Radiometric Cross-Calibration of Wide-Field-of-View Cameras Based on Gaofen-1/6 Satellite Synergistic Observations Using Landsat-8 Operational Land Imager Images: A Solution for Off-Nadir Wide-Field-of-View Associated Problems
"> Figure 1
<p>The location of the calibration site and close view using a true color composite of Gaofen imagery. Please note that the red box is the selected calibration area in this study.</p> "> Figure 2
<p>Schematic of a wide-field-of-view (WFV) setup and Gaofen-1 and Gaofen-6 synergistic observations.</p> "> Figure 3
<p>Flowchart of the proposed cross-calibration scheme based on the PSO method.</p> "> Figure 4
<p>Evaluation of simulated surface reflectance of Gaofen-1 WFV1 using Landsat-8 OLI surface reflectance products. The results of the three versions of calibration coefficients are plotted in this figure. The dotted line is the 1:1 line.</p> "> Figure 5
<p>Inter-comparison of (<b>d</b>) PSO_GF-1/6 WFV TOA with (<b>b</b>) official WFV TOA and (<b>c</b>) RTM-BRDF WFV TOA in the blue band on 22 September 2019 (note that the no-value area is the water body area), combined with their corresponding MODIS-derived true-color image (<b>a</b>).</p> "> Figure 6
<p>The mean difference percentages between the calibrated TOA radiances of Gaofen-1/6 WFV using different methods and the in situ TOA radiance values from RadCalNet.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Selection
2.1. Study Area
2.2. Satellite Datasets
Aerosol and Meteorology Data
2.3. USGS Spectral Library
2.4. RadCalNet TOA Data
3. Methodology
3.1. TOA Radiance Calculation
3.2. Adjustments to the Spectral Bands and BRDF
3.3. PSO for Cross-Calibration
3.4. Practical Steps for Cross-Calibration
- (1)
- Correction of spectral response discrepancies between different multispectral satellite sensors of the eight WFV sensors onboard the Gaofen-1/6 satellites, as ensuring consistency and reliability in radiative response accuracy is paramount. To compensate for the inherent offsets caused by RSR mismatches between two sensors, the SBAF method is utilized.
- (2)
- Random selection of geo-matched regions of interest (ROIs) is conducted between Gaofen WFV and the Landsat-8 OLI sensors. The methodology for selecting these geo-matched ROIs aligns with the previous study [24]. The selection criteria involve checking the CV within a small window (ROI). Specifically, if the CV in the OLI window and the corresponding window in the WFV sensor, both located at the same geographical position, is less than 1%, the location is considered suitable for cross-calibration sampling. The subsequent calibration processes utilize the mean values of the corresponding windows, ensuring the homogeneity of the selected calibration sites by minimizing variation within the windows.
- (3)
- Estimation of the SBAF between the OLI and WFV instruments and spectral matching are conducted by identifying the best-matched spectra from the USGS spectral library. The selection of matching spectra is based on the minimum Mahalanobis distance [58] to determine the best-matched spectra in the USGS library and the atmospherically corrected OLI reflectance.
- (4)
- Obtaining Landsat-8 OLI surface reflectance and WFV nadir BRDF-adjusted reflectance. The specific calculation of the latter is as follows: the calibration, offset coefficients, and BDRF adjustment factor are first initialized. Then, use the initial values to calculate the TOA radiance values of the WFV data using Equations (1)–(3) and obtain the surface reflectance using the 6SV atmospheric correction model. The coefficients for atmospheric correction are determined by the atmospheric condition parameters on the day of the image pairs for cross-calibration.
- (5)
- Compare the Landsat-8 OLI surface reflectance and the nadir BRDF-adjusted reflectance of the WFV. If their difference is small enough to satisfy the convergence condition, then the optimal calibration coefficients and BDRF adjustment factor are obtained. However, if the difference exceeds the acceptable range, the PSO optimization algorithm is utilized to update the calibration coefficient values and offset the coefficients and BRDF adjustment factor, resulting in a new simulated surface reflectance. The process is iterated, continuing the loop until the termination condition is met.
