Spatio-Temporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems in the Yellow River Basin
<p>Overview of the geographical location of the study area.</p> "> Figure 2
<p>Carbon storage distribution in the Yellow River Basin in 2020. Diagrams of the (<b>a</b>) above-ground biogenic carbon storage; (<b>b</b>) below-ground biogenic carbon storage; (<b>c</b>) soil carbon storage; (<b>d</b>) total carbon storage. (Ⅱ Middle Temperate Zone, Ⅲ Warm Temperate Zone, Ⅳ Northern Subtropical Zone, HⅠ Plateau Subtropical Zone, HⅡ Plateau Temperate Zone; A Humid Region, B Semi-Humid Region, C Semi-Arid Region, D Arid Region; ⅡC3 Eastern Inner Mongolia High Plain, ⅡD1 Western Inner Mongolia High Plain, ⅡD2 Alashan and Hexi Corridor, ⅢB3 North China Mountain Hills, ⅢB2 North China Plain, HⅡD1 Qaidam Basin, ⅢC1 Jinzhong North Shaanxi Gandong plateau hills, HⅡC1 Qingdong Qilian mountains, ⅢB1 Luzhong mountain hills, ⅢB4 Jinan Guanzhong basin, HⅠC1 Qingnan plateau wide valley, HⅠB1 Guoluo Naqu hill-like plateau, ⅣA2 Hanzhong basin, and HⅡA/B1 Sichuan–Xizang East high mountain deep valley).</p> "> Figure 3
<p>Changes in carbon storage in the Yellow River Basin from 2000 to 2020. Diagrams of the (<b>a</b>) total carbon storage; (<b>b</b>) above-ground biogenic carbon storage; (<b>c</b>) below-ground biogenic carbon storage; (<b>d</b>) soil carbon storage.</p> "> Figure 4
<p>Carbon storage of different ecosystem types from 2000 to 2020.</p> "> Figure 5
<p>Change in carbon intensity in the Yellow River Basin, 2000–2020.</p> "> Figure 6
<p>Factor detection results of carbon storage. Diagrams of the (<b>a</b>) total carbon storage; (<b>b</b>) above-ground biogenic carbon storage; (<b>c</b>) below-ground biogenic carbon storage; (<b>d</b>) soil carbon storage.</p> "> Figure 7
<p>Changes in carbon storage in the Yellow River Basin under different scenarios. Diagrams of the (<b>a</b>) natural development scenario-30; (<b>b</b>) arable land conservation scenario-2030; (<b>c</b>) ecological conservation scenario-2030; (<b>d</b>) urban restricted development scenario-2030; (<b>e</b>) natural development scenario-40; (<b>f</b>) arable land conservation scenario-2040; (<b>g</b>) ecological conservation scenario-2040; (<b>h</b>) urban restricted development scenario-2040; (<b>i</b>) natural development scenario-50; (<b>j</b>) arable land conservation scenario-2050; (<b>k</b>) ecological conservation scenario-2050; (<b>l</b>) urban restricted development scenario-2050.</p> "> Figure 8
<p>Contribution value analysis of land expansion factor in the study area. Diagrams of the (<b>a</b>) cropland; (<b>b</b>) construction land; (<b>c</b>) forest; (<b>d</b>) meadow.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Carbon Storage Estimation Method
3.2. Carbon Storage Change Analysis Method
3.3. Carbon Storage Impact Factor Analysis Method
3.4. Future Carbon Storage Prediction Methods
4. Results
4.1. Spatial and Temporal Changes in Carbon Storage
4.2. Carbon Storage Changes in Different Ecosystems
4.3. Analysis of Impact Factors
4.4. Future Carbon Storage Prediction
5. Discussion
5.1. Comparison of Carbon Storage in the Yellow River Basin with the Average in China
5.2. Comparison of the Results of This Study with Other Results
5.3. Changes in Carbon Storage in the Yellow River Basin, 2000–2020
5.4. Impact of Climate Factors on Carbon Storage
5.5. Land Use Change and Impact on Carbon Storage under Different Development Scenarios
5.6. Research Outlook
