Probing Dust and Water in Martian Atmosphere with Far-Infrared Frequency Spacecraft Occultation
"> Figure 1
<p>Illustration of spacecraft occultation geometry. The ray path from transmitter to receiver undergoes refraction in Martian atmosphere at a bending angle <math display="inline"><semantics> <mi>δ</mi> </semantics></math> at a given level in atmosphere with a distance from the center of planet <span class="html-italic">r</span> and ray impact parameter <span class="html-italic">a</span>.</p> "> Figure 2
<p>(<b>A</b>) Phase noise estimations for 1 and 10 THz for one-way and dual one-way occultation. The estimations are compared with Iris V2.1 transponder at UHF (5 MHz), X (8.4 GHz) and Ka (32 GHz) band noise; (<b>B</b>) Monte Carlo simulations of expected bending angle noise at 8.4 GHz, 1 THz, and 10 THz at Allan deviation of <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>12</mn> </mrow> </msup> </semantics></math>. Expected bending angles for 1 THz and 10 THz do not differ by a significant magnitude. Thereby, the lines overlap with each other.</p> "> Figure 3
<p>Maximum expected signal loss at THz frequencies due to major absorbers in gas phase i.e., CO<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math>, CO, H<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math>O, O<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math>, and O<math display="inline"><semantics> <msub> <mrow/> <mn>3</mn> </msub> </semantics></math> in Martian atmosphere assuming appropriate mixing ratios [<a href="#B50-remotesensing-15-04574" class="html-bibr">50</a>] compared with S- and X-band instrument sensitivity. Losses are calculated from the absorption coefficient using the HITRAN database.</p> "> Figure 4
<p>Real and imaginary refractive indices for water ice and dust particles at frequencies in the far-infrared ranging from 1 to 10 THz.</p> "> Figure 5
<p>Dust absorptivity at frequencies from 1 to 10 THz for (<b>A</b>) global dust storm in MY 28 and (<b>B</b>) no dust storm; (<b>C</b>) the range of water ice absorptivities between 1 and 10 THz compared with VeRa S- and X-band absorptivities [<a href="#B40-remotesensing-15-04574" class="html-bibr">40</a>].</p> "> Figure 6
<p>Expected signal loss (dB) for Martian dust storms at 1 and 10 THz during signal transmission from occultation estimated from Abel transform of signal attenuation from dust storms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Temperature Profile
2.2. Atmospheric Losses
2.2.1. Gas Absorption
2.2.2. Dust and Water Ice clouds
2.3. Retrieval of Dust
3. Results
3.1. Instrument Sensitivity and Phase Noise Uncertainty
3.2. Atmospheric Absorption
3.3. Dust and Cloud Losses
4. Discussion and Caveats
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MGS | Mars Global Surveyor |
MRO | Mars Reconnaissance Orbiter |
TES | Thermal Emission Spectrometer |
THEMIS | Thermal Emission Imaging System |
MCS | Mars Climate Sounder |
CRISM | Compact Reconnaissance Imaging Spectrometer for Mars |
OMEGA | Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activité |
DSN | Deep Space Network |
TRL | Technology Readiness Level |
HITRAN | High-resolution transmission and molecular absorption database |
PBL | Planetary Boundary Layer |
DOW | Dual One-Way approach |
References
- Guzewich, S.D.; Toigo, A.D.; Richardson, M.I.; Newman, C.E.; Talaat, E.R.; Waugh, D.W.; McConnochie, T.H. The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation. J. Geophys. Res. Planets 2013, 118, 980–993. [Google Scholar] [CrossRef]