3.5. Methods for Evaluation
4. Results
4.1. Cross-Calibration Results
4.2. Radiometric Calibration Performance
4.3. Evaluation Results
4.3.1. Evaluation with In Situ Data
4.3.2. Uncertainty Percentage Calculation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.H.; Zhu, Z.M.; Gong, W.; Zhu, Z.R.; Sun, K.; Wang, L.C.; Huang, Y.S.; Mao, F.Y.; Shen, H.F.; Li, Z.W.; et al. Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160 m Gaofen-1 AOD retrievals. Remote Sens. Environ. 2018, 216, 91–104. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.P.; Liu, Y.X.; Xu, W.X.; Feng, Y.K.; Chen, Y.L.; Tang, Q.H. A cloud detection method for GaoFen-6 wide field of view imagery based on the spectrum and variance of superpixels. Int. J. Remote Sens. 2021, 42, 6315–6332. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2018, 145, 154–172. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Novelli, A.; Caradonna, G.; Tarantino, E. Evaluation of Relative Radiometric Correction techniques on Landsat 8 OLI sensor data. In Proceedings of the 4th International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), Paphos, Cyprus, 4–8 April 2016; Volume 9688, pp. 62–70. [Google Scholar]
- Moghimi, A.; Celik, T.; Mohammadzadeh, A. Tensor-based keypoint detection and switching regression model for relative radiometric normalization of bitemporal multispectral images. Int. J. Remote Sens. 2022, 43, 3927–3956. [Google Scholar] [CrossRef]
- D’Elia, C.; Ruscino, S. An Automated Method for Relative Radiometric Correction Performed through Spectral Library Based Classification and Comparison. In Proceedings of the SPIE Conference on Image and Signal Processing for Remote Sensing XVIII, Edinburgh, UK, 24–27 September 2012. [Google Scholar]
- Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, X.X.; Angal, A.; Choi, T. Absolute Radiometric Calibration of Landsat Using a Pseudo Invariant Calibration Site. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1360–1369. [Google Scholar] [CrossRef]
- Lin, T.H.; Chang, J.C.; Hsu, K.H.; Lee, Y.S.; Zeng, S.K.; Liu, G.R.; Tsai, F.A.; Chan, H.P. Radiometric Variations of On-Orbit FORMOSAT-5 RSI from Vicarious and Cross-Calibration Measurements. Remote Sens. 2019, 11, 2634. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.A.; Eplee, R.E.; Patt, F.S.; McClain, C.R. Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements. Appl. Opt. 1999, 38, 4649–4664. [Google Scholar] [CrossRef] [Green Version]
- Slater, P.N.; Biggar, S.F.; Thome, K.J.; Gellman, D.I.; Spyak, P.R. Vicarious radiometric calibrations of EOS sensors. J. Atmos. Ocean. Technol. 1996, 13, 349–359. [Google Scholar] [CrossRef]
- McCorkel, J.; Thome, K.; Ong, L. Vicarious Calibration of EO-1 Hyperion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.C.; Kamei, A.; Hsu, K.H.; Tsuchida, S.; Huang, H.M.; Kato, S.; Nakamura, R.; Wu, A.M. Vicarious Calibration of the Formosat-2 Remote Sensing Instrument. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2162–2169. [Google Scholar]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Lacherade, S.; Fougnie, B.; Henry, P.; Gamet, P. Cross Calibration Over Desert Sites: Description, Methodology, and Operational Implementation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1098–1113. [Google Scholar] [CrossRef]