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, J.Y.; Yu, G.R.; Ren, X.B.; Liu, G.H.; Zhao, X.Q. Carbon Sequestration in China’s Terrestrial Ecosystems under Climate Change-Progress on Ecosystem Carbon Sequestration from the CAS Strategic Priority Research Program. Bull. Chin. Acad. Sci. 2015, 30, 848–857+875. [Google Scholar]
- Yang, Y.H.; Shi, Y.; Sun, W.J.; Chang, J.F.; Zhu, J.X.; Chen, L.Y.; Wang, X.; Guo, Y.P.; Zhang, H.T.; Yu, L.F.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. Sin. Vitae 2022, 52, 534–574. [Google Scholar]
- Guo, A.J.; Yang, C.L.; Zhong, F.L. Influence mechanisms and spatial spillover effects of industrial agglomeration on carbon productivity in China’s Yellow River Basin. Environ. Sci. Pollut. Res. Int. 2022, 30, 15861–15880. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.L.; Liu, X.H. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Li, K.R. Research progress of global climate change and its impact and future prospect. Acta Geogr. Sin. 1996, S1, 1–14. [Google Scholar]
- Zhao, X.Y.; Du, Y.X.; Li, H.; Wang, W.J. Spatio-temporal changes of the coupling relationship between urbanization andecosystem services in the Middle Yellow River. J. Nat. Resour. 2021, 36, 131–147. [Google Scholar]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J.Z. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 15, 10233. [Google Scholar] [CrossRef] [Green Version]
- Faichia, C.; Tong, Z.J.; Zhang, J.Q.; Liu, X.P.; Kazuva, E.; Ullah, K.; Al-Shaibah, B. Using RS data-based CA-Markov model for dynamic simulation of historical and future lucc in vientiane, Laos. Sustainability 2020, 12, 8410. [Google Scholar] [CrossRef]
- Gu, J.H.; Xue, H.Z.; Dong, G.T.; Zhou, L.J.; Li, J.R.; Dang, S.Z.; Li, S.Z. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin. Arid. Land Geogr. 2021, 44, 158–167. [Google Scholar]
- Liu, G.; Zhao, Z. Analysis of carbon storage and its contributing factors-a case study in the loess plateau (China). Energies 2018, 11, 1596. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhu, C.M.; Ma, X.D.; Zhang, X.; Yang, D.H.; Shao, Y.K. Spatiotemporal Variation Characteristics and Dynamic Persistence Analysis of Carbon Sources/Sinks in the Yellow River Basin. Remote Sens. 2023, 15, 323. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Kato, T.; Guo, Z.; Yang, Y.; Hu, H.; Shen, H.; Zhao, X.; Kishimoto-Mo, A.W.; Tang, Y.; Houghton, R.A. Evidence for environmentally enhanced forest growth. Proc. Natl. Acad. Sci. USA 2014, 111, 9527–9532. [Google Scholar] [CrossRef]
- Fang, J.Y.; Yang, Y.H.; Ma, W.H.; Anwar, M.; Shen, H.H. Ecosystem carbon stocks and their changes in China’s grasslands. Sci. China Life Sci. 2010, 53, 757–765. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar]
- Liu, X.J.; Li, X.; Liang, X.; Shi, G.; Ou, J.P. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model. Trop. Geogr. 2019, 39, 397–409. [Google Scholar]
- Wang, J.F.; Li, L.F.; Li, Q.; Wang, S.; Liu, X.L.; Li, Y. The spatiotemporal evolution and prediction of carbon storage in the Yellow River Basin based on the major function-oriented zone planning. Sustainability 2022, 14, 7963. [Google Scholar] [CrossRef]
- Wang, X.K.; Feng, Z.W.; Ou, Y.Z.Y. Vegetation carbon storage and density of forest ecosystems in China. Chin. J. Appl. Ecol. 2001, 12, 13–16. [Google Scholar]
- Chen, S.C.; Arrouays, D.; Angers, D.A.; Chenu, C.; Barré, P.; Martin, M.P.; Saby, N.P.A.; Walter, C. National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Sci. Total Environ. 2019, 666, 355–367. [Google Scholar]
- Yang, J.; Xie, B.P.; Zhang, D.G. The Trade-Offs and Synergistic Relationships between Grassland Ecosystem Functions in the Yellow River Basin. Diversity 2021, 13, 505. [Google Scholar] [CrossRef]