- Madeleine, J.B.; Forget, F.; Millour, E.; Montabone, L.; Wolff, M. Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res. Planets 2011, 116, E11010. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Kuroda, T.; Hartogh, P. Influence of dust on the dynamics of the Martian atmosphere above the first scale height. Aeolian Res. 2011, 3, 145–156. [Google Scholar] [CrossRef]
- Martin, L.J.; Zurek, R.W. An analysis of the history of dust activity on Mars. J. Geophys. Res. Planets 1993, 98, 3221–3246. [Google Scholar] [CrossRef]
- Clancy, R.T.; Wolff, M.J.; Whitney, B.A.; Cantor, B.A.; Smith, M.D.; McConnochie, T.H. Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations. Icarus 2010, 207, 98–109. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Talaat, E.R.; Toigo, A.D.; Waugh, D.W.; McConnochie, T.H. High-altitude dust layers on Mars: Observations with the Thermal Emission Spectrometer. J. Geophys. Res. Planets 2013, 118, 1177–1194. [Google Scholar] [CrossRef]
- Haberle, R.M.; Clancy, R.T.; Forget, F.; Smith, M.D.; Zurek, R.W. The Atmosphere and Climate of Mars; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Atreya, S.K.; Wong, A.S.; Renno, N.O.; Farrell, W.M.; Delory, G.T.; Sentman, D.D.; Cummer, S.A.; Marshall, J.R.; Rafkin, S.C.; Catling, D.C. Oxidant enhancement in martian dust devils and storms: Implications for life and habitability. Astrobiology 2006, 6, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Shaposhnikov, D.S.; Rodin, A.V.; Medvedev, A.S.; Fedorova, A.A.; Kuroda, T.; Hartogh, P. Modeling the hydrological cycle in the atmosphere of Mars: Influence of a bimodal size distribution of aerosol nucleation particles. J. Geophys. Res. Planets 2018, 123, 508–526. [Google Scholar] [CrossRef]
- Daerden, F.; Neary, L.; Wolff, M.; Clancy, R.; Lefèvre, F.; Whiteway, J.; Viscardy, S.; Piccialli, A.; Willame, Y.; Depiesse, C.; et al. Planet-Wide Ozone Destruction in the Middle Atmosphere on Mars during Global Dust Storm. Geophys. Res. Lett. 2022, 49, e2022GL098821. [Google Scholar] [CrossRef]
- Montmessin, F.; Rannou, P.; Cabane, M. New insights into Martian dust distribution and water-ice cloud microphysics. J. Geophys. Res. Planets 2002, 107, 4-1–4-14. [Google Scholar] [CrossRef]
- Lefèvre, F.; Bertaux, J.L.; Clancy, R.T.; Encrenaz, T.; Fast, K.; Forget, F.; Lebonnois, S.; Montmessin, F.; Perrier, S. Heterogeneous chemistry in the atmosphere of Mars. Nature 2008, 454, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.M.; Zorzano, M.P.; Martín-Torres, J. MARSWRF prediction of entry descent landing profiles: Applications to Mars exploration. Earth Space Sci. 2019, 6, 1440–1459. [Google Scholar] [CrossRef]
- Ruf, C.; Renno, N.O.; Kok, J.F.; Bandelier, E.; Sander, M.J.; Gross, S.; Skjerve, L.; Cantor, B. Emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett. 2009, 36, L13202. [Google Scholar] [CrossRef]
- Richardson, M.I.; Toigo, A.D.; Newman, C.E. PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. Planets 2007, 112, E09001. [Google Scholar] [CrossRef]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M.; Lewis, S.R.; Read, P.L.; Huot, J.P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. Planets 1999, 104, 24155–24175. [Google Scholar] [CrossRef]
- Heavens, N.; Richardson, M.; Kleinböhl, A.; Kass, D.; McCleese, D.; Abdou, W.; Benson, J.; Schofield, J.; Shirley, J.; Wolkenberg, P. Vertical distribution of dust in the Martian atmosphere during northern spring and summer: High-altitude tropical dust maximum at northern summer solstice. J. Geophys. Res. Planets 2011, 116, E01007. [Google Scholar] [CrossRef]
