Despeckling of SAR Images Using Residual Twin CNN and Multi-Resolution Attention Mechanism
<p>Architecture of the denoising convolutional neural network [<a href="#B14-remotesensing-15-03698" class="html-bibr">14</a>].</p> "> Figure 2
<p>SAR image despeckling assuming a multiplicative noise model [<a href="#B20-remotesensing-15-03698" class="html-bibr">20</a>].</p> "> Figure 3
<p>SAR-DRN for SAR image despeckling [<a href="#B20-remotesensing-15-03698" class="html-bibr">20</a>].</p> "> Figure 4
<p>Architecture of U-shaped CNN [<a href="#B22-remotesensing-15-03698" class="html-bibr">22</a>].</p> "> Figure 5
<p>Architecture of the Siamese-based Dilated Residual Convolutional Neural Network (SDRCNN).</p> "> Figure 6
<p>Geocoded SAR images of an urban area. (<b>a</b>) ALOS 2 image with a ground resolution of 4 m. (<b>b</b>) TerraSAR-X image with a ground resolution of 1 m.</p> "> Figure 7
<p>Structure of the Attention-Based Convolutional Neural Network (ABCNN).</p> "> Figure 8
<p>Structure of the DRA network used within the proposed network.</p> "> Figure 9
<p>Structure of the Attention Supervision Module (ASM).</p> "> Figure 10
<p>Multi-resolution attention mechanism (MAM). (<b>a</b>) Structure of the MAM. (<b>b</b>) Structure of the residual network within the MAM and structure of the ECA network.</p> "> Figure 11
<p>Synthetic SAR homogeneous images. (<b>a</b>) Original image. (<b>b</b>) Speckled image. (<b>c</b>) Image despeckled using the SDRCNN method. (<b>d</b>) Image despeckled using the ABCNN method. (<b>e</b>) Image despeckled using the SARBM3D method. (<b>f</b>) Image despeckled using the DCNN method. (<b>g</b>) Image despeckled using the OCNN method. (<b>h</b>) Image despeckled using the SAR-CAM method.</p> "> Figure 12
<p>Synthetic SAR square images. (<b>a</b>) Original image. (<b>b</b>) Speckled image. (<b>c</b>) Image despeckled using the SDRCNN method. (<b>d</b>) Image despeckled using the ABCNN method. (<b>e</b>) Image despeckled using the SARBM3D method. (<b>f</b>) Image despeckled using the DCNN method. (<b>g</b>) Image despeckled using the OCNN method. (<b>h</b>) Image despeckled using the SAR-CAM method.</p> "> Figure 13
<p>Synthetic SAR image depicting a building. (<b>a</b>) Original image. (<b>b</b>) Speckled image. (<b>c</b>) Image despeckled using the SDRCNN method. (<b>d</b>) Image despeckled using the ABCNN method. (<b>e</b>) Image despeckled using the SARBM3D method. (<b>f</b>) Image despeckled using the DCNN method. (<b>g</b>) Image despeckled using the OCNN method. (<b>h</b>) Image despeckled using the SAR-CAM method.</p> "> Figure 14
<p>Synthetic SAR image depicting a corner reflector. (<b>a</b>) Original image. (<b>b</b>) Speckled image. (<b>c</b>) Image despeckled using the SDRCNN method. (<b>d</b>) Image despeckled using the ABCNN method. (<b>e</b>) Image despeckled using the SARBM3D method. (<b>f</b>) Image despeckled using the DCNN method. (<b>g</b>) Image despeckled using the OCNN method. (<b>h</b>) Image despeckled using the SAR-CAM method.</p> "> Figure 15
<p>Synthetic SAR DEM image. (<b>a</b>) Original image. (<b>b</b>) Speckled image. (<b>c</b>) Image despeckled using the SDRCNN method. (<b>d</b>) Image despeckled using the ABCNN method. (<b>e</b>) Image despeckled using the SARBM3D method. (<b>f</b>) Image despeckled using the DCNN method. (<b>g</b>) Image despeckled using the OCNN method. (<b>h</b>) Image despeckled using the SAR-CAM method.</p> "> Figure 16