- He, Z.; He, J.P. Remote sensing on spatio-temporal evolution of vegetation cover in the Yellow River Basin during 1982–2013. Trans. Chin. Soc. Agric. Mach. 2017, 48, 179–185. [Google Scholar]
- Bu, X.Y.; Cui, D.; Dong, S.C.; Mi, W.B.; Li, Y.; Li, Z.G.; Feng, Y.L. Effects of Wetland Restoration and Conservation Projects on Soil Carbon Sequestration in the Ningxia Basin of the Yellow River in China from 2000 to 2015. Sustainability 2020, 12, 10284. [Google Scholar] [CrossRef]
- Zhang, M.X.; Liu, W.; Zhu, M.; Li, R.L. Soil organic carbon storage and distribution patterns in the mountainous areas of the Hexi Region, Gansu, China. J. Desert Res. 2019, 39, 64–72. [Google Scholar]
- Li, Y.Q.; Li, J.R.; Jiao, S.Y.; Li, Y.; Xu, Z.Y.; Kong, B.S. Ecosystem-scale carbon allocation among different land uses: Implications for carbon stocks in the Yellow River Delta. Ecosphere 2020, 11, 26–45. [Google Scholar]
- Fang, M.; Si, G.; Yu, Q.; Guo, H. Study on the relationship between topological characteristics of vegetation ecospatial network and carbon sequestration capacity in the Yellow River Basin, China. Remote Sens. 2021, 13, 4926. [Google Scholar]
- Shao, P.S.; Han, H.Y.; Yang, H.J.; Li, T.; Zhang, D.J.; Ma, J.Z.; Duan, D.X.; Sun, J.K. Responses of above and belowground carbon stocks to degraded and recovering wetlands in the Yellow River Delta. Front. Ecol. Evol. 2022, 12, 457–485. [Google Scholar] [CrossRef]
- Jia, S.W. Carbon storage of forest vegetation and its dynamic changes in Yellow River Basin based on continuous forest resources inventory. Res. Soil Water Conserv. 2018, 25, 78–82+88. [Google Scholar]
- Deng, Y.J.; Yao, S.B.; Hou, M.Y.; Zhang, T.Y.; Lu, Y.N.; Gong, Z.W.; Wang, Y.F. Assessing the effects of the Green for Grain Program on ecosystem carbonstorage service by linking the InVEST and FLUS models: A case study of Zichang county in hilly and gully region of Loess Plateau. J. Nat. Resour. 2020, 35, 826–844. [Google Scholar]
- Yang, J.; Xie, B.P.; Zhang, D.G. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based onInVEST and CA-Markov models. Chin. J. Eco-Agric. 2021, 29, 1018–1029. [Google Scholar]
- Long, Y.; Jiang, F.G.; Sun, H.; Wang, T.H.; Zhou, Q.; Chen, C.S. Estimating vegetation carbon storage based on optimal Environmental science and pollution research international band width selected from geographically weighted regression model in Shenzhen City. Acta Ecol. Sin. 2022, 42, 4933–4945. [Google Scholar]
- Chen, K.Y.; Zhang, H.R.; Zhang, B.; He, Y.J. Spatial distribution of carbon storage in natural secondary forest based on geographically weighted regression expansion model. Chin. J. Appl. Ecol. 2021, 32, 1175–1183. [Google Scholar]
- Wang, Y.Q.; Yao, S.B.; Hou, M.Y.; Jia, L.; Li, Y.Y.; Deng, Y.J.; Zhang, X. Spatial-temporal differentiation and its influencing factors of agricultural eco-efficiency in China based on geographic detector. Chin. J. Appl. Ecol. 2021, 32, 4039–4049. [Google Scholar]
- Xu, L.; Yu, G.R.; He, N.P.; Wang, Q.F.; Gao, Y.; Wen, D.; Li, S.G.; Niu, S.L.; Ge, J.P. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef] [Green Version]
- Jin, K.K.; Fan, J.S.; Zhao, X.; Zhang, P. Analysis on dynamic change of vegetation coverage in coastal wetland of Yellow River delta. Earth Environ. Sci. 2020, 450, 012108. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, Z.Q.; Sun, A.Z. Study on the spatial-temporal evolution and influence factors of vegetation coverage in the Yellow River Basin during 1982-2021. J. Earth Environ. 2022, 13, 429–436. [Google Scholar]
