Improved On-Orbit MTF Measurement Method Based on Point Source Arrays
<p>Images of different MTF values at the Nyquist frequency. Images with (<b>a</b>) lower and (<b>b</b>) higher MTF values.</p> "> Figure 2
<p>Schematic diagram of the point source method. (<b>a</b>) Input signals, (<b>b</b>) output signals, and (<b>c</b>) MTF curve.</p> "> Figure 3
<p>Reconstructed PSF discrete points for different numbers of point sources. (<b>a</b>) Single-point source, (<b>b</b>) 4-point source reconstruction, and (<b>c</b>) 16-point source reconstructions.</p> "> Figure 4
<p>Schematic of the optimized point source method.</p> "> Figure 5
<p>Sampling schematic of PSF with different numbers of sampling points. (<b>a</b>) 3 × 3 sampling points and (<b>b</b>) n × n sampling points.</p> "> Figure 6
<p>Layout of the point source target array.</p> "> Figure 7
<p>Schematic diagram of homography transformation.</p> "> Figure 8
<p>Homography transformation correction point effect diagram.</p> "> Figure 9
<p>Map of the Zhongwei satellite image calibration site.</p> "> Figure 10
<p>Working status of the point source equipment.</p> "> Figure 11
<p>GF-2 sensor point source images. (<b>a</b>) 25 September 2021 1 m panchromatic band and (<b>b</b>) 10 October 2021 1 m panchromatic band.</p> "> Figure 12
<p>Fitting PSF with surfaces.</p> "> Figure 13
<p>System MTF curve.</p> "> Figure 14
<p>MES curves of MTF under different noise standard deviations.</p> "> Figure 15
<p>Comparison of MTF assay results. (<b>a</b>) Gaussian fit MTF curve, (<b>b</b>) edge method MTF curve, (<b>c</b>) cross-track direction MTF curve, and (<b>d</b>) along-track direction MTF curve.</p> "> Figure 16
<p>Ringing artifacts of edged target image with MTFC. (<b>a</b>) Image and (<b>b</b>) aligned ESF curve of the knife-edge.</p> "> Figure 17
<p>Shading error effect diagram. (<b>a</b>) Point source images and (<b>b</b>) fitting PSF error.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Point Source Array Design
2.2. Peak Position Detection
2.3. MTF Calculation
3. Calibration Tests and Data Presentation
4. Results and Analysis
4.1. Peak Position Detection
4.2. MTF Calculation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabir, S.; Leigh, L.; Helder, D. Vicarious methodologies to assess and improve the quality of the optical remote sensing images: A critical review. Remote Sens. 2020, 12, 4029. [Google Scholar] [CrossRef]
- Crespi, M.; De Vendictis, L. A procedure for high resolution satellite imagery quality assessment. Sensors 2009, 9, 3289–3313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helde, D.; Choi, J.; Anderson, C. On-Orbit Modulation Transfer Function (MTF) Measurements for IKONOS and QuickBird; South Dakota State: Brookings, SD, USA, 2007. [Google Scholar]
- Kohm, K. Modulation Transfer Function Measurement Method and Results for the Orbview-3 High Resolution Imaging Satellite. In Proceedings of the ISPRS, Istanbul, Turkey, 12–23 July 2004; pp. 12–23. Available online: https://www.isprs.org/proceedings/XXXV/congress/comm1/papers/2.pdf (accessed on 26 April 2023).
