Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China
<p>The study area is the Jiuzhaigou earthquake area.</p> "> Figure 2
<p>The neural network framework of DemDet.</p> "> Figure 3
<p>The mean square error curve of the geometric feature extraction module.</p> "> Figure 4
<p>Visualization of landslide detection results on single data patch. The white areas indicate landslides.</p> "> Figure 5
<p>Visualization of forested landslide labels.</p> "> Figure 6
<p>Global visualization results of DemDet with optical images.</p> "> Figure 7
<p>Global visualization results of DemDet with hillshade images.</p> "> Figure 8
<p>Global visualization results of DemDet with hillshade images, optical images, and DEM.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to Study Area
2.2. A Dataset for Forested Landslide Detection
2.3. A New Deep Learning Model for Forested Landslide Detection
2.3.1. Geometric Feature Extraction Network for DEM
2.3.2. Hillshade and Optical Image Feature Extraction Network
2.3.3. Decoder for Multimodal Feature Fusion
2.3.4. Loss Function
2.3.5. A Two-Stage Training Strategy
Algorithm 1: The training and test process of landslide detection using DemDet. |
|
3. Results
3.1. Experimental Configurations
3.2. Evaluation of Accuracy
3.2.1. The Accuracy of Single Optical Images
3.2.2. The Accuracy of Single DEM-Derived Hillshade Images
3.2.3. Effectiveness of the Geometric Feature Extraction Module for DEM
3.3. Comparing the Mean Accuracy of Landslide Detection Methods
3.4. Visualization Results
4. Discussion
4.1. Multimodal Landslide Detection Model
4.2. Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LiDAR | Light detection and ranging |
InSAR | Synthetic aperture radar interferometry |
SAR | Synthetic aperture radar |
DEM | Digital elevation model |
CNN | Convolutional neural network |
MLP | Multi-layer perceptron |
MSE | Mean square error |
References
- Pei, Y.; Qiu, H.; Zhu, Y.; Wang, J.; Yang, D.; Tang, B.; Wang, F.; Cao, M. Elevation dependence of landslide activity induced by climate change in the eastern Pamirs. Landslides 2023, 20, 1115–1133. [Google Scholar] [CrossRef]
- Huang, S.; Lyu, Y.; Sha, H.; Xiu, L. Seismic performance assessment of unsaturated soil slope in different groundwater levels. Landslides 2021, 18, 2813–2833. [Google Scholar] [CrossRef]
- Wang, W.; Li, D.Q.; Tang, X.S.; Du, W. Seismic fragility and demand hazard analyses for earth slopes incorporating soil property variability. Soil Dyn. Earthq. Eng. 2023, 173, 108088. [Google Scholar] [CrossRef]
- Xie, X.; Tian, Y.; Wei, G. Deduction of sudden rainstorm scenarios: Integrating decision makers’ emotions, dynamic Bayesian network and DS evidence theory. Nat. Hazards 2023, 116, 2935–2955. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide detection using deep learning and object-based image analysis. Landslides 2022, 19, 929–939. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z. Remote sensing of landslides—A review. Remote Sens. 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Casagli, N.; Cigna, F.; Bianchini, S.; Hölbling, D.; Füreder, P.; Righini, G.; Del Conte, S.; Friedl, B.; Schneiderbauer, S.; Iasio, C.; et al. Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sens. Appl. Soc. Environ. 2016, 4, 92–108. [Google Scholar]
- Mantovani, F.; Soeters, R.; Van Westen, C. Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 1996, 15, 213–225. [Google Scholar] [CrossRef]
- Baum, R.L.; Messerich, J.; Fleming, R.W. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii. Environ. Eng. Geosci. 1998, 4, 283–306. [Google Scholar] [CrossRef]
- Ge, X.; Zhao, Q.; Wang, B.; Chen, M. Lightweight landslide detection network for emergency scenarios. Remote Sens. 2023, 15, 1085. [Google Scholar] [CrossRef]
- Yu, B.; Wang, N.; Xu, C.; Chen, F.; Wang, L. A network for landslide detection using large-area remote sensing images with multiple spatial resolutions. Remote Sens. 2022, 14, 5759. [Google Scholar] [CrossRef]
- Yu, Z.; Chang, R.; Chen, Z. Automatic Detection Method for Loess Landslides Based on GEE and an Improved YOLOX Algorithm. Remote Sens. 2022, 14, 4599. [Google Scholar] [CrossRef]
