High-Resolution Daily Spatiotemporal Distribution and Evaluation of Ground-Level Nitrogen Dioxide Concentration in the Beijing–Tianjin–Hebei Region Based on TROPOMI Data
<p>Location and distribution of ground-based air quality testing stations in BTH. (<b>a</b>) shows the geographical location of the Beijing-Tianjin-Hebei region of China. (<b>b</b>) shows the population distribution in the study area. (<b>c</b>) shows the location of air quality monitoring stations and elevation data.</p> "> Figure 2
<p>Characteristic distribution of the main influencing factors of the inversion of NO2 at ground-level.</p> "> Figure 3
<p>GTNNWR model structure (<math display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">d</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">S</mi></msubsup></mrow></semantics></math> denotes the spatial distance between individual image elements, while <math display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">d</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">T</mi></msubsup></mrow></semantics></math> denotes the difference between each image element).</p> "> Figure 4
<p>The process of downscaling and prediction of impact factors is based on the GTNNWR model.</p> "> Figure 5
<p>Performance indicators for the four groups of models.</p> "> Figure 6
<p>Box diagram with error lines.</p> "> Figure 7
<p>Ground-level NO2 predictions and TROPOMI NO2 concentrations daily variation.</p> "> Figure 8
<p>Average ground-level NO2 concentration map for 2019–2022.</p> "> Figure 9
<p>Standard deviation of seasonal variation in near-surface NO2 and TROPOMI NO2 concentrations.</p> "> Figure 10
<p>Percentage stacked histograms of near-surface NO2 concentrations at different thresholds, per quarter, 2019–2022.</p> "> Figure 11
<p>Spatiotemporal distribution of ground-level NO2 concentration in Beijing–Tianjin–Hebei region during the 2019 New Year holidays (4–9 February).</p> "> Figure 12
<p>Spatiotemporal distribution of ground-level NO2 concentration in Beijing–Tianjin–Hebei region during the 2020 New Year holidays (24–29 January).</p> "> Figure 13
<p>Spatiotemporal distribution of ground-level NO2 concentrations in Beijing from 11 June to 22 June 2020.</p> "> Figure 14
<p>Four models to deal with the predicted spatiotemporal distribution of ground-level NO2 concentration at 500 m resolution in Fengtai District on 15 June 2020.</p> "> Figure 15
<p>Spatiotemporal distribution of daily high-resolution ground-level NO2 concentrations in Shijiazhuang, the capital of Hebei Province, from 2 January to 13 January 2021.</p> "> Figure 16
<p>Four models deal with the predicted spatiotemporal distribution of ground-level nitrogen dioxide concentrations at 500 m resolution in Gaocheng District on 2 January 2021.</p> "> Figure 17
<p>Changes in the spatiotemporal distribution of ground-level NO2 concentrations in Beijing and Zhangjiakou during the 2022 Winter Olympic Games.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pre-Processing
2.2.1. Ground-Level NO2 Data
2.2.2. TROPOMI NO2 Data
2.2.3. Spatiotemporal Ancillary Data
2.3. GTNNWR Model
2.3.1. Model Development
2.3.2. Model Evaluation
3. Results
3.1. Daily High-Resolution Surface NO2 Concentrations
3.2. Comparison of the Changes in NO2 Concentration in the Study Area in the New Year
3.3. Variations in Ground-Level Nitrogen Dioxide Concentrations during Public Health Events
3.4. Changes in NO2 Concentration in Beijing and Zhangjiakou during the Winter Olympics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.Y.; Geng, G.N.; Feng, T.; Zheng, B.; Lu, Z.F.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akimoto, H. Global air quality and pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef] [Green Version]
- Jion, M.M.; Jannat, J.N.; Mia, M.Y.; Ali, M.A.; Islam, M.S.; Ibrahim, S.M.; Pal, S.C.; Islam, A.; Sarker, A.; Malafaia, G.; et al. A critical review and prospect of NO2 and SO2 pollution over Asia: Hotspots, trends, and sources. Sci. Total Environ. 2023, 876, 162851. [Google Scholar] [CrossRef]
- Kim, M.; Brunner, D.; Kuhlmann, G. Importance of satellite observations for high-resolution mapping of near-surface NO2 by machine learning. Remote Sens. Environ. 2021, 264, 112573. [Google Scholar] [CrossRef]
- Rudke, A.P.; Martins, J.A.; Hallak, R.; Martins, L.D.; de Almeida, D.S.; Beal, A.; Freitas, E.D.; Andrade, M.F.; Koutrakis, P.; Albuquerque, T.T. Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak. Remote Sens. Environ. 2023, 289, 113514. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sheng, Y.; Wang, J.; Wang, Y.; Wang, P.; Huang, L. Air pollution and human health: Investigating the moderating effect of the built environment. Remote Sens. 2022, 14, 3703. [Google Scholar] [CrossRef]
- Shen, N.; Zhao, X.; Li, L.; Zhou, B.; Duan, F.; Zhao, W. Spatial and temporal variation characteristics of atmospheric NO2 and SO2 in the Beijing-Tianjin-Hebei region before and after the COVID-19 outbreak. Air Qual. Atmos. Health 2021, 14, 1175–1188. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Q.; He, Y.; Ma, P.; Chen, C. Spatiotemporal Change and Influencing Factors of Tropospheric NO2 column density of Beijing-Tianjin-Hebei Region in the Decade Based OMI Product. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 4123–4126. [Google Scholar]
- Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial variation of NO2 and its impact factors in China: An application of sentinel-5P products. Remote Sens. 2019, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Scheibenreif, L.; Mommert, M.; Borth, D. Toward global estimation of ground-level no 2 pollution with deep learning and remote sensing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Vojtisek-Lom, M.; Suta, M.; Sikorova, J.; Sram, R.J. High NO2 concentrations measured by passive samplers in Czech cities: Unresolved aftermath of Dieselgate? Atmosphere 2021, 12, 649. [Google Scholar] [CrossRef]
- Alnaim, A.; Sun, Z.; Tong, D. Evaluating Machine Learning and Remote Sensing in Monitoring NO2 Emission of Power Plants. Remote Sens. 2022, 14, 729. [Google Scholar] [CrossRef]
- Cai, K.; Zhang, Q.; Li, S.; Li, Y.; Ge, W. Spatial–Temporal variations in NO2 and PM2.5 over the Chengdu–Chongqing economic zone in china during 2005–2015 based on satellite remote sensing. Sensors 2018, 18, 3950. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Liu, S.; Li, Z.; Liu, C.; Qin, K.; Liu, X.; Pinker, R.; Dickerson, R.; Lin, J.; Boersma, K.; et al. Ground-level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environ. Sci. Technol. 2022, 56, 9988–9998. [Google Scholar] [PubMed]
- Wei, J.; Li, Z.; Wang, J.; Li, C.; Gupta, P.; Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless mapping and spatiotemporal variations. Atmos. Chem. Phys. 2023, 23, 1511–1532. [Google Scholar]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Yeganeh, B. A Coupled Deep Learning Model for Estimating Surface NO2 Levels from Remote Sensing Data: 15-Year Study Over the Contiguous United States. J. Geophys. Res. Atmos. 2023, 128, e2022JD037010. [Google Scholar] [CrossRef]
- Li, L.; Wu, J. Spatiotemporal estimation of satellite-borne and ground-level NO2 using full residual deep networks. Remote Sens. Environ. 2021, 254, 112257. [Google Scholar] [CrossRef]
- Sayeed, A.; Choi, Y.; Jung, J.; Lops, Y.; Eslami, E.; Salman, A.K. A deep convolutional neural network model for improving WRF forecasts. arXiv 2020, arXiv:2008.06489. [Google Scholar]
- Ahmed, M.; Xiao, Z.; Shen, Y. Estimation of Ground PM2.5 Concentrations in Pakistan Using Convolutional Neural Network and Multi-Pollutant Satellite Images. Remote Sens. 2022, 14, 1735. [Google Scholar] [CrossRef]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Yeganeh, B. Deep Learning Estimation of Daily Ground-Level NO2 Concentrations From Remote Sensing Data. J. Geophys. Res. Atmos. 2021, 126, e2021JD034925. [Google Scholar] [CrossRef]
- Li, A.; Zhang, J.; Xie, P.; Hu, Z.; Xu, J.; Mou, F.; Wu, F.; Liu, J.; Liu, W. Variation of temporal and spatial patterns of NO2 in Beijing using OMI and mobile DOAS. Sci. China Chem. 2015, 58, 1367–1376. [Google Scholar] [CrossRef]
- Du, Z.; Wang, Z.; Wu, S.; Zhang, F.; Liu, R. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity. Int. J. Geogr. Inf. Sci. 2020, 34, 1353–1377. [Google Scholar] [CrossRef]
- Du, Z.; Qi, J.; Wu, S.; Zhang, F.; Liu, R. A spatially weighted neural network based water quality assessment method for large-scale coastal areas. Environ. Sci. Technol. 2021, 55, 2553–2563. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, Z.; Du, Z.; Huang, B.; Zhang, F.; Liu, R. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships. Int. J. Geogr. Inf. Sci. 2021, 35, 582–608. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environ. Pollut. 2018, 236, 1027–1037. [Google Scholar] [CrossRef]
- Tian, W.; Li, W.; Song, H.; Yue, H. Analysis on the difference of regional high-quality development in Beijing-Tianjin-Hebei city cluster. Procedia Comput. Sci. 2022, 199, 1184–1191. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Pilot, E.; Yu, J.; Nie, C.; Holdaway, J.; Yang, L.; Li, Y.; Wang, W.; Vardoulakis, S.; et al. Taking action on air pollution control in the Beijing-Tianjin-Hebei (BTH) region: Progress, challenges and opportunities. Int. J. Environ. Res. Public Health 2018, 15, 306. [Google Scholar]
- Yang, H.; Tao, W.; Liu, Y.; Qiu, M.; Liu, J.; Jiang, K.; Yi, K.; Xiao, Y.; Tao, S. The contribution of the Beijing, Tianjinand Hebeiregion’s iron and steel industry to local air pollution in winter. Environ. Pollut. 2018, 245, 1095–1106. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Cheng, M.; Liu, S.; Xu, J.; He, Y.; Meng, F. The contribution of residential coal combustion to PM2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmos. Environ. 2017, 159, 147–161. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, S.; Fang, X.; Chen, W. Interaction of economic agglomeration, energy conservation and emission reduction: Evidence from three major urban agglomerations in China. Energy 2022, 241, 122519. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. China Environmental Science Press: Beijing, China, 2012.
