The Gravity Wave Activity during Two Recent QBO Disruptions Revealed by U.S. High-Resolution Radiosonde Data
<p>(<b>a</b>) Temporal evolution of monthly zonal wind over Ponape Island station (6.97°N, 158.22°E). Panel (<b>b</b>) denotes the daily time series of the averaged zonal wind from 21 km to 23 km over Ponape Island station (6.97°N, 158.22°E) in 2015/2016 (black line) and 2019/2020 (red line). The solid and dotted contours denote the eastward and westward winds, respectively, with a contour interval of 5 m/s in (<b>a</b>). The thick contours represent zero zonal wind. The blanks denote no observational data. The horizontal dashed line in panel (<b>b</b>) denotes the speed of 0 m/s. The black and red lines denote the QBO index for 2015/2016 and 2019/2020, respectively. Boxes indicate SI, SII, and SIII stages in panels (<b>a</b>,<b>b</b>).</p> "> Figure 2
<p>Altitude and temporal variations in monthly mean gravity wave (<b>a</b>) kinetic energy density (in J/kg), (<b>b</b>) potential energy density (in J/kg), and (<b>c</b>) total energy density (in J/kg) over Ponape Island (6.97°N, 158.22°E). The monthly mean zonal wind is overplotted in black contours with a contour interval of 5 m/s. The solid and dashed contours denote the westward and eastward zonal winds, respectively. The thick contours represent zero zonal wind. The blanks represent no observational data. Boxes indicate SI, SII, and SIII stages in panels (<b>a</b>–<b>c</b>).</p> "> Figure 3
<p>Temporal evolution of gravity wave (<b>a</b>) kinetic energy density anomaly, (<b>b</b>) potential energy density anomaly, and (<b>c</b>) total energy density anomaly. Color shading denotes the GWs energy density anomalies with respect to the monthly climatology (the unit is J/kg). The monthly mean zonal wind is overlaid in black contours with a contour interval of 5 m/s. The solid and dashed black contours denote the eastward and westward zonal wind, respectively. The thick contours represent zero zonal wind. The blanks indicate no observational data. Boxes indicate SI, SII, and SIII stages in panels (<b>a</b>–<b>c</b>).</p> "> Figure 4
<p>The time series of the QBO index and stratospheric <span class="html-italic">E<sub>t</sub></span> anomaly over Ponape Island station (6.97°N, 158.22°E) in (<b>a</b>) 2015/2016 and (<b>b</b>) 2019/2020. The red lines denote the QBO index. The black lines indicate the stratospheric <span class="html-italic">E<sub>t</sub></span> anomaly. The horizontal lines represent wind speed, which is 0 m/s (red line), and energy density anomaly, which is 0 J/kg (black lines). Boxes indicate SI, SII, and SIII stages.</p> "> Figure 5
<p>Panels (<b>a</b>,<b>d</b>,<b>g</b>) display the scatterplots between tropospheric jet anomaly and the stratospheric GW total energy density anomaly in SI, SII, and SIII stages in the 2015/2016 event, respectively. Panels (<b>b</b>,<b>e</b>,<b>h</b>) are similar to the panels (<b>a</b>,<b>d</b>,<b>g</b>) but instead display the scatterplots between stratospheric vertical shear anomaly and stratospheric GW total energy density anomaly in SI, SII, and SIII stages in 2015/2016, respectively. Panels (<b>c</b>,<b>f</b>,<b>i</b>) are similar to above panels but instead display the scatterplots between detrended OLR and stratospheric GW total energy density anomaly in SI, SII, and SIII in the 2015/2016 event, respectively. The lines denote the fit lines. The correlation coefficients between each factor and the stratospheric GW total energy density anomaly are displayed in the upper right corner of each panel. The double asterisk (“**”) denotes a significant level larger than 95%.</p> "> Figure 6
<p>Panels (<b>a</b>,<b>d</b>,<b>g</b>) display the scatterplots between tropospheric jet anomaly and the stratospheric GW total energy density anomaly in SI, SII, and SIII stages in the 2019/2020 event, respectively. Panels (<b>b</b>,<b>e</b>,<b>h</b>) are similar to panels (<b>a</b>,<b>d</b>,<b>g</b>) but instead display the scatterplots between stratospheric vertical shear anomaly and stratospheric GW total energy density anomaly in SI, SII, and SIII stages in 2019/2020, respectively. Panels (<b>c</b>,<b>f</b>,<b>i</b>) are similar to above panels but instead display the scatterplots between detrended OLR and stratospheric GW total energy density anomaly in SI, SII, and SIII in the 2019/2020 event, respectively. The lines denote the fit line. The correlation coefficients between each factor and the stratospheric GW total energy density anomaly are displayed in the upper right corner of each panel. The double asterisk (“**”) denotes a significant level larger than 95%.</p> "> Figure 7