- Heavens, N.G.; Johnson, M.S.; Abdou, W.A.; Kass, D.M.; Kleinböhl, A.; McCleese, D.J.; Shirley, J.H.; Wilson, R.J. Seasonal and diurnal variability of detached dust layers in the tropical Martian atmosphere. J. Geophys. Res. Planets 2014, 119, 1748–1774. [Google Scholar] [CrossRef]
- Smith, M.D. THEMIS observations of the 2018 Mars global dust storm. J. Geophys. Res. Planets 2019, 124, 2929–2944. [Google Scholar] [CrossRef]
- Smith, M.D.; Wolff, M.J.; Clancy, R.T.; Kleinböhl, A.; Murchie, S.L. Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. Planets 2013, 118, 321–334. [Google Scholar] [CrossRef]
- d’Aversa, E.; Oliva, F.; Altieri, F.; Sindoni, G.; Carrozzo, F.G.; Bellucci, G.; Forget, F.; Geminale, A.; Mahieux, A.; Aoki, S.; et al. Vertical distribution of dust in the Martian atmosphere: OMEGA/MEx limb observations. Icarus 2022, 371, 114702. [Google Scholar] [CrossRef]
- Montabone, L.; Lemmon, M.; Smith, M.; Wolff, M.; Forget, F.; Millour, E. Reconciling dust opacity datasets and building multiannual dust scenarios for Mars atmospheric models. In Proceedings of the Fourth International Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France, 8–11 February 2011. [Google Scholar]
- Pätzold, M.; Häusler, B.; Tyler, G.L.; Andert, T.; Asmar, S.W.; Bird, M.K.; Dehant, V.; Hinson, D.; Rosenblatt, P.; Simpson, R.; et al. Mars express 10 years at Mars: Observations by the Mars express radio science experiment (MaRS). Planet. Space Sci. 2016, 127, 44–90. [Google Scholar] [CrossRef]
- Withers, P.; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M.; Oudrhiri, K.; Kahan, D.; Jakosky, B. The MAVEN radio occultation science experiment (ROSE). Space Sci. Rev. 2020, 216, 61. [Google Scholar] [CrossRef]
- Fjeldbo, G.; Kliore, A.J.; Eshleman, V.R. The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J. 1971, 76, 123. [Google Scholar] [CrossRef]
- Hinson, D.P.; Simpson, R.A.; Twicken, J.D.; Tyler, G.L.; Flasar, F. Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. Planets 1999, 104, 26997–27012. [Google Scholar] [CrossRef]
- Mendillo, M.; Withers, P.; Hinson, D.; Rishbeth, H.; Reinisch, B. Effects of solar flares on the ionosphere of Mars. Science 2006, 311, 1135–1138. [Google Scholar] [CrossRef]
- Peter, K.; Pätzold, M.; Molina-Cuberos, G.J.; González-Galindo, F.; Witasse, O.; Tellmann, S.; Häusler, B.; Bird, M.K. The lower dayside ionosphere of Mars from 14 years of MaRS radio science observations. Icarus 2021, 359, 114213. [Google Scholar] [CrossRef]
- Creasey, J.E.; Forbes, J.M.; Hinson, D.P. Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data. Geophys. Res. Lett. 2006, 33, L01803. [Google Scholar] [CrossRef]
- Hu, R.; Cahoy, K.; Zuber, M.T. Mars atmospheric CO2 condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Hinson, D.; Pätzold, M.; Tellmann, S.; Häusler, B.; Tyler, G. The depth of the convective boundary layer on Mars. Icarus 2008, 198, 57–66. [Google Scholar] [CrossRef]
- Fenton, L.K.; Lorenz, R. Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 2015, 260, 246–262. [Google Scholar] [CrossRef]
- Karayel, E.T.; Hinson, D.P. Sub-Fresnel-scale vertical resolution in atmospheric profiles from radio occultation. Radio Sci. 1997, 32, 411–423. [Google Scholar] [CrossRef]
- Jensen, A.S.; Lohmann, M.S.; Benzon, H.H.; Nielsen, A.S. Full spectrum inversion of radio occultation signals. Radio Sci. 2003, 38. [Google Scholar] [CrossRef]
- Navarro, T.; Forget, F.; Millour, E.; Greybush, S. Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation. Geophys. Res. Lett. 2014, 41, 6620–6626. [Google Scholar] [CrossRef]