- Choi, T. IKONOS Satellite on Orbit Modulation Transfer Function (MTF) Measurement Using Edge and Pulse Method; South Dakota State University: Brookings, SD, USA, 2002. [Google Scholar]
- Schowengerdt, R.; Archwamety, C.; Wrigley, R.C. Operational MTF for Landsat thematic mapper. Int. Soc. Opt. Photonics 1985, 549, 110–118. [Google Scholar] [CrossRef]
- Leger, D.; Viallefont, F.; Hillairet, E.; Meygret, A. In-flight refocusing and MTF assessment of SPOT5 HRG and HRS cameras. Int. Soc. Opt. Photonics 2003, 4881, 224–231. [Google Scholar] [CrossRef]
- Léger, D.; Duffaut, J.; Robinet, F. MTF measurement using spotlight. In Proceedings of the IGARSS’94, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 2010–2012. [Google Scholar] [CrossRef]
- Pagnutti, M.; Blonski, S.; Cramer, M.; Helder, D.; Holekamp, K.; Honkavaara, E.; Ryan, R. Targets, methods, and sites for assessing the in-flight spatial resolution of electro-optical data products. Can. J. Remote Sens. 2010, 36, 583–601. [Google Scholar] [CrossRef]
- Reulke, R.; Becker, S.; Haala, N.; Tempelmann, U. Determination and improvement of spatial resolution of the CCD-line-scanner system ADS40. ISPRS J. Photogramm. Remote Sens. 2006, 60, 81–90. [Google Scholar] [CrossRef]
- Viallefont-Robinet, F.; Léger, D. Improvement of the edge method for on-orbit MTF measurement. Opt. Express 2010, 18, 3531–3545. [Google Scholar] [CrossRef]
- Ryan, R.; Baldridge, B.; Schowengerdt, R.A.; Choi, T.; Helder, D.L.; Blonski, S. IKONOS spatial resolution and image interpretability characterization. Remote Sens. Environ. 2003, 88, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Choi, T.; Xiong, X.; Wang, Z. On-orbit lunar modulation transfer function measurements for the moderate resolution imaging spectroradiometer. IEEE Trans. Geosci. Remote Sens. 2013, 52, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N.R.; Barry, P.S. Measurement of Hyperion MTF from on-orbit scenes. In Proceedings of the IEEE, Sydney, NSW, Australia, 9–13 July 2001; pp. 2967–2969. [Google Scholar] [CrossRef]
- Choi, T.; Helder, D.L. Generic sensor modeling for modulation transfer function (MTF) estimation. Pecora 2005, 16, 23–27. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing Models and Methods for Image Processing; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Meygret, A.; Blanchet, G.; Latry, C.; Kelbert, A.; Gross-Colzy, L. On-orbit star-based calibration and modulation transfer function measurements for PLEIADES high-resolution optical sensors. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5525–5534. [Google Scholar] [CrossRef]
- Kang, C.-H.; Chung, J.-H.; Kim, Y.-H. On-orbit MTF estimation for the KOMPSAT-3 satellite using star images. Remote Sens. Lett. 2015, 6, 1002–1011. [Google Scholar] [CrossRef]
- Helder, D.; Choi, T.; Rangaswamy, M. In-flight characterization of spatial quality using point spread functions. In Post-Launch Calibration of Satellite Sensors; CRC Press: Boca Raton, FL, USA, 2004; pp. 159–198. [Google Scholar]
- Rauchmiller, R.F.; Schowengerdt, R.A. Measurement of the Landsat Thematic Mapper modulation transfer function using an array of point sources. Opt. Eng. 1988, 27, 334–343. [Google Scholar] [CrossRef]
- Helder, D.; Choi, T.; Rangaswamy, M. Quickbird Satellite in-Orbit Modulation Transfer Function (MTF) Measurement Using Edge, Pulse and Impulse Methods for Summer 2003. Available online: https://ntrs.nasa.gov/api/citations/20050214545/downloads/20050214545.pdf (accessed on 26 April 2023).