- Chander, G.; Meyer, D.J.; Helder, D.L. Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2821–2831. [Google Scholar] [CrossRef]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM plus). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Alhammoud, B.; Czapla-Myers, J.; Gascon, F.; Haque, M.O.; Kaewmanee, M.; Leigh, L.; Markham, B.L. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. Eur. J. Remote Sens. 2018, 51, 822–837. [Google Scholar] [CrossRef]
- Pinto, C.T.; Shrestha, M.; Hasan, N.; Leigh, L.; Helder, D. SBAF for Cross-Calibration of Landsat-8 OLI and Sentinel-2 MSI over North African PICS. Earth Obs. Syst. XXIII 2018, 10764, 294–304. [Google Scholar]
- Gao, C.X.; Liu, Y.K.; Qiu, S.; Li, C.R.; Ma, L.L.; Han, Q.J.; Liu, J.R.; Zhao, E.Y.; Zhao, Y.G.; Qian, Y.G.; et al. Radiometric Cross-Calibration of GF-4/VNIR Sensor with Landsat8/OLI, Sentinel-2/MSI, and Terra/MODIS for Monitoring Its Degradation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2337–2350. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, P.F.; Gu, X.F.; Feng, X.Z.; Li, X.Y.; Gao, H.L.; Li, H.; Lin, J.T.; Zhang, X.L. Uncertainty analysis of cross-calibration for HJ-1 CCD camera. Sci. China-Technol. Sci. 2013, 56, 713–723. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, Y.H.; Du, T.T.; Yang, A.X.; Lv, W.B.; Liu, Q.H. Cross-Calibration of HJ-1/CCD over a Desert Site Using Landsat ETM plus Imagery and ASTER GDEM Product. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7247–7263. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Gong, W.S.; Zhao, X.; Chen, X.L.; Pang, X.P. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems. Remote Sens. Environ. 2016, 174, 56–68. [Google Scholar]
- Zhou, Q.; Tian, L.Q.; Li, J.; Wu, H.; Zeng, Q. Radiometric Cross-Calibration of Large-View-Angle Satellite Sensors Using Global Searching to Reduce BRDF Influence. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5234–5245. [Google Scholar]
- Li, J.; Feng, L.; Pang, X.P.; Gong, W.S.; Zhao, X. Radiometric cross Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images: A Simple Image-Based Method. Remote Sens. 2016, 8, 411. [Google Scholar]
- Liu, Q.Y.; Yu, T.; Gao, H.L. Radiometric Cross-Calibration of GF-1 PMS Sensor with a New BRDF Model. Remote Sens. 2019, 11, 707. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.X.; Zhong, B.; Wu, S.L.; Liu, Q.H. Radiometric Cross-Calibration of GF-4 in Multispectral Bands. Remote Sens. 2017, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Tao, Z.; Xie, Y.; Liu, Q.Y.; Huang, Y.J. Radiometric Cross-Calibration of GF-4/PMS Based on Radiometric Block Adjustment. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4522–4534. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, D.; Xie, Y.; Tao, Z.; Lv, T.T.; Wang, J. Radiometric Cross-Calibration of GF-4/IRS Based on MODIS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6807–6814. [Google Scholar] [CrossRef]
