.; Haney, C.O.; Scarino, B.R.; Gopalan, A.; Bhatt, R. Improvements to the geostationary visible imager ray-matching calibration algorithm for CERES. J. Atmos. Ocean. Technol. 2016, 33, 2679–2698. [Google Scholar] [CrossRef]
- Angal, A.; Bruegge, C.; Xiong, X.; Wu, A. Intercalibration of the reflective solar bands of MODIS and MISR instruments on the Terra platform. J. Appl. Remote Sens. 2022, 16, 027501. [Google Scholar] [CrossRef]
- Wu, A.; Xiong, X.; Bhatt, R.; Haney, C.; Doelling, D.R.; Angal, A.; Mu, Q. An Assessment of SNPP and NOAA20 VIIRS RSB Calibration Performance in NASA SIPS Reprocessed Collection-2 L1B Data Products. Remote Sens. 2022, 14, 4134. [Google Scholar] [CrossRef]
- Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Bhatt, R.; Haney, C.O.; Morstad, D.; Gopalan, A. The Radiometric Stability and Scaling of Collection 6 Terra- and Aqua-MODIS VIS, NIR, and SWIR Spectral Bands. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4520–4535. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Haney, C.; Scarino, B.R.; Wu, A.; Gopalan, A. Response Versus Scan-Angle Assessment of MODIS Reflective Solar Bands in Collection 6.1 Calibration. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2276–2289. [Google Scholar] [CrossRef]
- Bouvet, M.; Thome, K.; Berthelot, B.; Bialek, A.; Czapla-Myers, J.; Fox, N.P.; Goryl, P.; Henry, P.; Ma, L.; Marcq, S.; et al. RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range. Remote Sens. 2019, 11, 2401. [Google Scholar] [CrossRef]
- Cao, C.; Uprety, S.; Blonski, S. Establishing radiometric consistency among VIIRS, MODIS, and AVHRR using SNO and SNOx methods. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6928–6931. [Google Scholar] [CrossRef]
- Wu, A.; Xiong, X.; Doelling, D.R.; Morstad, D.; Angal, A.; Bhatt, R. Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR Spectral Bands’ Calibration Stability. IEEE Trans. Geosci. Remote Sens. 2012, 51, 4330–4338. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 2014, 7, 4353–4365. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Sawyer, V.; Shi, Y.; Colarco, P.R.; Lyapustin, A.I.; Wang, Y.; Remer, L.A. Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmos. Meas. Tech. 2018, 11, 4073–4092. [Google Scholar] [CrossRef]
- Twedt, K.; Aldoretta, E.; Angal, A.; Chen, H.; Geng, X.; Li, Y.; Mu, Q.; Vermeesch, K.; Xiong, X. MODIS reflective solar bands calibration improvements for Collection 7. In Proceedings Volume 11858, Sensors, Systems, and Next-Generation Satellites XXV; SPIE: Bellingham, WA, USA, 2021. [Google Scholar] [CrossRef]
- Angal, A.; Xiong, X.; Chang, T.; Twedt, K.; Geng, X.; Wu, A.; Aldoretta, E. Terra and Aqua MODIS collection 7 level 1B algorithm. J. Appl. Remote Sens. 2022, 16, 037502. [Google Scholar] [CrossRef]
- Sun, J.; Xiong, X.; Angal, A.; Chen, H.; Wu, A.; Geng, X. Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3159–3174. [Google Scholar] [CrossRef]
- Angal, A.; Xiong, X.; Wu, A.; Geng, X.; Chen, H. Improvements in the On-Orbit Response Versus Scan Angle Characterization of the Aqua MODIS Reflective Solar Bands. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1728–1738. [Google Scholar] [CrossRef]