- Hou, H.; Chen, M.; Tie, Y.; Li, W. A universal landslide detection method in optical remote sensing images based on improved YOLOX. Remote Sens. 2022, 14, 4939. [Google Scholar] [CrossRef]
- Saba, S.B.; Ali, M.; Turab, S.A.; Waseem, M.; Faisal, S. Comparison of pixel, sub-pixel and object-based image analysis techniques for co-seismic landslides detection in seismically active area in Lesser Himalaya, Pakistan. Nat. Hazards 2023, 115, 2383–2398. [Google Scholar] [CrossRef]
- Morales, B.; Garcia-Pedrero, A.; Lizama, E.; Lillo-Saavedra, M.; Gonzalo-Martín, C.; Chen, N.; Somos-Valenzuela, M. Patagonian andes landslides inventory: The deep learning’s way to their automatic detection. Remote Sens. 2022, 14, 4622. [Google Scholar] [CrossRef]
- Das, R.; Wegmann, K.W. Evaluation of machine learning-based algorithms for landslide detection across satellite sensors for the 2019 Cyclone Idai event, Chimanimani District, Zimbabwe. Landslides 2022, 19, 2965–2981. [Google Scholar] [CrossRef]
- Fu, R.; He, J.; Liu, G.; Li, W.; Mao, J.; He, M.; Lin, Y. Fast seismic landslide detection based on improved mask R-CNN. Remote Sens. 2022, 14, 3928. [Google Scholar] [CrossRef]
- Amankwah, S.O.Y.; Wang, G.; Gnyawali, K.; Hagan, D.F.T.; Sarfo, I.; Zhen, D.; Nooni, I.K.; Ullah, W.; Duan, Z. Landslide detection from bitemporal satellite imagery using attention-based deep neural networks. Landslides 2022, 19, 2459–2471. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, C. Efficient detection of earthquake-triggered landslides based on U-Net++: An example of the 2018 Hokkaido Eastern Iburi (Japan) Mw = 6.6 earthquake. Remote Sens. 2022, 14, 2826. [Google Scholar] [CrossRef]
- Alizadeh, M.; Ngah, I.; Hashim, M.; Pradhan, B.; Pour, A.B. A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sens. 2018, 10, 975. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, K.G.; Kyriou, A.; Koukouvelas, I.K. Developing a guideline of unmanned aerial vehicle’s acquisition geometry for landslide mapping and monitoring. Appl. Sci. 2022, 12, 4598. [Google Scholar] [CrossRef]
- Syzdykbayev, M.; Karimi, B.; Karimi, H.A. Persistent homology on LiDAR data to detect landslides. Remote Sens. Environ. 2020, 246, 111816. [Google Scholar] [CrossRef]
- Fang, C.; Fan, X.; Zhong, H.; Lombardo, L.; Tanyas, H.; Wang, X. A Novel historical landslide detection approach based on LiDAR and lightweight attention U-Net. Remote Sens. 2022, 14, 4357. [Google Scholar] [CrossRef]
- Azmoon, B.; Biniyaz, A.; Liu, Z. Use of high-resolution multi-temporal DEM data for landslide detection. Geosciences 2022, 12, 378. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L.; Dong, J.; Dong, X.; Li, M.; Xu, Q.; Liao, M. Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM. Eng. Geol. 2022, 305, 106730. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, C.; Dong, X.; Li, W.; Lu, H.; Fu, H.; Liu, X. Mapping and characterizing displacements of landslides with InSAR and airborne LiDAR technologies: A case study of danba county, southwest China. Remote Sens. 2021, 13, 4234. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F.; Maruyama, Y. Detection of earthquake-induced landslides during the 2018 Kumamoto earthquake using multitemporal airborne LiDAR data. Remote Sens. 2019, 11, 2292. [Google Scholar] [CrossRef] [Green Version]
- Mezaal, M.R.; Pradhan, B.; Rizeei, H.M. Improving landslide detection from airborne laser scanning data using optimized Dempster–Shafer. Remote Sens. 2018, 10, 1029. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Cao, Z.; Jiang, S.H.; Zhou, C.; Huang, J.; Guo, Z. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides 2020, 17, 2919–2930. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Calò, F.; Calcaterra, D.; Iodice, A.; Parise, M.; Ramondini, M. Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques. Int. J. Remote Sens. 2012, 33, 3512–3530. [Google Scholar] [CrossRef]
- Crosetto, M.; Gili, J.; Monserrat, O.; Cuevas-González, M.; Corominas, J.; Serral, D. Interferometric SAR monitoring of the Vallcebre landslide (Spain) using corner reflectors. Nat. Hazards Earth Syst. Sci. 2013, 13, 923–933. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Chen, X.; Yao, X.; Zhou, Z.; Liu, Y.; Yao, C.; Ren, K. DRs-UNet: A deep semantic segmentation network for the recognition of active landslides from InSAR imagery in the three rivers region of the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 1848. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Q.; Wang, T.; Li, W.; Xu, Q.; Ge, D. Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network. Front. Environ. Sci. 2022, 10, 963322. [Google Scholar] [CrossRef]