- Rufino, G.; Accardo, D. Enhancement of the centroiding algorithm for star tracker measure refinement. Acta Astronaut. 2003, 53, 135–147. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, J.; Ye, T.; Chen, L. Fast star centroid extraction algorithm with sub-pixel accuracy based on FPGA. J. Real-Time Image Proc. 2016, 12, 613–622. [Google Scholar] [CrossRef]
- Xu, W.W.; Zhang, L.M.; Si, X.L.; Li, X.; Yang, B.Y.; Shen, Z.G. On-orbit modulation transfer function detection of high resolution optical satellite sensor based on reflected point sources. Acta Opt. Sin. 2017, 37, 0728001. [Google Scholar] [CrossRef]
- Shortis, M.R.; Clarke, T.A.; Short, T. A Comparison of Some Techniques for the Subpixel Location of Discrete Target Images; SPIE: Bellingham, WA, USA, 1994; Volume 2350, pp. 239–250. [Google Scholar] [CrossRef]
- Camurri, M.; Vezzani, R.; Cucchiara, R. 3D Hough transform for sphere recognition on point clouds. Mach. Vis. Appl. 2014, 25, 1877–1891. [Google Scholar] [CrossRef]
- Storey, J.C. Landsat 7 on-orbit modulation transfer function estimation. Int. Soc. Opt. Photonics 2001, 4540, 50–61. [Google Scholar] [CrossRef]
- Valenzuela, A.; Reinke, K.; Jones, S. A new metric for the assessment of spatial resolution in satellite imagers. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103051. [Google Scholar] [CrossRef]
- Rangaswamy, M. Two-Dimensional On-Orbit Modulation Transfer Function Analysis Using Convex Mirror Array. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2003; pp. 30–69. [Google Scholar]
- Shi, J.; Malik, J. Normalized cuts and image segmentation. In. IEEE Trans. Pattern Anal. Machine Intell. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [Google Scholar] [CrossRef] [Green Version]
- Madani, M. Real-time sensor-independent positioning by rational functions. In Proceedings of the ISPRS Workshop on Direct Versus Indirect Methods of Sensor Orientation, Barcelona, Spain, 25–26 November 1999; pp. 64–75. [Google Scholar]
- Barath, D.; Noskova, J.; Ivashechkin, M.; Matas, J. MAGSAC++, a Fast, Reliable and Accurate Robust Estimator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1301–1309. [Google Scholar]
- Li, R.; Zhang, L.; Wang, X.; Xu, W.; Li, X.; Li, J.; Hu, C. High-Precision Automatic Calibration Modeling of Point Light Source Tracking Systems. Sensors 2021, 21, 2270. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, L.; Li, X.; Yang, B. Pixel extraction of reflected point source image for high spatial resolution optical remote sensing satellite. Acta Geod. Cartogr. Sin. 2020, 49, 1295–1302. [Google Scholar]
Resolution (m) | Bands | Tag | ||