- Han, J.; Tao, Z.; Xie, Y.; Li, H.N.; Guan, X.G.; Yi, H.; Shi, T.T.; Wang, G.K. Radiometric Cross-Calibration of GF-6/WFV Sensor Using MODIS Images with Different BRDF Models. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3169211. [Google Scholar] [CrossRef]
- Han, J.; Tao, Z.; Xie, Y.; Li, H.; Liu, Q.; Guan, X. A Novel Radiometric Cross-Calibration of GF-6/WFV with MODIS at the Dunhuang Radiometric Calibration Site. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1645–1653. [Google Scholar] [CrossRef]
- Yang, A.X.; Zhong, B.; Hu, L.F.; Wu, S.L.; Xu, Z.P.; Wu, H.B.; Wu, J.J.; Gong, X.S.; Wang, H.B.; Liu, Q.H. Radiometric Cross-Calibration of the Wide Field View Camera Onboard GaoFen-6 in Multispectral Bands. Remote Sens. 2020, 12, 1037. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xu, K.; Huang, W.C. Auto-calibration of GF-1 WFV images using flat terrain. ISPRS J. Photogramm. Remote Sens. 2017, 134, 59–69. [Google Scholar] [CrossRef]
- Mou, H.W.; Li, H.; Zhou, Y.G.; Dong, R.J. Response of Different Band Combinations in Gaofen-6 WFV for Estimating of Regional Maize Straw Resources Based on Random Forest Classification. Sustainability 2021, 13, 4603. [Google Scholar] [CrossRef]
- Yang, F.K.; Fan, M.; Tao, J.H. An Improved Method for Retrieving Aerosol Optical Depth Using Gaofen-1 WFV Camera Data. Remote Sens. 2021, 13, 280. [Google Scholar] [CrossRef]
- Shang, P.; Shen, F. Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary. Sensors 2016, 16, 1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.P.; Sun, K.M.; Li, D.R.; Bai, T.; Huang, C.Q. Radiometric Cross-Calibration of GF-4 PMS Sensor Based on Assimilation of Landsat-8 OLI Images. Remote. Sens. 2017, 9, 811. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Tian, L.Q.; Li, J.; Li, W.K. Assessment of bidirectional reflectance effects on desert and forest for radiometric cross-calibration of satellite sensors. ISPRS J. Photogramm. Remote Sens. 2020, 160, 180–194. [Google Scholar] [CrossRef]
- Zhong, B.; Yang, A.; Wu, S.; Li, J.; Liu, S.; Liu, Q. Cross-calibration of reflective bands of major moderate resolution remotely sensed data. Remote Sens. Environ. 2018, 204, 412–423. [Google Scholar] [CrossRef]
- Lu, J.; He, T.; Liang, S.L.; Zhang, Y.J. An Automatic Radiometric Cross-Calibration Method for Wide-Angle Medium-Resolution Multispectral Satellite Sensor Using Landsat Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar]
- Sun, M.X.; Yu, L.J.; Zhang, P.; Sun, Q.Q.; Jiao, X.; Sun, D.F.; Lun, F. Coastal water bathymetry for critical zone management using regression tree models from Gaofen-6 imagery. Ocean. Coast. Manag. 2021, 204, 105522. [Google Scholar]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.X.; Doelling, D.R. Applications of Spectral Band Adjustment Factors (SBAF) for Cross-Calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Pinto, C.T.; Ponzoni, F.J.; Castro, R.M.; Leigh, L.; Kaewmanee, M.; Aaron, D.; Helder, D. Evaluation of the uncertainty in the spectral band adjustment factor (SBAF) for cross-calibration using Monte Carlo simulation. Remote Sens. Lett. 2016, 7, 837–846. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2017, 6, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Q.; Liu, J.J.; Sun, L.; Rong, Z.G.; Li, Y.; Zhang, Y.; Zheng, Z.J.; Wu, R.H.; Zhang, L.J.; Gu, X.F. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors. Can. J. Remote Sens. 2010, 36, 566–582. [Google Scholar] [CrossRef]