- Zhao, R.G.; Chen, D.H.; Wu, R.; Bai, Y. Dynamic characteristics forest carbon storage dynamics in Hulunbuir City. J. Anhui Agric. Sci. 2017, 45, 141–145. [Google Scholar]
- Zhang, Z.Y.; Li, G.; Zhang, B.B.; Zhao, X.; Ren, G.H.; Dong, K.H.; Gao, W.J.; Wang, Y.X. Estimation on carbon distribution and storage of typical natural grassland in Shanxi Province. Acta Agrestia Sin. 2017, 25, 69–75. [Google Scholar]
- Dai, Q.; Cui, C.F.; Wang, S. Spatiotemporal variation and sustainability of NDVI in the Yellow River basin. Irrig. Drain. 2022, 71, 1304–1318. [Google Scholar] [CrossRef]
- Hao, J.T.; Hu, Y.Y.; Du, Y.C.; Hou, X.W.; Xiang, A.M. NDVI-Based coverage changes of forest and grass vegetation in Yellow River Basin during 2009 to 2018. Sci. Silvae Sin. 2022, 58, 10–19. [Google Scholar]
- Wang, W.B.; Jiang, X.L.; Zhao, P.W. Carbon Storage in Hulunbeir Area of Inner Mongolia Based on Continuous Forest Inventory Data. J. Northeast. For. Univ. 2015, 43, 116–119. [Google Scholar]
- Liu, L.; Wang, Y.F.; Yue, F.X.; Li, D.; Zhao, W. Dynamic of forest vegetation carbon storage in He’nan Province based on forest inventory data. Acta Ecol. Sin. 2019, 39, 864–873. [Google Scholar]
- Ren, X.J.; Pei, T.T.; Chen, Y.; Xie, B.P.; Chen, D.L. Impact of land use change on carbon storage in Gansu Province based on carbon density correction. Ecol. Sci. 2021, 40, 66–74. [Google Scholar]
- Zhang, P.P.; Li, Y.H.; Yin, H.R.; Chen, Q.T.; Dong, Q.D.; Zhu, L.Q. Spatio-temporal variation and dynamic simulation of ecosystem carbon storage in the north-south transitional zone of China. J. Nat. Resour. 2022, 37, 1183–1197. [Google Scholar] [CrossRef]
- Wang, Q.F.; Zheng, H.; Zhu, X.J. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Chin. Sci. Bull. 2015, 60, 1. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.Q.; Yang, L.C.; Li, F.; Xiong, F.; Li, C.B.; Zhou, G.Y. Storage, patterns and controls of soil organic carbon in the alpine shrubland in the three rivers source region on the qinghai-tibetan plateau. Catena 2019, 178, 154–162. [Google Scholar] [CrossRef]
- Xin, X.P.; Ding, L.; Cheng, W.; Zhu, X.Y.; Chen, B.R.; Liu, Z.L.; He, G.L.; Qing, G.L.; Yang, G.X.; Tang, H.J. Biomass carbon storage and its effect factors in steppe and agro-pastoral ecotones in Northern China. Sci. Agric. Sin. 2020, 53, 2757–2768. [Google Scholar]
- Zhang, L.; Zhou, G.S.; Ji, Y.H.; Bai, Y.F. Spatiotemporal dynamic simulation of grassland carbon storage in China. Sci. China Earth Sci. 2016, 59, 1946–1948. [Google Scholar] [CrossRef]
- Sui, X.H.; Zhou, G.S.; Zhuang, Q.L. Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China. Clim. Chang. 2013, 117, 259–272. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-scenario simulation analysis of land use and carbon storage changes in changchun city based on FLUS and InVEST model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Wang, C.Y.; Guo, X.H.; Guo, L.; Bai, L.F.; Xia, L.L.; Wang, C.B.; Li, T.Z. Land use change and its impact on carbon storage in northwest China based on FLUS-Invest: A case study of Hu-Bao-Er-Yu urban agglomeration. Ecol. Environ. Sci. 2022, 31, 1667–1679. [Google Scholar]
- Xu, Z.; Zhao, Z.; Lu, C. The contribution of land use and land cover on carbon storage in the north tibet plateau, China. J. Anim. Plant Sci.-Pak. 2021, 31, 1598–1609. [Google Scholar]
Serial Number | Vegetation Index | Calculation Formula * |
---|---|---|
1 | Normalized difference vegetation index (NDVI) | NDVI = NIR − RED/NIR + RED |
2 | Ratio vegetation index (RVI) | RVI = NIR/RED |
3 | Difference vegetation index (DVI) | DVI = NIR − RED |