---|---|---|---|---|
Wavelength (μm) | Swath Width (km) | Lateral Swing Angle (°) | ||
1.0 4.0 | Panchromatic | 0.45–0.90 | 45 | ±35 |
Multispectral | 0.45–0.52, 0.52–0.59, 0.63–0.69, 0.77–0.89 | 45 | ±35 |
Parameter | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
X0/Pixel | 22.8203 | 22.4905 | 22.1804 | 21.8173 | 64.4319 | 64.1161 | 63.6994 | 63.3783 |
Y0/Pixel | 19.9205 | 62.0279 | 103.9604 | 145.9510 | 20.3012 | 62.3427 | 104.4202 | 146.3459 |
Parameter | P9 | P10 | P11 | P12 | P13 | P14 | P15 | P16 |
X0/Pixel | 106.0521 | 105.6723 | 105.3178 | 104.9998 | 147.7732 | 147.3949 | 146.9973 | 146.5499 |
Y0/Pixel | 20.7226 | 62.6444 | 104.7345 | 146.7138 | 20.9637 | 63.0107 | 105.0956 | 147.0431 |
Cross-Direction | Along-Direction | ||||
---|---|---|---|---|---|
Segment | This Study | Gaussian Fit | Segment | This Study | Gaussian Fit |
P1–P5 | 0.7990 | 0.8005 | P1–P2 | 0.7907 | 0.7927 |
P1–P9 | 0.7987 | 0.7984 | P1–P3 | 0.7910 | 0.7911 |
P1–P13 | 0.7984 | 0.8010 | P1–P4 | 0.7913 | 0.7912 |
P2–P6 | 0.7993 | 0.8021 | P2–P3 | 0.7913 | 0.7896 |
P2–P10 | 0.7990 | 0.7991 | P2–P4 | 0.7917 | 0.7905 |
P2–P14 | 0.7987 | 0.8008 | P3–P4 | 0.7920 | 0.7914 |
P3–P7 | 0.7996 | 0.8010 | P5–P6 | 0.7904 | 0.7915 |
P3–P11 | 0.7993 | 0.7989 | P5–P7 | 0.7907 | 0.7908 |
P3–P15 | 0.7991 | 0.8010 | P5–P8 | 0.7910 | 0.7912 |
P4–P8 | 0.8000 | 0.7985 | P6–P7 | 0.7904 | 0.7901 |
P4–P12 | 0.7997 | 0.7992 | P6–P8 | 0.7914 | 0.7911 |
P4–P16 | 0.7994 | 0.7999 | P7–P8 | 0.7911 | 0.7920 |
P5–P9 | 0.7984 | 0.7962 | P9–P10 | 0.7917 | 0.7876 |
P5–P13 | 0.7981 | 0.8013 | P9–P11 | 0.7904 | 0.7909 |
P6–P10 | 0.7987 | 0.7960 | P9–P12 | 0.7908 | 0.7902 |
P6–P14 | 0.7985 | 0.8001 | P10–P11 | 0.7908 | 0.7943 |
P7–P11 | 0.7991 | 0.7969 | P10–P12 | 0.7911 | 0.7915 |
P7–P15 | 0.7988 | 0.8011 | P11–P12 | 0.7901 | 0.7888 |
P8–P12 | 0.7994 | 0.7999 | P13–P14 | 0.7908 | 0.7926 |
P8–P16 | 0.7991 | 0.8005 | P13–P15 | 0.7902 | 0.7905 |
P9–P13 | 0.7979 | 0.8064 | P13–P16 | 0.7905 | 0.7914 |
P10–P14 | 0.7982 | 0.8042 | P14–P15 | 0.7914 | 0.7885 |
P11–P15 | 0.7985 | 0.8053 | P14–P16 | 0.7908 | 0.7908 |
P12–P16 | 0.7988 | 0.8011 | P15–P16 | 0.7911 | 0.7931 |
Average | 0.7989 | 0.8004 | Average | 0.7909 | 0.7910 |
SD | 0.0005 | 0.0024 | SD | 0.0005 | 0.0014 |
Relative SD | 6.4‱ | 30.5‱ | Relative SD | 6.0‱ | 18.1‱ |
Cross-Direction | Along-Direction | ||||
---|---|---|---|---|---|
Co-Linear Relationship | This Study | Gaussian Fit | Co-Linear Relationship | This Study | Gaussian Fit |
P1P5 + P5P9 − P1P9 | 9.9036 × 10−6 | 7.7094 × 10−6 | P1P2 + P2P3 − P1P3 | 2.0096 × 10−6 | 2.6332 × 10−5 |