- Kwiatkowska, E.J.; Franz, B.A.; Meister, G.; McClain, C.R.; Xiong, X. Cross calibration of ocean-color bands from moderate resolution imaging spectroradiometer on Terra platform. Appl. Opt. 2008, 47, 6796–6810. [Google Scholar] [CrossRef]
- Wu, A.; Geng, X.; Wald, A.; Angal, A.; Xiong, X. Assessment of Terra MODIS On-Orbit Polarization Sensitivity Using Pseudoinvariant Desert Sites. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4168–4176. [Google Scholar] [CrossRef]
- Mu, Q.; Xiong, X.; Twedt, K.; Angal, A.; Geng, X. Characterization of the on-orbit response versus scan angle for Terra MODIS SWIR bands in Collection 7. J. Appl. Remote Sens. 2022, 16, 024520. [Google Scholar] [CrossRef]
- Teillet, P.M.; Barsi, A.J.; Chander, G.; Thome, K.J. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. In Proceedings Volume 6677, Earth Observing Systems XII; SPIE: Bellingham, WA, USA, 2007; pp. 66770S-1–66770S-12. [Google Scholar]
- Chander, G.; Xiong, X.; Choi, T.Y.; Angal, A. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sens. Environ. 2010, 114, 925–939. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Six, D.; Fily, M.; Alvain, S.; Henry, P.; Benoist, J.-P. Surface characterization of the dome concordia area (Antarctica) as a potential satellite calibration site using spot 4/vegetation instrument. Remote Sens. Environ. 2004, 89, 83–94. [Google Scholar] [CrossRef]
- Wenny, B.N.; Xiong, X. Using a Cold Earth Surface Target to Characterize Long-Term Stability of the MODIS Thermal Emissive Bands. IEEE Geosci. Remote Sens. Lett. 2008, 5, 162–165. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Straka, W.C.; Molling, C.C.; Sullivan, J.T.; Wu, X. Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens. 2010, 31, 6493–6517. [Google Scholar] [CrossRef]
- Doelling, D.R.; Nguyen, L.; Minnis, P. On the use of deep convective clouds to calibrate AVHRR data. In Proceedings Volume 5542, Earth Observing Systems IX; SPIE: Bellingham, WA, USA, 2004. [Google Scholar] [CrossRef]
- Doelling, D.R.; Morstad, D.; Scarino, B.R.; Bhatt, R.; Gopalan, A. The Characterization of Deep Convective Clouds as an Invariant Calibration Target and as a Visible Calibration Technique. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1147–1159. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Haney, C.O.; Gopalan, A. Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets. Remote Sens. 2014, 6, 2809–2826. [Google Scholar] [CrossRef]
- Mu, Q.; Wu, A.; Xiong, X.; Doelling, D.R.; Angal, A.; Chang, T.; Bhatt, R. Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands. Remote Sens. 2017, 9, 535. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C. Evaluation of NOAA-20 VIIRS Reflective Solar Bands Early On-Orbit Performance Using Daily Deep Convective Clouds Recent Improvements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3975–3985. [Google Scholar] [CrossRef]
- Hu, Y.; Wielicki, B.; Yang, P.; Stackhouse, P.; Lin, B.; Young, D. Application of deep convective cloud albedo observations to satellite-based study of terrestrial atmosphere: Monitoring stability of space-borne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2594–2599. [Google Scholar]