- Nava, L.; Monserrat, O.; Catani, F. Improving landslide detection on SAR data through deep learning. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar]
- Nava, L.; Bhuyan, K.; Meena, S.R.; Monserrat, O.; Catani, F. Rapid mapping of landslides on SAR data by attention U-Net. Remote Sens. 2022, 14, 1449. [Google Scholar] [CrossRef]
- Hussain, S.; Pan, B.; Afzal, Z.; Ali, M.; Zhang, X.; Shi, X. Landslide detection and inventory updating using the time-series InSAR approach along the Karakoram Highway, Northern Pakistan. Sci. Rep. 2023, 13, 7485. [Google Scholar] [CrossRef]
- Dai, C.; Li, W.; Wang, D.; Lu, H.; Xu, Q.; Jian, J. Active landslide detection based on Sentinel-1 data and InSAR technology in Zhouqu county, Gansu province, Northwest China. J. Earth Sci. 2021, 32, 1092–1103. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K. Landslide mapping using optical and radar data: A case study from Aminteo, Western Macedonia Greece. Eur. J. Remote Sens. 2020, 53, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Ganerød, A.J.; Lindsay, E.; Fredin, O.; Myrvoll, T.A.; Nordal, S.; Rød, J.K. Globally vs. Locally Trained Machine Learning Models for Landslide Detection: A Case Study of a Glacial Landscape. Remote Sens. 2023, 15, 895. [Google Scholar]
- Bhuyan, K.; Tanyaş, H.; Nava, L.; Puliero, S.; Meena, S.R.; Floris, M.; van Westen, C.; Catani, F. Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data. Sci. Rep. 2023, 13, 162. [Google Scholar] [PubMed]
- Jin, Y.; Li, X.; Zhu, S.; Tong, B.; Chen, F.; Cui, R.; Huang, J. Accurate landslide identification by multisource data fusion analysis with improved feature extraction backbone network. Geomat. Nat. Hazards Risk 2022, 13, 2313–2332. [Google Scholar]
- Ghorbanzadeh, O.; Xu, Y.; Ghamis, P.; Kopp, M.; Kreil, D. Landslide4Sense: Reference benchmark data and deep learning models for landslide detection. arXiv 2022, arXiv:2206.00515. [Google Scholar] [CrossRef]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 22–24 June 2022; pp. 10684–10695. [Google Scholar]
- Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-shot text-to-image generation. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2021; pp. 8821–8831. [Google Scholar]
- Wu, X.; Hong, D.; Chanussot, J. Convolutional neural networks for multimodal remote sensing data classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, X.; Clifton, D.A. Multimodal learning with transformers: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 1–20. [Google Scholar] [CrossRef]
- Jabeen, S.; Li, X.; Amin, M.S.; Bourahla, O.; Li, S.; Jabbar, A. A review on methods and applications in multimodal deep learning. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 19, 1–41. [Google Scholar]
- Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep learning in multimodal remote sensing data fusion: A comprehensive review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102926. [Google Scholar]
- Van Den Eeckhaut, M.; Kerle, N.; Poesen, J.; Hervás, J. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology 2012, 173, 30–42. [Google Scholar]
- Li, X.; Cheng, X.; Chen, W.; Chen, G.; Liu, S. Identification of forested landslides using LiDar data, object-based image analysis, and machine learning algorithms. Remote Sens. 2015, 7, 9705–9726. [Google Scholar] [CrossRef] [Green Version]
- Pawłuszek, K.; Marczak, S.; Borkowski, A.; Tarolli, P. Multi-aspect analysis of object-oriented landslide detection based on an extended set of LiDAR-derived terrain features. ISPRS Int. J. Geo-Inf. 2019, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M.; Koutalakis, P.; Diaconu, D.C.; Gkiatas, G.; Zaimes, G.N.; Tufekcioglu, M.; Marinescu, M. Identification of Streamside Landslides with the Use of Unmanned Aerial Vehicles (UAVs) in Greece, Romania, and Turkey. Remote Sens. 2023, 15, 1006. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Wang, Y.; Chen, G.; Liu, S. Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China. Remote Sens. Environ. 2014, 152, 291–301. [Google Scholar]