- Veefkind, J.P.; Aben, I.; Mcmullan, K.; Förster, H.; Vries, J.D.; Otter, G.; Claas, J.; Eskes, H.J.; Haan, J.; Kleipool, Q. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Ialongo, I.; Virta, H.; Eskes, H.; Hovila, J.; Douros, J. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Meas. Tech. 2020, 13, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Huang, B.; Wang, J.; He, L.; Du, Z. Spatiotemporal mapping and assessment of daily ground NO2 concentrations in China using high-resolution TROPOMI retrievals. Environ. Pollut. 2021, 273, 116456. [Google Scholar] [CrossRef]
- Van Geffen, J.H.G.M.; Eskes, H.J.; Boersma, K.F.; Maasakkers, J.D.; Veefkind, J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products. DLR Document. 2019. Available online: https://sentinels.copernicus.eu/documents/247904/0/Sentinel-5P-TROPOMI-ATBD-NO2-data-products/7a4fdde7-516e-48e7-bf44-da60c62b1e4d (accessed on 25 July 2023).
- Earth Science Data Systems. Goddard Earth Sciences Data and Information Services Center. 2020. Available online: https://www.earthdata.nasa.gov/esdis (accessed on 25 July 2023).
- Schneider, P.; Hamer, P.D.; Kylling, A.; Shetty, S.; Stebel, K. Spatiotemporal patterns in data availability of the sentinel-5p no2 product over urban areas in Norway. Remote Sens. 2021, 13, 2095. [Google Scholar] [CrossRef]
- Eroglu, O.; Kurum, M.; Boyd, D.; Gurbuz, A.C. High spatiotemporal resolution CYGNSS soil moisture estimates using artificial neural networks. Remote Sens. 2019, 11, 2272. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Yu, B. Validation of synthetic daily Landsat NDVI time series data generated by the improved spatial and temporal data fusion approach. Inf. Fusion 2018, 40, 34–44. [Google Scholar] [CrossRef]
- Zhao, X.; Fioletov, V.; Alwarda, R.; Su, Y.; Griffin, D.; Weaver, D.; Strong, K.; Cede, A.; Hanisco, T.; Tiefengraber, M.; et al. Tropospheric and Surface Nitrogen Dioxide Changes in the Greater Toronto Area during the First Two Years of the COVID-19 Pandemic. Remote Sens. 2022, 14, 1625. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wang, A.; Bao, T.; Tian, S. Density and diversity of OpenStreetMap road networks in China. J. Urban Manag. 2015, 4, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y. Variation Characteristics of PM2.5 and PM10 Concentration and its Driving Factors in the Yangtze River Economic Belt. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–27 May 2022. EGU22-6890. [Google Scholar]
- Liu, H.; Liu, H.; Cheng, Y. Illustrating the multi-stakeholder perceptions of environmental pollution based on big data: Lessons from China. Reg. Sustain. 2022, 3, 12–26. [Google Scholar] [CrossRef]
- Yu, B.; Lee, Y.; Sohn, K. Forecasting road traffic speeds by considering area-wide spatiotemporal dependencies based on a graph convolutional neural network (GCN). Transp. Res. Part C Emerg. Technol. 2020, 114, 189–204. [Google Scholar] [CrossRef]
- Chen, S.; Jin, M.; Ding, J. Hyperspectral remote sensing image classification based on dense residual three-dimensional convolutional neural network. Multimed. Tools Appl. 2021, 80, 1859–1882. [Google Scholar] [CrossRef]
- Shafi, M.A. K-means clustering analysis and multiple linear regression model on household income in Malaysia. Int. J. Artif. Intell. 2023, 12, 731–738. [Google Scholar]