<p>Real SAR images. (<b>a</b>) Mosaic of SAR images, <math display="inline"><semantics><mrow><mn>800</mn><mo>×</mo><mn>800</mn></mrow></semantics></math> pixels in size. (<b>b</b>) Despeckled using the SDRCNN method. (<b>c</b>) Despeckled using the ABCNN method. (<b>d</b>) Despeckled using the SARBM3D method. (<b>e</b>) Despeckled using the DCNN method. (<b>f</b>) Image despeckled using the OCNN method. (<b>g</b>) Image despeckled using the SAR-CAM method.</p> "> Figure 17
<p>Ratio images between the original SAR image shown in <a href="#remotesensing-15-03698-f016" class="html-fig">Figure 16</a>a and the despeckled images. (<b>a</b>) Original SAR image compared to the despeckled image using the SDRCNN method shown in <a href="#remotesensing-15-03698-f016" class="html-fig">Figure 16</a>b. (<b>b</b>) Original SAR image compared to the despeckled image using the ABCNN method shown in <a href="#remotesensing-15-03698-f016" class="html-fig">Figure 16</a>c. (<b>c</b>) Original SAR image compared to the despeckled image using the SARBM3D method shown in <a href="#remotesensing-15-03698-f016" class="html-fig">Figure 16</a>d. (<b>d</b>) Original SAR image compared to the despeckled image using the DCNN method shown in <a href="#remotesensing-15-03698-f016" class="html-fig">Figure 16</a>e. (<b>e</b>) Original SAR image compared to the despeckled image using the OCNN method shown in <a href="#remotesensing-15-03698-f016" class="html-fig">Figure 16</a>f. (<b>f</b>) Original SAR image compared to the despeckled image using the SAR-CAM method shown in <a href="#remotesensing-15-03698-f016" class="html-fig">Figure 16</a>g.</p> "> Figure 18
<p>Real SAR image. (<b>a</b>) Original SAR image ©DLR 2012 (<math display="inline"><semantics><mrow><mn>1024</mn><mo>×</mo><mn>1024</mn></mrow></semantics></math> pixels). (<b>b</b>) Despeckled using the SDRCNN method. (<b>c</b>) Despeckled using the ABCNN method. (<b>d</b>) Despeckled using the SARBM3D method. (<b>e</b>) Despeckled using the DCNN method. (<b>f</b>) Image despeckled using the OCNN method. (<b>g</b>) Image despeckled using the SAR-CAM method.</p> "> Figure 19
<p>Ratio images between original the SAR image shown in <a href="#remotesensing-15-03698-f018" class="html-fig">Figure 18</a>a and the despeckled images. (<b>a</b>) Original SAR image compared to the despeckled image using the SDRCNN method shown in <a href="#remotesensing-15-03698-f018" class="html-fig">Figure 18</a>b. (<b>b</b>) Original SAR image compared to the despeckled image using the ABCNN method shown in <a href="#remotesensing-15-03698-f018" class="html-fig">Figure 18</a>c. (<b>c</b>) Original SAR image compared to the despeckled image using the SARBM3D method shown in <a href="#remotesensing-15-03698-f018" class="html-fig">Figure 18</a>d. (<b>d</b>) Original SAR image compared to the despeckled image using the DCNN method shown in <a href="#remotesensing-15-03698-f018" class="html-fig">Figure 18</a>e. (<b>e</b>) Original SAR image compared to the despeckled image using the OCNN method shown in <a href="#remotesensing-15-03698-f018" class="html-fig">Figure 18</a>f. (<b>f</b>) Original SAR image compared to the despeckled image using the SAR-CAM method shown in <a href="#remotesensing-15-03698-f018" class="html-fig">Figure 18</a>g.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Gaussian Denoiser
2.2. SAR Dilated Residual Network
Dilated Filter
2.3. U-Shaped Denoising Network
3. The Proposed Deep Despeckling Architecture
3.1. The Proposed Architecture of the Siamese-Based Dilated Deep CNN
3.1.1. Loss Function
3.1.2. Training the Designed CNN
3.2. The Proposed Architecture of the Dilated Deep CNN with an Attention Mechanism
Loss Function
4. Experimental Results
4.1. Experimental Settings for the SNN Method