- Gorsevski, P.V.; Brown, M.K.; Panter, K.; Onasch, C.M.; Simic, A.; Snyder, J. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: A case study in the Cuyahoga Valley National Park, Ohio. Landslides 2016, 13, 467–484. [Google Scholar]
- Fan, X.; Scaringi, G.; Xu, Q.; Zhan, W.; Dai, L.; Li, Y.; Pei, X.; Yang, Q.; Huang, R. Coseismic landslides triggered by the 8th August 2017 M s 7.0 Jiuzhaigou earthquake (Sichuan, China): Factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides 2018, 15, 967–983. [Google Scholar]
- Tang, X.; Tu, Z.; Wang, Y.; Liu, M.; Li, D.; Fan, X. Automatic detection of coseismic landslides using a new transformer method. Remote Sens. 2022, 14, 2884. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–19 June 2019; pp. 5693–5703. [Google Scholar]
- Qi, W.; Wei, M.; Yang, W.; Xu, C.; Ma, C. Automatic mapping of landslides by the ResU-net. Remote Sens. 2020, 12, 2487. [Google Scholar]
- Yi, Y.; Zhang, W. A new deep-learning-based approach for earthquake-triggered landslide detection from single-temporal RapidEye satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6166–6176. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, Y.; Gao, P.; Chen, W.; Li, H.; Hou, Y.; Nuremanguli, T.; Ma, H. Landslide mapping with remote sensing: Challenges and opportunities. Int. J. Remote Sens. 2020, 41, 1555–1581. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
Model | Class | IoU | Precision | Recall | F1 |
---|---|---|---|---|---|
MLP | background | 0.909 | 0.944 | 0.936 | 0.939 |
landslide | 0.020 | 0.061 | 0.036 | 0.045 | |
ResUNet | background | 0.884 | 0.944 | 0.933 | 0.938 |
landslide | 0.035 | 0.063 | 0.075 | 0.068 | |
LandsNet | background | 0.943 | 0.945 | 0.978 | 0.962 |
landslide | 0.041 | 0.137 | 0.056 | 0.080 | |
HRNet | background | 0.922 | 0.952 | 0.967 | 0.959 |
landslide | 0.117 | 0.247 | 0.182 | 0.209 | |
SegFormer | background | 0.930 | 0.953 | 0.975 | 0.964 |
landslide | 0.124 | 0.314 | 0.189 | 0.236 |
Model | Class | IoU | Precision | Recall | F1 |
---|---|---|---|---|---|
MLP | background | 0.906 | 0.934 | 0.943 | 0.938 |
landslide | 0.122 | 0.160 | 0.133 | 0.145 | |
ResUNet | background | 0.932 | 0.963 | 0.963 | 0.964 |
landslide | 0.242 | 0.368 | 0.380 | 0.390 | |
LandsNet | background | 0.938 | 0.963 | 0.973 | 0.968 |
landslide | 0.259 | 0.405 | 0.376 | 0.423 | |
HRNet | background | 0.904 | 0.985 | 0.917 | 0.950 |
landslide | 0.320 | 0.455 | 0.468 | 0.461 | |
SegFormer | background | 0.934 | 0.974 | 0.958 | 0.966 |
landslide | 0.336 | 0.450 | 0.570 | 0.503 |
Model | Data Source | mIoU | Precision | Recall | Accuracy | F1 |
---|---|---|---|---|---|---|
MLP | Optical | 0.464 | 0.502 | 0.486 | 0.892 | 0.492 |
Hillshade | 0.514 | 0.547 | 0.538 | 0.916 | 0.541 | |
ResUNet | Optical | 0.460 | 0.503 | 0.504 | 0.885 | 0.503 |
Hillshade | 0.587 | 0.665 | 0.671 | 0.939 | 0.677 | |
LandsNet | Optical | 0.484 | 0.541 | 0.517 | 0.927 | 0.521 |
Hillshade | 0.598 | 0.684 | 0.674 | 0.938 | 0.695 | |
HRNet | Optical | 0.519 | 0.599 | 0.574 | 0.923 | 0.584 |
Hillshade | 0.612 | 0.720 | 0.692 | 0.929 | 0.705 | |
SegFormer | Optical | 0.527 | 0.634 | 0.582 | 0.931 | 0.600 |
Hillshade | 0.635 | 0.712 | 0.764 | 0.937 | 0.735 | |
SegFormer | Hillshade+DEM | 0.659 | 0.763 | 0.752 | 0.949 | 0.757 |
DemDet | Optical+Hillshade+DEM | 0.676 | 0.800 | 0.751 | 0.955 | 0.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Tang, X.; Tu, Z.; Fang, C.; Ju, Y. Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China. Remote Sens. 2023, 15, 3850. https://doi.org/10.3390/rs15153850
Li D, Tang X, Tu Z, Fang C, Ju Y. Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China. Remote Sensing. 2023; 15(15):3850. https://doi.org/10.3390/rs15153850
Chicago/Turabian StyleLi, Dongfen, Xiaochuan Tang, Zihan Tu, Chengyong Fang, and Yuanzhen Ju. 2023. "Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China" Remote Sensing 15, no. 15: 3850. https://doi.org/10.3390/rs15153850
APA StyleLi, D., Tang, X., Tu, Z., Fang, C., & Ju, Y. (2023). Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China. Remote Sensing, 15(15), 3850. https://doi.org/10.3390/rs15153850