<p>The standardized coefficients of the tropospheric jet (blue bars), stratospheric vertical shear (black bars), and tropospheric convection (red bars) during the (<b>a</b>) 2015/2016 SI stage, (<b>b</b>) 2015/2016 SII stage, (<b>c</b>) 2019/2020 SI stage, and (<b>d</b>) 2019/2020 SII stage.</p> "> Figure 8
<p>The variable importance in projection of the tropospheric jet (blue bars), stratospheric vertical shear (black bars), and tropospheric convection (red bars) during the (<b>a</b>) 2015/2016 SI stage, (<b>b</b>) 2015/2016 SII stage, (<b>c</b>) 2019/2020 SI stage, and (<b>d</b>) 2019/2020 SII stage.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. The Abroad Spectrum Method
3. Results
3.1. The Definition of Different Stages for the unQBO Events
3.2. The Behavior of Stratospheric Gravity Waves during the unQBO Events
3.3. Possible Sources of the Enhanced Gravity Waves during the unQBO Events
3.3.1. The Tropospheric Convection
3.3.2. The Atmospheric Jet and Vertical Shear
3.4. Contributions of Individual Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T.; Jones, D.B.A.; et al. The Quasi-Biennial Oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Holton, J.R. A theory of the quasi-biennial oscillation. J. Atmos. Sci. 1968, 25, 1095–1107. [Google Scholar] [CrossRef]
- Holton, J.R.; Lindzen, R.S. An update theory for the Quasi-Biennial cycle of the Tropical Stratosphere. J. Atmos. Sci. 1972, 29, 1076–1080. [Google Scholar] [CrossRef]
- Kawatani, Y.; Hamilton, K. Weakened stratospheric quasi-biennial oscillation driven by increased tropical mean upwelling. Nature 2013, 497, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Reed, R.J.; Cambell, W.J.; Rasmussen, L.A.; Rogers, D.G. Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res. 1961, 66, 813–818. [Google Scholar] [CrossRef]
- Ebdon, R.A. Notes on the wind flow at 50mb in tropical and subtropical regions in January 1957 and January 1958. Q. J. R. Meteorol. Soc. 1960, 86, 540–542. [Google Scholar] [CrossRef]
- Gray, L.J.; Crooks, S.; Pascoe, C.; Sparrow, S.; Palmer, M. Solar and QBO Influence on the Timing of Stratospheric Sudden Warmings. J. Atmos. Sci. 2004, 61, 2777–2796. [Google Scholar] [CrossRef]
- Yoo, C.; Son, S.W. Modulation of the boreal winter-time Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett. 2016, 43, 1392–1398. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Austin, J. The influence of the Equatorial QBO on Sudden Stratospheric Warmings. J. Atmos. Sci. 1991, 48, 607–618. [Google Scholar] [CrossRef]
- Holton, J.R.; Tan, H.-C. The influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb. J. Atmos. Sci. 1980, 37, 2200–2208. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, F.; Ma, Z.; Zhang, C.; Xu, M.; Wang, T.; Zhang, R. Seasonal evolution of the quasi-biennial oscillation impact on the Northern Hemisphere polar vortex in winter. J. Geophys. Res. Atmos. 2019, 124, 12568–12586. [Google Scholar] [CrossRef]
- Dunkerton, T. The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res. 1997, 102, 26053–26076. [Google Scholar] [CrossRef]
- Kawatani, Y.; Sato, K.; Dunkerton, S.; Watanabe, S.; Miyahara, S.; Takahashi, M. The roles of equatorial trapped waves and internal gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci. 2010, 67, 963–980. [Google Scholar] [CrossRef] [Green Version]
- Kawatani, Y.S.; Watanabe, S.; Sato, K.; Dunkerton, T.J.; Miyahara, S.; Takahashi, M. The roles of equatorial trapped waves and internal inertial-gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing. J. Atmos. Sci. 2010, 67, 981–997. [Google Scholar] [CrossRef] [Green Version]
- Newman, P.A.; Coy, L.; Pawson, S.; Lait, L.R. The anomalous changes in the QBO in 2015-2016. Geophys. Res. Lett. 2016, 43, 8791–8797. [Google Scholar] [CrossRef]