4 | Ratio vegetation index 1 Ratio vegetation index 1 (RVI54) | RVI54 = SWIRI/NIR |
5 | Ratio vegetation index 2 (RVI64) | RVI64 = SWIR2/NIR |
6 | Soil-adjusted vegetation index (SAVI) | SAVI = (1 + L)(NIR − RED)/NIR + RED + L |
7 | Non-linear vegetation index (NLI) | NLI = NIR2 − RED/NIR2 + RED |
8 | Atmospherically resistant vegetation index (ARVI) | ARVI = (NIR − RED + r(BLUE − RED))/(NIR − RED − r(BLUE − RED)) |
9 | Enhanced vegetation index (EVI) | EVI = G × (NIR − RED)/(NIR + C1 × RED − C2 × BLUE + I) |
10 | RGVI | RGVI = RED − GREEN/RED + GREEN |
Factor | Classification Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Elevation/m | 0~200 | 200~500 | 500~1500 | 1500~3500 | >3500 |
Landforms | Plain | Terrace | Hilly | Small undulating hills | Middle-rolling hills |
GDP/yuan∙km−2 | 0~1 million | 1~2 million | 2~5 million | 5~10 million | >10 million |
NPP/kg∙m−2 | 0~1000 | 1000~2000 | 2000~3000 | 3000~4000 | >4000 |
Precipitation/mm | 0~200 | 200~400 | 400~600 | 600~800 | >800 |
Population/persons∙km−2 | 0~100 | 100~200 | 200~500 | 500~1000 | >1000 |
Slope/° | 0~5 | 5~15 | 15~25 | 25~35 | >35 |
Temperature/°C | <−5 | −5~0 | 0~5 | 5~10 | >10 |
Types of Future Development Scenarios | Features |
---|---|
Natural development scenario | This scenario considers only the natural variation in land use types in the Yellow River basin according to the existing rate of change. |
Arable land conservation scenario | Under the “natural development scenario”, the arable land is not transferred and the restricted development area is the water area. |
Ecological conservation scenario | Using the nature reserve as a limit in 2021, the probability of converting forest, grassland, scrub, and wetland to construction land is reduced by 20%; the probability of converting arable land and unused land to forest, grassland, scrub, and wetland is increased by 50%; and the probability of converting construction land to forest, grassland, scrub, and wetland is increased by 30%. |
Urban restricted development scenario | Grassland, arable land, and unused land to construction land probability reduced by 20%, restricting the development area for impervious surface area. |
Factor | Total Carbon Pool | Above-Ground Biogenic Carbon Pool | Below-Ground Biogenic Carbon Pool | Soil Carbon Pool |
---|---|---|---|---|
Elevation | 5 | 2–3 | 5 | 5 |
Landforms | 5 | 5 | 5 | 5 |
GDP | 1 | 4–5 | 1 | 1 |
NPP | 4 | 5 | 2–4 | 4–5 |
Precipitation | 3–5 | 4–5 | 2–5 | 3–4 |
Population | 1 | 5 | 1 | 1 |
Slope | 4–5 | 5 | 5 | 3–4 |
Temperature | 2 | 5 | 1–2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Du, J.; Chong, F.; Li, L.; Zhu, X.; Zhai, G.; Song, Z.; Mao, J. Spatio-Temporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems in the Yellow River Basin. Remote Sens. 2023, 15, 3866. https://doi.org/10.3390/rs15153866
Sun B, Du J, Chong F, Li L, Zhu X, Zhai G, Song Z, Mao J. Spatio-Temporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems in the Yellow River Basin. Remote Sensing. 2023; 15(15):3866. https://doi.org/10.3390/rs15153866
Chicago/Turabian StyleSun, Bingqing, Jiaqiang Du, Fangfang Chong, Lijuan Li, Xiaoqian Zhu, Guangqing Zhai, Zebang Song, and Jialin Mao. 2023. "Spatio-Temporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems in the Yellow River Basin" Remote Sensing 15, no. 15: 3866. https://doi.org/10.3390/rs15153866
APA StyleSun, B., Du, J., Chong, F., Li, L., Zhu, X., Zhai, G., Song, Z., & Mao, J. (2023). Spatio-Temporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems in the Yellow River Basin. Remote Sensing, 15(15), 3866. https://doi.org/10.3390/rs15153866