P1P5 + P5P13 − P1P13 | 2.0004 × 10−5 | 4.8339 × 10−5 | P1P2 + P2P4 − P1P4 | 5.0257 × 10−7 | 1.7508 × 10−4 |
P1P9 + P9P13 − P1P13 | 2.0699 × 10−4 | 8.3285 × 10−5 | P1P3 + P3P4 − P1P4 | 1.4951 × 10−5 | 3.0898 × 10−4 |
P2P6 + P6P10 − P2P10 | 9.5744 × 10−7 | 1.0652 × 10−4 | P2P3 + P3P4 − P2P4 | 1.6458 × 10−5 | 1.6024 × 10−4 |
P2P6 + P6P14 − P2P14 | 2.9097 × 10−6 | 2.8449 × 10−5 | P5P6 + P6P7 − P5P7 | 6.0001 × 10−5 | 1.1704 × 10−5 |
P2P10 + P10P14 − P2P14 | 2.5993 × 10−5 | 5.2544 × 10−5 | P5P6 + P6P8 − P5P8 | 2.2607 × 10−5 | 1.9410 × 10−6 |
P3P7 + P7P11 − P3P11 | 1.2892 × 10−4 | 2.1647 × 10−4 | P5P7 + P7P8 − P5P8 | 1.5339 × 10−5 | 9.9237 × 10−6 |
P3P7 + P7P15 − P3P15 | 1.2189 × 10−4 | 5.3958 × 10−7 | P6P7 + P7P8 − P6P8 | 5.2732 × 10−5 | 1.9687 × 10−5 |
P3P11 + P11P15 − P3P15 | 5.8272 × 10−6 | 5.8321 × 10−4 | P9P10 + P10P11 − P9P11 | 4.2557 × 10−6 | 5.2724 × 10−6 |
P4P8 + P8P12 − P4P12 | 4.5416 × 10−6 | 9.8819 × 10−5 | P9P10 + P10P12 − P9P12 | 1.5713 × 10−5 | 6.9554 × 10−6 |
P4P8 + P8P16 − P4P16 | 1.7302 × 10−5 | 3.8845 × 10−5 | P9P11 + P11P12 − P9P12 | 1.9010 × 10−5 | 8.5169 × 10−5 |
P4P12 + P12P16 − P4P16 | 2.1444 × 10−5 | 2.266 × 10−5 | P10P11 + P11P12 − P10P12 | 7.5529 × 10−6 | 8.3486 × 10−5 |
P5P9 + P9P13 − P5P13 | 1.9689 × 10−4 | 4.2655 × 10−5 | P13P14 + P14P15 − P13P15 | 2.1216 × 10−6 | 2.0078 × 10−4 |
P6P10 + P10P14 − P6P14 | 2.4041 × 10−5 | 1.3061 × 10−4 | P13P14 + P14P16 − P13P16 | 1.5699 × 10−5 | 1.8198 × 10−4 |
P7P11 + P11P15 − P7P15 | 1.2853 × 10−5 | 7.9914 × 10−4 | P13P15 + P15P16 − P13P16 | 2.9229 × 10−5 | 5.8349 × 10−6 |
P8P12 + P12P16 − P8P16 | 8.6829 × 10−6 | 8.2634 × 10−5 | P14P15+P15P16 − P14P16 | 1.5651 × 10−5 | 2.4634 × 10−5 |
Average | 5.0572 × 10−5 | 1.4640 × 10−4 | Average | 1.8365 × 10−5 | 8.1750 × 10−5 |
RMSE | 1.8542 × 10−5 | 2.5497 × 10−4 | RMSE | 4.7956 × 10−6 | 1.1790 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Cao, J.; Wei, S.; Jiang, Y.; Shen, X. Improved On-Orbit MTF Measurement Method Based on Point Source Arrays. Remote Sens. 2023, 15, 4028. https://doi.org/10.3390/rs15164028
Li L, Cao J, Wei S, Jiang Y, Shen X. Improved On-Orbit MTF Measurement Method Based on Point Source Arrays. Remote Sensing. 2023; 15(16):4028. https://doi.org/10.3390/rs15164028
Chicago/Turabian StyleLi, Litao, Jiayang Cao, Shaodong Wei, Yonghua Jiang, and Xin Shen. 2023. "Improved On-Orbit MTF Measurement Method Based on Point Source Arrays" Remote Sensing 15, no. 16: 4028. https://doi.org/10.3390/rs15164028
APA StyleLi, L., Cao, J., Wei, S., Jiang, Y., & Shen, X. (2023). Improved On-Orbit MTF Measurement Method Based on Point Source Arrays. Remote Sensing, 15(16), 4028. https://doi.org/10.3390/rs15164028