- Osprey, S.M.; Butchart, N.; Knight, J.R.; Scaife, A.A.; Hamilton, K.; Anstey, J.A.; Zhang, C. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 2016, 4156, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Kedzierski, R.P.; Matthes, K. On the forcings of the unusual Quasi-Biennial Oscillation structure in February 2016. Atmos. Chem. Phys. 2020, 20, 6541–6561. [Google Scholar] [CrossRef]
- Naujokat, B. An Update of the Observed Quasi-Biennial Oscillation of the Stratospheric Winds over the Tropics. J. Atmos. Sci. 1986, 43, 1873–1877. [Google Scholar] [CrossRef]
- Dunderton, T.J. The quasi-biennial oscillation of 2015-2016: Hiccup or death spiral? Geophys. Res. Lett. 2016, 43, 10547–10552. [Google Scholar]
- Coy, L.; Newman, P.A.; Pawson, S.; Lait, L.R. Dynamics of the disrupted 2015/2016 quasi-biennial oscillation. J. Clim. 2017, 30, 5661–5674. [Google Scholar] [CrossRef]
- Tweedy, O.V.; Kramarova, N.A.; Strahan, S.E.; Newman, P.A.; Coy, L.; Randel, W.J.; Park, M.; Raugh, D.W.; Frith, S.M. Response of trace gases to the disrupted 2015-2016 quasi-biennial oscillation. Atmos. Chem. Phys. 2017, 17, 6813–6823. [Google Scholar] [CrossRef]
- Matthias, V.; Ern, M. On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016. Atmos. Chem. Phys. 2018, 18, 4803–4815. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Held, I.; Ming, Y. The Early Development of the 2015/16 Quasi-Biennial Disruption. J. Atmos. Sci. 2019, 76, 821–836. [Google Scholar] [CrossRef]
- Barton, C.A.; McCormack, J.P. Origin of the 2016 QBO Disruption and Its Relationship to Extreme El Nino Events. Geophys. Res. Lett. 2017, 44, 11150–11157. [Google Scholar] [CrossRef]
- Kumar, K.K.; Mathew, S.S.; Subrahmanyam, K.V. Anomalous tropical planetary wave activity during 2015/2016 quasi biennial oscillation disruption. J. Atmos. Sci. 2018, 167, 184–189. [Google Scholar] [CrossRef]
- Hirota, N.; Shiogama, H.; Akiyoshi, H.; Ogura, T.; Takahashi, M.; Kawatani, Y.; Kimoto, M.; Mori, M. The influence of El Nino and Arctic sea-ice on the QBO disruption in February 2016. NPJ Clim. Atmos. Sci. 2018, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Lindzen, R.S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 1981, 86, 9707–9714. [Google Scholar] [CrossRef] [Green Version]
- Fritts, D.C.; Rastogi, P.K. Convective and dynamical instabilities due to gravity wave motion in the lower and middle atmosphere: Theory and observations. Radio Sci. 1985, 20, 1247–1277. [Google Scholar] [CrossRef]
- Alexander, M.J.; Pfister, L. Gravity wave momentum flux in the lower stratosphere over convection. Geophys. Res. Lett. 1995, 22, 2029–2032. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.J. Interpretations of observed climatological patterns in stratospheric gravity wave variance. J. Geophys. Res. 1998, 103, 8627–8640. [Google Scholar] [CrossRef]
- Zhang, S.D.; Yi, F. Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China. J. Geophys. Res. 2007, 112, D05109. [Google Scholar] [CrossRef]
- Zhang, S.D.; Yi, F.; Huang, C.M.; Chen, Z.Y. Intensive radiosonde observations of gravity waves in the lower atmosphere over Yichang (111°18’E, 30°42’N), China. Ann. Geophys. 2008, 26, 2005–2018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.D.; Yi, F.; Huang, C.M.; Huang, K.M. High vertical resolution analyses of gravity waves and turbulence at a midlatitude station. J. Geophys. Res. 2012, 117, D02013. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, S.D.; Huang, C.M.; Huang, K.M.; Gong, Y. The tropopause Inversion Layer Interaction with Inertial Gravity Wave Activities and Its Latitudinal Variability. J. Geophys. Res. Atmos. 2019, 124, 7512–7522. [Google Scholar] [CrossRef]
- Scaife, A.A.; Butchart, N.; Warner, C.D.; Stainforth, D.; Norton, W. Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett. 2000, 27, 3481–3484. [Google Scholar] [CrossRef]
- Giogetta, M.A.; Manzini, E.; Roeckner, E. Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett. 2002, 29, 861–864. [Google Scholar] [CrossRef] [Green Version]
- Ern, M.; Preusse, P. Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra. Atmos. Chem. Phys. 2009, 9, 3957–3986. [Google Scholar] [CrossRef] [Green Version]