- Chen, L.; Hu, X.Q.; Xu, N.; Zhang, P. The Application of Deep Convective Clouds in the Calibration and Response Monitoring of the Reflective Solar Bands of FY-3A/MERSI (Medium Resolution Spectral Imager). Remote Sens. 2013, 5, 6958–6975. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Q.; Xu, N.; Liu, J.J.; Zhang, L.J.; Rong, Z.G. Postlaunch Calibration of FengYun-3B MERSI Reflective Solar Bands. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1383–1392. [Google Scholar]
- Hu, X.Q.; Sun, L.; Liu, J.J.; Ding, L.; Wang, X.H.; Li, Y.; Zhang, Y.; Xu, N.; Chen, L. Calibration for the Solar Reflective Bands of Medium Resolution Spectral Imager Onboard FY-3A. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4915–4928. [Google Scholar] [CrossRef]
- Sun, L.; Hu, X.Q.; Guo, M.H.; Xu, N. Multisite Calibration Tracking for FY-3A MERSI Solar Bands. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4929–4942. [Google Scholar] [CrossRef]
- Gao, C.X.; Jiang, X.G.; Li, X.B.; Li, X.H. The cross-calibration of CBERS-02B/CCD visible-near infrared channels with Terra/MODIS channels. Int. J. Remote Sens. 2013, 34, 3688–3698. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.L.; Tian, L.Q.; Yu, H.J.; Zhang, W. An evaluation of the temporal stability of HJ-1 CCD data using a desert calibration site and Landsat 7 ETM+. Int. J. Remote Sens. 2015, 36, 3733–3750. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Padro, J.C.; Pons, X.; Aragones, D.; Diaz-Delgado, R.; Garcia, D.; Bustamante, J.; Pesquer, L.; Domingo-Marimon, C.; Gonzalez-Guerrero, O.; Cristobal, J.; et al. Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy. Remote Sens. 2017, 9, 1319. [Google Scholar]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Ma, Q.M.; IEEE. Evaluating sentinel-2a atmospherically corrected reflectance using the 6sv model. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2078–2081. [Google Scholar]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Du, B.; Zhang, L.P. A Discriminative Metric Learning Based Anomaly Detection Method. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6844–6857. [Google Scholar]
WFV | OLI | ||
---|---|---|---|
Band (nm) | Blue | 450–520 | 450–510 |
Green | 520–590 | 530–590 | |
Red | 630–690 | 640–670 | |
NIR | 770–890 | 850–880 | |
Spatial Resolution (m) | 16 | 30 | |
Swath (km) | 200 × 4 | 180 | |
Range of viewing zenith angle (VZA) (°) | 24–40 | ±7 |
Gains | Offsets | ||||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | CV | Max | Min | Mean | CV | ||
Gaofen-1 WFV1 | Blue | 0.164 | 0.153 | 0.157 | 0.023 | 10.000 | −0.351 | 7.199 | 0.481 |
Green | 0.150 | 0.142 | 0.145 | 0.023 | 10.000 | −0.387 | 7.032 | 0.484 | |
Red | 0.143 | 0.136 | 0.137 | 0.008 | 10.000 | −0.490 | 7.438 | 0.451 | |
NIR | 0.115 | 0.107 | 0.108 | 0.007 | 10.000 | −0.465 | 7.449 | 0.446 | |
Gaofen-1 WFV2 | Blue | 0.190 | 0.188 | 0.189 | 0.052 | 10.000 | −0.371 | 7.517 | 0.446 |
Green | 0.177 | 0.170 | 0.171 | 0.011 | 10.000 | −0.957 | 7.101 | 0.499 | |