- Chen, M.H.; Chen, Y.C.; Chou, T.Y.; Ning, F.S. PM2.5 Concentration Prediction Model: A CNN–RF Ensemble Framework. Int. J. Environ. Res. Public Health 2023, 20, 4077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Sun, T.; Zhang, T.; He, L.; Zhang, Z.; Shen, Z.; Xiong, S. High-Precision Potential Evapotranspiration Model Using GNSS Observation. Remote Sens. 2021, 13, 4848. [Google Scholar] [CrossRef]
- Li, H.; Lian, Y.; Renyang, Q.; Liu, L.; Qu, Z.; Lee, L.-C. Regional Atmospheric CO2 Response to Ecosystem CO2 Budgets in China. Remote Sens. 2023, 15, 3320. [Google Scholar] [CrossRef]
- Semlali, B.E.B.; El Amrani, C.; Ortiz, G.; Boubeta-Puig, J.; Garcia-de-Prado, A. SAT-CEP-monitor: An air quality monitoring software architecture combining complex event processing with satellite remote sensing. Comput. Electr. Eng. 2021, 93, 107257. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19, PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Boudriki Semlali, B.E.; El Amrani, C. Satellite Big Data Ingestion for Environmentally Sustainable Development. In Emerging Trends in ICT for Sustainable Development: The Proceedings of NICE 2020 International Conference; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 269–284. [Google Scholar]
Materials | Temporal Resolution | Spatial Resolution | Time Frame | Data Type | Data Volume | Elemental Values |
---|---|---|---|---|---|---|
TROPOMI | Day | 7 × 3.5 km /5.5 × 3.5 km | 1 January 2019 to 31 December 2022 | TIFF | 2170 MB | Key inversion elements |
MODIS_NDVI | 16 days | 0.5 × 0.5 km | 1 January 2019 to 31 December 2022 | TIFF | 1986 MB | Improved spatial resolution |
SRTM_DEM | / | 0.09 × 0.09 km | / | TIFF | 276 MB | Associated with potential emission sources and dispersion |
ERA-5_WD | Day | 10 × 10 km | 1 January 2019 to 31 December 2022 | TIFF | 28.9 MB | |
ERA-5_WS | 28.6 MB | |||||
ERA-5_TEMP | 28.8 MB | |||||
ERA-5_TP | 28.6 MB | |||||
ERA-5_SP | 28.6 MB | |||||
ERA-5_BLH | 28.9 MB | |||||
ERA-5_ET | 28.4 MB | |||||
ERA-5_RH | 28.7 MB | |||||
OSM_RN | / | 0.5 × 0.5 km | / | TIFF | 6.42 MB | |
NASA_PD | Year | 1 × 1 km | 2019 to 2022 | TIFF | 350.60 MB | |
GDP | Year | County | 2019 to 2022 | XLSX | / | |
IEU | Year | County | 2019 to 2022 | XLSX | / | |
RR | Year | County | 2019 to 2022 | XLSX | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wu, S.; Dai, Z.; Wang, Y.; Du, Z.; Liu, X.; Qiu, C. High-Resolution Daily Spatiotemporal Distribution and Evaluation of Ground-Level Nitrogen Dioxide Concentration in the Beijing–Tianjin–Hebei Region Based on TROPOMI Data. Remote Sens. 2023, 15, 3878. https://doi.org/10.3390/rs15153878
Liu C, Wu S, Dai Z, Wang Y, Du Z, Liu X, Qiu C. High-Resolution Daily Spatiotemporal Distribution and Evaluation of Ground-Level Nitrogen Dioxide Concentration in the Beijing–Tianjin–Hebei Region Based on TROPOMI Data. Remote Sensing. 2023; 15(15):3878. https://doi.org/10.3390/rs15153878
Chicago/Turabian StyleLiu, Chunhui, Sensen Wu, Zhen Dai, Yuanyuan Wang, Zhenhong Du, Xingyu Liu, and Chunxia Qiu. 2023. "High-Resolution Daily Spatiotemporal Distribution and Evaluation of Ground-Level Nitrogen Dioxide Concentration in the Beijing–Tianjin–Hebei Region Based on TROPOMI Data" Remote Sensing 15, no. 15: 3878. https://doi.org/10.3390/rs15153878
APA StyleLiu, C., Wu, S., Dai, Z., Wang, Y., Du, Z., Liu, X., & Qiu, C. (2023). High-Resolution Daily Spatiotemporal Distribution and Evaluation of Ground-Level Nitrogen Dioxide Concentration in the Beijing–Tianjin–Hebei Region Based on TROPOMI Data. Remote Sensing, 15(15), 3878. https://doi.org/10.3390/rs15153878