4.2. Synthetic Example
4.2.1. Homogeneous Area
4.2.2. Square Image
4.2.3. Building
4.2.4. Corner Reflector
4.3. DEM
4.4. Real SAR Images
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
MAP | Maximum a Posteriori |
Probability Density Function | |
DWT | Discrete Wavelet Transform |
SARBM3D | SAR block-matching three-dimensional |
CNN | Convolutional Neural Network |
AWGN | Additive White Gaussian Noise |
ReLU | Rectifier Linear Unit |
DCNN | Denoising Convolutional Neural Network |
BN | Batch Normalization |
ID-CNN | Image Despeckling Convolutional Neural Network |
SAR-DRN | SAR Dilated Residual Network |
TV | Total Variation |
SNN | Siamese Neural Network |
EL | Euclidean loss |
DRN | Dilated Residual Network |
ASN | Attention Supervision Network |
MAM | Multi-resolution Attention Mechanism |
ECA | Efficient Channel Attention |
SDRCNN | Siamese-based Dilated Residual Convolutional Neural Network |
ABCNN | Attention-Based CNN |
DEM | Digital Elevation Model |
VoR | variance of ratio |
MoR | mean of ratio |
DG | despeckling gain |
ENL | equivalent number of looks |
ES | Edge Smearing |
FOM | Figure of Merit |
BS | Building Smearing |
OCNN | overcomplete convolutional neural network |
SAR-CAM | SAR image despeckling using a continuous attention module |
References
- Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef] [Green Version]
- Lee, J. Digital image enhancement and noise filtering by using local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Kuan, D.T.; Sawchuk, A.A.; Strnad, T.C.; Chavel, P. Adaptive noise smoothing filter for Images with Signal dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 1985, 7, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Frost, V.; Stiles, J.; Shanmugan, K.; Holtzman, J. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Wen, J.H.; Ainsworth, T.; Chen, K.S.; Chen, A. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar]
- Molina, D.E.; Gleich, D.; Datcu, M. Evaluation of Bayesian Despeckling and Texture Extraction Methods Based on Gauss Markov and Auto-Binomial Gibbs Random Fields: Application to TerraSAR-X Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2001–2025. [Google Scholar] [CrossRef]
- Argenti, F.; Bianchi, T.; Lapini, A.; Alparone, L. Fast MAP Despeckling Based on Laplacian Gaussian Modeling of Wavelet Coefficients. IEEE Geosci. Remote Sens. Lett. 2012, 50, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F. Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights. IEEE Trans. Image Process. 2009, 18, 2661–2672. [Google Scholar] [CrossRef] [Green Version]
- Martino, G.D.; Simone, A.D.; Iodice, A.; Poggi, G.; Riccio, D.; Verdoliva, L. Scattering-Based SARBM3D. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2131–2144. [Google Scholar] [CrossRef]
- Martino, G.D.; Poderico, M.; Poggi, G.; Riccio, D.; Verdoliva, L. Benchmarking Framework for SAR Despeckling. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1596–1615. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Diao, W.; Sun, X.; Zheng, X.; Dou, F.; Wang, H.; Fu, K. Efficient Saliency-Based Object Detection in Remote Sensing Images Using Deep Belief Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 137–141. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2016, arXiv:1512.03385. [Google Scholar]
- Ioffe, S.; Szegedy, C.B.N. Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2016, arXiv:1502.03167. [Google Scholar]
- Chierchia, G.; Cozzolino, D.; Poggi, G.; Verdoliva, L. SAR image despeckling through convolutional neural networks. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5438–5441. [Google Scholar]