Red | 0.145 | 0.114 | 0.133 | 0.022 | 10.000 | −0.525 | 7.155 | 0.489 | |
NIR | 0.128 | 0.110 | 0.113 | 0.035 | 10.000 | −0.496 | 7.180 | 0.486 | |
Gaofen-1 WFV3 | Blue | 0.189 | 0.168 | 0.176 | 0.058 | 10.000 | −0.671 | 7.050 | 0.479 |
Green | 0.184 | 0.173 | 0.177 | 0.024 | 10.000 | −0.276 | 7.334 | 0.445 | |
Red | 0.145 | 0.120 | 0.126 | 0.023 | 10.000 | −0.146 | 7.258 | 0.458 | |
NIR | 0.134 | 0.130 | 0.131 | 0.009 | 8.694 | −0.265 | 6.876 | 0.397 | |
Gaofen-1 WFV4 | Blue | 0.208 | 0.191 | 0.202 | 0.044 | 10.000 | −0.809 | 7.346 | 0.441 |
Green | 0.175 | 0.170 | 0.171 | 0.007 | 7.162 | −0.511 | 5.523 | 0.440 | |
Red | 0.139 | 0.120 | 0.123 | 0.039 | 6.050 | −0.746 | 4.954 | 0.373 | |
NIR | 0.137 | 0.120 | 0.123 | 0.023 | 6.047 | −0.458 | 4.768 | 0.416 |
Method | Sensor | Blue Band | Green Band | Red Band | NIR Band | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | ||
PSO_GF-1/6 | WFV1 | 0.009 | 0.007 | 0.016 | 0.014 | 0.005 | 0.004 | 0.028 | 0.022 |
WFV2 | 0.005 | 0.004 | 0.005 | 0.004 | 0.007 | 0.006 | 0.027 | 0.023 | |
WFV3 | 0.008 | 0.006 | 0.006 | 0.005 | 0.006 | 0.004 | 0.029 | 0.021 | |
WFV4 | 0.005 | 0.004 | 0.006 | 0.004 | 0.013 | 0.009 | 0.026 | 0.022 | |
RTM-BRDF | WFV1 | 0.008 | 0.006 | 0.014 | 0.012 | 0.008 | 0.006 | 0.027 | 0.022 |
WFV2 | 0.007 | 0.004 | 0.006 | 0.005 | 0.009 | 0.007 | 0.018 | 0.013 | |
WFV3 | 0.007 | 0.005 | 0.007 | 0.006 | 0.008 | 0.006 | 0.025 | 0.019 | |
WFV4 | 0.009 | 0.006 | 0.009 | 0.006 | 0.015 | 0.012 | 0.023 | 0.018 | |
Official | WFV1 | 0.014 | 0.010 | 0.025 | 0.018 | 0.019 | 0.016 | 0.029 | 0.022 |
WFV2 | 0.011 | 0.009 | 0.015 | 0.012 | 0.012 | 0.01 | 0.031 | 0.024 | |
WFV3 | 0.010 | 0.008 | 0.017 | 0.015 | 0.011 | 0.009 | 0.030 | 0.024 | |
WFV4 | 0.015 | 0.013 | 0.026 | 0.021 | 0.017 | 0.015 | 0.037 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Chen, Y.; Chen, X.; Xu, Q. Radiometric Cross-Calibration of Wide-Field-of-View Cameras Based on Gaofen-1/6 Satellite Synergistic Observations Using Landsat-8 Operational Land Imager Images: A Solution for Off-Nadir Wide-Field-of-View Associated Problems. Remote Sens. 2023, 15, 3851. https://doi.org/10.3390/rs15153851
Dong J, Chen Y, Chen X, Xu Q. Radiometric Cross-Calibration of Wide-Field-of-View Cameras Based on Gaofen-1/6 Satellite Synergistic Observations Using Landsat-8 Operational Land Imager Images: A Solution for Off-Nadir Wide-Field-of-View Associated Problems. Remote Sensing. 2023; 15(15):3851. https://doi.org/10.3390/rs15153851
Chicago/Turabian StyleDong, Jiadan, Yepei Chen, Xiaoling Chen, and Qiangqiang Xu. 2023. "Radiometric Cross-Calibration of Wide-Field-of-View Cameras Based on Gaofen-1/6 Satellite Synergistic Observations Using Landsat-8 Operational Land Imager Images: A Solution for Off-Nadir Wide-Field-of-View Associated Problems" Remote Sensing 15, no. 15: 3851. https://doi.org/10.3390/rs15153851
APA StyleDong, J., Chen, Y., Chen, X., & Xu, Q. (2023). Radiometric Cross-Calibration of Wide-Field-of-View Cameras Based on Gaofen-1/6 Satellite Synergistic Observations Using Landsat-8 Operational Land Imager Images: A Solution for Off-Nadir Wide-Field-of-View Associated Problems. Remote Sensing, 15(15), 3851. https://doi.org/10.3390/rs15153851