- Xiong, X.; Angal, A.; Chang, T.; Chiang, K.; Lei, N.; Li, Y.; Sun, J.; Twedt, K.; Wu, A. MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products. Remote Sens. 2020, 12, 3167. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Scarino, B.; Haney, C.; Gopalan, A. Development of Seasonal BRDF Models to Extend the Use of Deep Convective Clouds as Invariant Targets for Satellite SWIR-Band Calibration. Remote Sens. 2017, 9, 1061. [Google Scholar] [CrossRef]
- Warren, S.G.; Brand, R.E.; Hinton, P.O. Effect of surface roughness on bidirectional reflectance of Antarctic snow. J. Geophys. Res. 1998, 103, 25789–25807. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Zege, E.P. Scattering optics of snow. Appl. Opt. 2004, 43, 1589–1602. [Google Scholar] [CrossRef]
- Twedt, K.A.; Angal, A.; Xiong, X. Effects of time-varying relative spectral response on the calibration of MODIS reflective solar bands. In Proceedings Volume 10764, Earth Observing Systems XXIII; SPIE: Bellingham, WA, USA, 2018; p. 1076413. [Google Scholar] [CrossRef]
(A) | |||||||||||
Band | 1 | 2 | 3 | 4 | 8 | 9 | 5 | 6 | 7 | 26 | |
Libya-4 | Aqua | −0.13 ±0.89 | 0.03 ±0.91 | −0.18 ±0.94 | −0.33 ±0.93 | 0.13 ±0.87 | −0.13 ±0.89 | −0.11 ±0.82 | 0.22 ±0.86 | −0.51 ±1.80 | |
Terra | −0.21 ±0.90 | −0.28 ±0.95 | −0.05 ±0.98 | −0.40 ±0.91 | 0.02 ±1.18 | −0.07 ±1.05 | −0.86 ±0.95 | −0.65 ±0.66 | −0.36 ±1.88 | ||
DCC | Aqua | −0.23 ±0.76 | 0.82 ±0.75 | 0.42 ±0.78 | 0.02 ±0.57 | 0.80 ±1.62 | 0.38 ±2.36 | 0.17 ±1.59 | |||
Terra | −0.75 ±0.57 | 0.27 ±0.64 | −0.37 ±0.69 | −0.06 ±0.46 | 0.14 ±1.30 | 0.41 ±1.70 | 0.01 ±1.05 | ||||
Dome C | Aqua | −0.22 ±1.77 | 0.03 ±1.73 | −0.01 ±0.95 | 0.06 ±2.03 | −0.03 ±1.45 | |||||
Terra | 1.22 ±1.84 | 1.24 ±1.82 | 1.19 ±1.22 | 1.01 ±2.05 | 0.33 ±1.64 | ||||||
(B) | |||||||||||
Band | 1 | 2 | 3 | 4 | 8 | 9 | 5 | 6 | 7 | 26 | |
Libya-4 | Aqua | 0.07 ±0.88 | 0.25 ±0.91 | −0.33 ±0.95 | −0.26 ±0.94 | −0.84 ±0.90 | −0.44 ±0.92 | −0.22 ±0.83 | 0.22 ±0.88 | −0.56 ±1.81 | |
Terra | −0.34 ±0.91 | −0.67 ±0.96 | 0.76 ±0.99 | −0.79 ±0.89 | 0.40 ±1.24 | −0.48 ±1.11 | 1.78 ±0.95 | 0.17 ±0.66 | 2.90 ±1.90 | ||
DCC | Aqua | −0.04 ±0.70 | 0.59 ±0.72 | 0.43 ±0.74 | −0.08 ±0.55 | 0.75 ±1.56 | 0.11 ±2.35 | −0.08 ±1.52 | |||
Terra | −0.75 ±0.60 | 1.38 ±0.67 | −0.16 ±0.64 | 2.27 ±0.50 | 0.78 ±1.25 | 2.82 ±1.68 | 2.41 ±1.07 | ||||
Dome C | Aqua | −0.01 ±1.77 | 0.33 ±1.73 | −0.13 ±0.95 | 0.13 ±2.03 | −0.94 ±1.46 | |||||
Terra | 1.23 ±1.85 | 0.97 ±1.82 | 2.24 ±1.24 | 1.83 ±2.04 | 0.80 ±1.63 |
(A) | ||||||||||
Desert | Dome C | DCC | SNO | |||||||
BOS | NAD | EOS | BOS | NAD | EOS | BOS | NAD | EOS | NAD | |
Band1 | 1.01 ±1.42 | 1.00 ±1.27 | −2.46 ±1.64 | 0.23 ±3.95 | 0.18 ±2.56 | −0.66 ±3.73 | 2.12 ±1.73 | 0.10 ±0.91 | 1.18 ±2.04 | 0.26 ±1.36 |
Band2 | 1.07 ±1.63 | 1.81 ±1.33 | −0.97 ±1.60 | 0.33 ±3.59 | 0.82 ±2.52 | 0.34 ±4.02 | N/A | N/A | N/A | 0.26 ±1.39 |
Band3 | 1.55 ±1.23 | 2.22 ±1.37 | −0.93 ±2.35 | 0.60 ±2.83 | 1.44 ±1.56 | 0.92 ±3.59 | 3.05 ±1.72 | 1.34 ±0.98 | 1.98 ±1.94 | 2.33 ±4.02 |
Band4 | 1.08 ±1.29 | 0.79 ±1.31 | −3.84 ±1.94 | −0.34 ±4.31 | 0.10 ±2.89 | −1.43 ±3.98 | 1.74 ±1.68 | 0.10 ±0.99 | 0.35 ±1.97 | −0.56 ±0.91 |
Band8 | −0.10 ±1.38 | 1.86 ±1.48 | −0.14 ±2.73 | −0.74 ±2.70 | 0.49 ±2.21 | 0.61 ±5.23 | N/A | N/A | N/A | 0.90 ±1.21 |
Band9 | 0.24 ±1.25 | 1.04 ±1.39 | −1.39 ±2.51 | −0.59 ±3.14 | −0.80 ±4.94 | 2.44 ±6.55 | N/A | N/A | N/A | 1.18 ±1.38 |
Band10 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 0.62 ±2.36 |