- Wang, P.; Zhang, H.; Patel, V. SAR Image Despeckling Using a Convolutional Neural Network. arXiv 2017, arXiv:1706.00552v2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yang, Z.; Yuan, Q.; Li, J.; Ma, X.; Shen, H.; Zhang, L. Learning a Dilated Residual Network for SAR Image Despeckling. arXiv 2017, arXiv:1709.02898. [Google Scholar] [CrossRef] [Green Version]
- Lattari, F.; Leon, B.G.; Asaro, F.; Rucci, A.; Prati, C.; Matteucci, M. Deep Learning for SAR Image Despeckling. Remote Sens. 2019, 11, 1532. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Verdoliva, L.; Scarpa, G.; Poggi, G. Nonlocal CNN SAR Image Despeckling. Remote Sens. 2020, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Kang, H.; Wang, Q.; Tian, Y.; Wan, B. Contourlet-CNN for SAR Image Despeckling. Remote Sens. 2021, 13, 764. [Google Scholar] [CrossRef]
- Mullissa, A.G.; Persello, C.; Reiche, J. Despeckling Polarimetric SAR Data Using a Multi-Stream Complex-Valued Fully Convolutional Network. arXiv 2021, arXiv:2103.07394. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6450–6458. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-Order Attention Network for Single Image Super-Resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11057–11066. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Xiao, Y.; Bai, Y. HDRANet: Hybrid Dilated Residual Attention Network for SAR Image Despeckling. Remote Sens. 2019, 11, 2921. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lai, R.; Guan, J. Spatial and Transform Domain CNN for SAR Image Despeckling. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4002005. [Google Scholar] [CrossRef]
- Liu, S.; Lei, Y.; Zhang, L.; Li, B.; Hu, W.; Zhang, Y.D. MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR Image Denoising. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5214213. [Google Scholar] [CrossRef]
- Shen, H.; Zhou, C.; Li, J.; Yuan, Q. SAR Image Despeckling Employing a Recursive Deep CNN Prior. IEEE Trans. Geosci. Remote Sens. 2021, 59, 273–286. [Google Scholar] [CrossRef]
- Wu, W.; Huang, X.; Shao, Z.; Teng, J.; Li, D. SAR-DRDNet: A SAR image despeckling network with detail recovery. Neurocomputing 2022, 493, 253–267. [Google Scholar] [CrossRef]
- Singh, P.; Shankar, A.; Diwakar, M. MSPB: Intelligent SAR despeckling using wavelet thresholding and bilateral filter for big visual radar data restoration and provisioning quality of experience in real-time remote sensing. In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1573–2975. [Google Scholar]
- Perera, M.V.; Nair, N.G.; Bandara, W.G.C.; Patel, V.M. SAR Despeckling Using a Denoising Diffusion Probabilistic Model. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4005305. [Google Scholar] [CrossRef]
- Perera, M.V.; Bandara, W.G.C.; Valanarasu, J.M.J.; Patel, V.M. SAR Despeckling Using Overcomplete Convolutional Networks. arXiv 2022, arXiv:2205.15906. [Google Scholar]
- Perera, M.V.; Bandara, W.G.C.; Valanarasu, J.M.J.; Patel, V.M. Transformer-based SAR Image Despeckling. arXiv 2022, arXiv:2201.09355. [Google Scholar]
- Ko, J.; Lee, S. SAR Image Despeckling Using Continuous Attention Module. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3–19. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Tang, C.; Fu, Y.; Wu, Y.; Jiang, Y.; Zhao, Y. Self-calibrated dilated convolutional neural networks for SAR image despeckling. Int. J. Remote Sens. 2022, 43, 6483–6508. [Google Scholar] [CrossRef]
- Wang, C.; Yin, Z.; Ma, X.; Yang, Z. SAR Image Despeckling Based on Block-Matching and Noise-Referenced Deep Learning Method. Remote Sens. 2022, 14, 931. [Google Scholar] [CrossRef]