- Montabone, L.; Marsh, K.; Lewis, S.; Read, P.; Smith, M.; Holmes, J.; Spiga, A.; Lowe, D.; Pamment, A. The Mars analysis correction data assimilation (MACDA) dataset V1. 0. Geosci. Data J. 2014, 1, 129–139. [Google Scholar] [CrossRef]
- Navarro, T.; Forget, F.; Millour, E.; Greybush, S.; Kalnay, E.; Miyoshi, T. The challenge of atmospheric data assimilation on Mars. Earth Space Sci. 2017, 4, 690–722. [Google Scholar] [CrossRef]
- Greybush, S.J.; Kalnay, E.; Wilson, R.J.; Hoffman, R.N.; Nehrkorn, T.; Leidner, M.; Eluszkiewicz, J.; Gillespie, H.E.; Wespetal, M.; Zhao, Y.; et al. The ensemble Mars atmosphere reanalysis system (EMARS) version 1.0. Geosci. Data J. 2019, 6, 137–150. [Google Scholar] [CrossRef]
- Jenkins, J.M.; Steffes, P.G. Results for 13-cm absorptivity and H2SO4 abundance profiles from the season 10 (1986) Pioneer Venus Orbiter radio occultation experiment. Icarus 1991, 90, 129–138. [Google Scholar] [CrossRef]
- Oschlisniok, J.; Häusler, B.; Pätzold, M.; Tellmann, S.; Bird, M.; Peter, K.; Andert, T. Sulfuric acid vapor and sulfur dioxide in the atmosphere of Venus as observed by the Venus Express radio science experiment VeRa. Icarus 2021, 362, 114405. [Google Scholar] [CrossRef]
- Lemmon, M.; Wolff, M.; Smith, M.; Clancy, R.; Banfield, D.; Landis, G.; Ghosh, A.; Smith, P.; Spanovich, N.; Whitney, B.; et al. Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 2004, 306, 1753–1756. [Google Scholar] [CrossRef]
- Lemmon, M.; Guzewich, S.; McConnochie, T.; de Vicente-Retortillo, A.; Martínez, G.; Smith, M.; Bell, J., III; Wellington, D.; Jacob, S. Large dust aerosol sizes seen during the 2018 Martian global dust event by the Curiosity rover. Geophys. Res. Lett. 2019, 46, 9448–9456. [Google Scholar] [CrossRef]
- Chattopadhyay, G. Terahertz Instruments for CubeSats. In Proceedings of the 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), Ahmedabad, India, 11–13 December 2017; pp. 1–5. [Google Scholar]
- Pradhan, O.; Cooper, K.; Tampari, L.; Drouin, B.; Monje, R.; Roy, R.; Siles, J.; Cochrane, C. Submillimeter Wave Differential Absorption Radar for Water Vapor Sounding in the Martial Atmosphere. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5466–5468. [Google Scholar]
- Wedage, L.T.; Balasubramaniam, B.B.S.; Koucheryavy, M.C.V.Y. Path Loss Analysis of Terahertz Communication in Mars’ Atmospheric Conditions. In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Republic of Korea, 16–20 May 2022; pp. 1225–1230. [Google Scholar]
- Wedage, L.T.; Butler, B.; Balasubramaniam, S.; Koucheryavy, Y.; Vuran, M.C. Comparative Analysis of Terahertz Propagation under Dust Storm Conditions on Mars and Earth. IEEE J. Sel. Top. Signal Process. 2023, 1–16. [Google Scholar] [CrossRef]
- Sweeney, D.; Ao, C.; Vergados, P.; Rennó, N.; Kass, D.; Martínez, G. Enabling Mars Radio Occultation by Smallsats. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; pp. 1–12. [Google Scholar]
- Rothman, L.S. History of the HITRAN Database. Nat. Rev. Phys. 2021, 3, 302–304. [Google Scholar] [CrossRef]
- Dudhia, A. The reference forward model (RFM). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 243–253. [Google Scholar] [CrossRef]
- Diao, Z.; Jing, Q.; Zhong, W. Comparison of the influence of Martian and Earth’s atmospheric environments on terahertz band electromagnetic waves. Int. J. Commun. Syst. 2021, 34, e4894. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Payne, V.H.; Moncet, J.L.; Delamere, J.S.; Alvarado, M.J.; Tobin, D.C. Development and recent evaluation of the MT_CKD model of continuum absorption. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 2520–2556. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J. An Analysis of Gravity-Field Estimation Based on Intersatellite Dual-1-Way Biased Ranging; Technical report; Jet Propulsion Lab: Pasadena, CA, USA, 1999. [Google Scholar]