Band11 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | −1.75 ±4.21 |
Band12 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 0.09 ±2.86 |
Band5 | 1.18 ±1.38 | 1.79 ±1.26 | −1.14 ±1.38 | N/A | N/A | N/A | 1.46 ±1.18 | 0.61 ±0.73 | 1.66 ±2.42 | 2.20 ±1.27 |
Band6 | 0.81 ±1.00 | 1.16 ±1.09 | −0.53 ±1.07 | N/A | N/A | N/A | −0.10 ±2.73 | 0.10 ±2.07 | −0.61 ±5.62 | 0.66 ±4.51 |
Band7 | −0.10 ±3.44 | 2.28 ±2.63 | −0.11 ±3.18 | N/A | N/A | N/A | −3.26 ±3.55 | −3.12 ±2.88 | −3.50 ±7.71 | N/A |
Band26 | N/A | N/A | N/A | N/A | N/A | N/A | 3.74 ±2.31 | 2.02 ±1.91 | 3.05 ±3.32 | N/A |
(B) | ||||||||||
. | Desert | Dome C | DCC | SNO | ||||||
BOS | NAD | EOS | BOS | NAD | EOS | BOS | NAD | EOS | NAD | |
Band1 | 0.40 ±1.42 | −0.07 ±1.27 | −3.87 ±1.66 | −0.41 ±3.92 | −0.97 ±2.55 | −2.01 ±3.71 | 1.37 ±1.71 | −1.17 ±0.92 | −0.27 ±2.04 | −1.08 ±1.33 |
Band2 | 1.32 ±1.63 | 1.22 ±1.33 | −1.29 ±1.60 | 0.56 ±3.56 | 0.08 ±2.51 | 0.05 ±4.00 | N/A | N/A | N/A | −0.65 ±1.38 |
Band3 | 0.83 ±1.24 | 1.65 ±1.38 | −2.26 ±2.46 | −0.04 ±2.81 | 0.92 ±1.57 | −0.16 ±3.53 | 2.33 ±1.69 | 0.76 ±0.99 | 2.41 ±2.01 | 1.33 ±3.16 |
Band4 | 1.04 ±1.30 | 0.54 ±1.30 | −3.81 ±2.00 | −0.35 ±4.28 | −0.22 ±2.88 | −1.45 ±3.97 | 1.70 ±1.67 | −0.36 ±0.98 | 0.56 ±1.99 | −0.83 ±0.78 |
Band8 | −0.83 ±1.39 | 1.20 ±1.55 | 5.59 ±3.12 | −1.49 ±2.66 | −0.08 ±2.18 | 6.07 ±5.34 | N/A | N/A | N/A | −0.14 ±1.72 |
Band9 | −0.36 ±1.27 | 0.76 ±1.45 | 0.58 ±2.79 | −1.20 ±3.10 | −0.92 ±4.97 | 4.32 ±6.69 | N/A | N/A | N/A | 0.43 ±1.65 |
Band10 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | −0.26 ±2.25 |
Band11 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | −4.49 ±5.30 |
Band12 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | −1.51 ±4.36 |
Band5 | 2.53 ±1.39 | 2.80 ±1.28 | −0.99 ±1.40 | N/A | N/A | N/A | 2.84 ±1.21 | 1.57 ±0.75 | 0.12 ±2.39 | 3.91 ±1.38 |
Band6 | 0.97 ±1.01 | 1.32 ±1.11 | −0.37 ±1.09 | N/A | N/A | N/A | 1.92 ±2.74 | 2.52 ±2.00 | −0.30 ±5.58 | 1.85 ±3.53 |
Band7 | 0.11 ±3.47 | 3.48 ±2.67 | 1.05 ±3.23 | N/A | N/A | N/A | −2.17 ±3.57 | −2.16 ±2.87 | −2.25 ±7.65 | N/A |
Band26 | N/A | N/A | N/A | N/A | N/A | N/A | 4.71 ±2.35 | 2.98 ±1.88 | 3.85 ±3.33 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, A.; Xiong, X.; Angal, A.; Mu, Q.; Li, S. Assessment of the Radiometric Calibration Consistency of Reflective Solar Bands between Terra and Aqua MODIS in Upcoming Collection-7 L1B. Remote Sens. 2023, 15, 4730. https://doi.org/10.3390/rs15194730
Wu A, Xiong X, Angal A, Mu Q, Li S. Assessment of the Radiometric Calibration Consistency of Reflective Solar Bands between Terra and Aqua MODIS in Upcoming Collection-7 L1B. Remote Sensing. 2023; 15(19):4730. https://doi.org/10.3390/rs15194730
Chicago/Turabian StyleWu, Aisheng, Xiaoxiong Xiong, Amit Angal, Qiaozhen Mu, and Sherry Li. 2023. "Assessment of the Radiometric Calibration Consistency of Reflective Solar Bands between Terra and Aqua MODIS in Upcoming Collection-7 L1B" Remote Sensing 15, no. 19: 4730. https://doi.org/10.3390/rs15194730
APA StyleWu, A., Xiong, X., Angal, A., Mu, Q., & Li, S. (2023). Assessment of the Radiometric Calibration Consistency of Reflective Solar Bands between Terra and Aqua MODIS in Upcoming Collection-7 L1B. Remote Sensing, 15(19), 4730. https://doi.org/10.3390/rs15194730