- Goodman, J. Some fundamental properties of speckle. J. Opt. Soc. Am. 1976, 66, 1145–1150. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Bromley, J.; Guyon, I.; Lecun, Y.; Säckinger, E.; Shah, R. Signature verification using a siamese time delay neural network. Int. J. Pattern Recognit. Artif. Intell. 1993, 7, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wu, B.; Zhu, P.F.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration With Neural Networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
Method | MoI | MoR | VoR | ENL | DG |
---|---|---|---|---|---|
clean | 1.00 | 0.998 | 0.987 | 436.97 | - |
noisy | 0.9980 | - | - | 1 | 0 |
SDRCNN | 0.998 | 0.998 | 0.928 | 271 | 23.3 |
ABCNN | 0.998 | 0.998 | 0.928 | 273 | 23.2 |
SARBM3D | 0.998 | 0.997 | 0.912 | 150 | 21.65 |
DCNN | 0.998 | 0.998 | 0.923 | 247 | 22.5 |
OCNN | 1.12 | 0.893 | 0.788 | 541 | 14.4 |
SAR-CAM | 0.78 | 1.27 | 1.362 | 194 | 12.6 |
Method | ES (Up) | ES (Down) | FOM |
---|---|---|---|
clean | - | - | 0.993 |
noisy | 0.01 | 0.029 | - |
SDRCNN | 0.071 | 0.21 | 0.888 |
ABCNN | 0.071 | 0.21 | 0.885 |
SARBM3D | 0.036 | 0.113 | 0.847 |
DCNN | 0.070 | 0.21 | 0.881 |
OCNN | 0.024 | 0.18 | 0.099 |
SAR-CAM | 0.016 | 0.13 | 0.098 |
Method | BS | |
---|---|---|
clean | 127.96 | - |
SDRCNN | 66.05 | 0.22 |
ABCNN | 66.04 | 0.23 |
SARBM3D | 65.91 | 1.46 |
DCNN | 65.99 | 0.26 |
OCNN | 55.83 | 0.31 |
SAR-CAM | 51.69 | 0.33 |
Method | ||
---|---|---|
clean | 7.75 | 36.56 |
noisy | 7.77 | 36.50 |
SDRCNN | 7.48 | 35.98 |
ABCNN | 7.47 | 35.81 |
SARBM3D | 7.39 | 35.46 |
DCNN | 7.41 | 35.98 |
OCNN | 3.21 | 18.27 |
SAR-CAM | 4.23 | 14.56 |
Method | MoI | MoR | VoR | DG | |
---|---|---|---|---|---|
clean | 1.0 | 1.001 | 0.999 | 2.40 | - |
noisy | 1.003 | - | - | 3.54 | 0 |
SDRCNN | 0.999 | 0.973 | 0.91 | 2.73 | 6.68 |
ABCNN | 0.999 | 0.973 | 0.90 | 2.72 | 6.68 |
SARBM3D | 0.968 | 0.933 | 0.756 | 2.42 | 5.46 |
DCNN | 0.999 | 0.971 | 0.90 | 2.70 | 6.61 |
OCNN | 1.26 | 0.885 | 0.763 | 1.02 | 3.51 |
SAR-CAM | 0.89 | 0.817 | 0.835 | 0.97 | 4.65 |
Method | MoI | MoR | VoR | ENL | |
---|---|---|---|---|---|
Original image | 182.9 | - | - | - | 1.93 |
SDRCNN | 182.9 | 0.99 | 3.13 | 488.2 | 1.92 |
ABCNN | 182.9 | 0.99 | 3.05 | 489.2 | 1.92 |
SARBM3D | 186.7 | 1.01 | 3.72 | 468.7 | 1.26 |
DCNN | 182.9 | 0.99 | 3.02 | 476.1 | 1.91 |
OCNN | 153.6 | 0.83 | 0.46 | 588.2 | 0.707 |
SAR-CAM | 159.5 | 0.99 | 0.54 | 520.1 | 0.7059 |
Method | MoI | MoR | VoR | ENL | |
---|---|---|---|---|---|
Original image | 32.62 | - | - | - | - |
SDRCNN | 32.46 | 1.001 | 1.36 | 318.1 | - |
ABCNN | 32.45 | 1.001 | 1.35 | 319.8 | - |
SARBM3D | 36.69 | 0.86 | 1.75 | 336.8 | - |
DCNN | 32.50 | 0.99 | 1.37 | 322.2 | - |
OCNN | 46.6 | 0.85 | 0.28 | 423.1 | - |
SAR-CAM | 25.8 | 1.18 | 0.46 | 488.3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pongrac, B.; Gleich, D. Despeckling of SAR Images Using Residual Twin CNN and Multi-Resolution Attention Mechanism. Remote Sens. 2023, 15, 3698. https://doi.org/10.3390/rs15143698
Pongrac B, Gleich D. Despeckling of SAR Images Using Residual Twin CNN and Multi-Resolution Attention Mechanism. Remote Sensing. 2023; 15(14):3698. https://doi.org/10.3390/rs15143698
Chicago/Turabian StylePongrac, Blaž, and Dušan Gleich. 2023. "Despeckling of SAR Images Using Residual Twin CNN and Multi-Resolution Attention Mechanism" Remote Sensing 15, no. 14: 3698. https://doi.org/10.3390/rs15143698
APA StylePongrac, B., & Gleich, D. (2023). Despeckling of SAR Images Using Residual Twin CNN and Multi-Resolution Attention Mechanism. Remote Sensing, 15(14), 3698. https://doi.org/10.3390/rs15143698