- Karman, T.; Gordon, I.E.; van Der Avoird, A.; Baranov, Y.I.; Boulet, C.; Drouin, B.J.; Groenenboom, G.C.; Gustafsson, M.; Hartmann, J.M.; Kurucz, R.L.; et al. Update of the HITRAN collision-induced absorption section. Icarus 2019, 328, 160–175. [Google Scholar] [CrossRef]
- Fedorova, A.; Montmessin, F.; Korablev, O.; Lefèvre, F.; Trokhimovskiy, A.; Bertaux, J.L. Multi-annual monitoring of the water vapor vertical distribution on Mars by SPICAM on Mars Express. J. Geophys. Res. Planets 2021, 126, e2020JE006616. [Google Scholar] [CrossRef]
- Sheel, V.; Haider, S. Long-term variability of dust optical depths on Mars during MY24–MY32 and their impact on subtropical lower ionosphere: Climatology, modeling, and observations. J. Geophys. Res. Space Phys. 2016, 121, 8038–8054. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Fundamentals of Atmospheric Modeling; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Wolff, M.J.; Clancy, R.T. Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. J. Geophys. Res. Planets 2003, 108, 5097. [Google Scholar] [CrossRef]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. Atmos. 2008, 113, D14220. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Smith, M. Seasonal variation in Martian water ice cloud particle size. J. Geophys. Res. Planets 2019, 124, 636–643. [Google Scholar] [CrossRef]
- Kite, E.S.; Steele, L.J.; Mischna, M.A.; Richardson, M.I. Warm early Mars surface enabled by high-altitude water ice clouds. Proc. Natl. Acad. Sci. USA 2021, 118, e2101959118. [Google Scholar] [CrossRef] [PubMed]
- Nann, I.; Izzo, D.; Walker, R. A reconfigurable mars constellation for radio occultation measurements and navigation. In Proceedings of the 4th International Workshop on Satellite Constellation and Formation Flying, Sao José dos Campos, Brazil, 14–16 February 2005; pp. 14–16. [Google Scholar]
- Meyer, M.A.; Kminek, G.; Beaty, D.W.; Carrier, B.L.; Haltigin, T.; Hays, L.E.; Agree, C.B.; Busemann, H.; Cavalazzi, B.; Cockell, C.S.; et al. Final Report of the Mars Sample Return Science Planning Group 2 (MSPG2). Astrobiology 2022, 22, s-5–s-26. [Google Scholar] [CrossRef] [PubMed]
Dust Activity Scenario | (cm) | B | FH (km) | FL (km) | PH (km) | PT (km) |
---|---|---|---|---|---|---|
MY25 | 17 | 0.86 | 76 | 12 | 48 | 18 |
MY28 | 12 | 0.86 | 76 | 12 | 48 | 18 |
Regional storm | 6 | 0.33 | 45 | 9 | 32 | 4 |
No storm | 1.2 | 0.75 | 42 | 12 | 25 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharya, A.; Li, C.; Renno, N.O.; Atreya, S.K.; Sweeney, D. Probing Dust and Water in Martian Atmosphere with Far-Infrared Frequency Spacecraft Occultation. Remote Sens. 2023, 15, 4574. https://doi.org/10.3390/rs15184574
Bhattacharya A, Li C, Renno NO, Atreya SK, Sweeney D. Probing Dust and Water in Martian Atmosphere with Far-Infrared Frequency Spacecraft Occultation. Remote Sensing. 2023; 15(18):4574. https://doi.org/10.3390/rs15184574
Chicago/Turabian StyleBhattacharya, Ananyo, Cheng Li, Nilton O. Renno, Sushil K. Atreya, and David Sweeney. 2023. "Probing Dust and Water in Martian Atmosphere with Far-Infrared Frequency Spacecraft Occultation" Remote Sensing 15, no. 18: 4574. https://doi.org/10.3390/rs15184574
APA StyleBhattacharya, A., Li, C., Renno, N. O., Atreya, S. K., & Sweeney, D. (2023). Probing Dust and Water in Martian Atmosphere with Far-Infrared Frequency Spacecraft Occultation. Remote Sensing, 15(18), 4574. https://doi.org/10.3390/rs15184574