- Ern, M.; Preusse, P. Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett. 2009, 36, L21801. [Google Scholar] [CrossRef] [Green Version]
- Orr, A.; Bechtold, P.; Scinocca, J.F.; Ern, M.; Janiskova, M. Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Clim. 2010, 23, 5905–5926. [Google Scholar] [CrossRef] [Green Version]
- Evan, S.; Alexander, M.J.; Dudhia, J. WRF simulations of convectively generated gravity waves in opposite QBO phases. J. Geophys. Res. 2012, 117, D12117. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.H.; Liu, H.L.; Dou, X.K. Parameterization of the inertial gravity waves and generation of the quasi-biennial oscillation. J. Geophys. Res. 2013, 117, D06103. [Google Scholar] [CrossRef]
- Ern, M.; Ploeger, F.; Preusse, P.; Gille, J.C.; Gray, L.J.; Kalisch, S.; Mlynczak, M.G.; Russell III, J.M.; Riese, M. Interaction of gravity wave with QBO: A satellite perspective. J. Geophys. Res. Atmos. 2014, 119, 2329–2355. [Google Scholar] [CrossRef]
- Ji, Q.; Zhu, X.; Sheng, Z.; Tian, T. Spectral Analysis of Gravity Waves in the Martian Thermosphere during Low Solar Activity Based on MAVEN/NGIMS Observations. Astrophys. J. 2022, 938, 97. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, Q.; Sheng, Z.; He, M.; He, Y.; Zuo, X.; He, Z.; Qin, Z.; Wu, G. Observation based climatology Martian atmospheric waves perturbation Datasets. Sci. Data 2023, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhu, X.; Sheng, Z.; He, M.; Feng, Y. Observations of inertia gravity waves in the western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption. J. Geophys. Res. Atmos. 2022, 127, e2022JD037208. [Google Scholar] [CrossRef]
- Anstey, J.A.; Banyard, T.P.; Butchart, N.; Coy, L.; Newman, P.A.; Osprey, S.; Wright, C.J. Prospect of increased disruption to the QBO in a changing climate. Geophys. Res. Lett. 2021, 48, e2021GL093058. [Google Scholar] [CrossRef]
- Kang, M.; Chun, H.-Y.; Garcia, R.R. Role of equatorial waves and convective gravity waves in the 2015/2016 quasi-biennial oscillation disruption. Atmos. Chem. Phys. 2020, 20, 14669–14693. [Google Scholar] [CrossRef]
- Kang, M.-J.; Chun, H. Contributions of equatorial waves and small-scale convective gravity waves to the 2019/2020 quasi-biennial oscillation (QBO) disruption. Atmos. Chem. Phys. 2021, 21, 9839–9857. [Google Scholar] [CrossRef]
- Geller, M.A.; Alexander, M.J.; Love, P.T.; Bacmeister, J.; Ern, M.; Hertzog, A.; Manzini, E.; Preusse, P.; Sato, K.; Scaife, A.A.; et al. A comparison between gravity wave momentum fluxes in observations and climate models. J. Clim. 2013, 26, 6383–6405. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.J. Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures. Geophys. Res. Lett. 2015, 42, 6860–6867. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.H.; Solomon, A.; Bacmeister, J.T. On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5. J. Geophys. Res. Atmos. 2014, 119, 3045–3062. [Google Scholar] [CrossRef]
- Bushell, A.C.; Buchart, N.; Derbyshire, S.H.; Jackson, D.R.; Shutts, G.J.; Vosper, S.B.; Webster, S. Parameterized gravity wave momentum fluxes sources related to convection and large-scale precipitation processes in a global atmosphere model. J. Atomos. Sci. 2015, 72, 4349–4371. [Google Scholar] [CrossRef]
- Schirber, S. Influence of ENSO on the QBO: Results from an ensemble of idealized simulations. J. Geophys. Res. 2015, 120, 1109–1122. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, T.; Murayama, Y.; Wiryosumarto, H.; Harijono, S.W.B.; Kato, S. Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 2. Characteristics of gravity waves. J. Geophys. Res. 1994, 99, 10506–10516. [Google Scholar] [CrossRef]
- Vicent, R.A.; Alexander, M.J. Gravity waves in the tropical lower stratosphere: An observational study of seasonal and inter-annual variability. J. Geophys. Res. 2000, 105, 17971–17982. [Google Scholar] [CrossRef]
- Yoshiki, M.; Sato, K. A statistical study of gravity waves in the polar regions based on operational radiosonde data. J. Geophys. Res. 2000, 105, 17995–18011. [Google Scholar] [CrossRef]
- Zink, F.; Vincent, R.A. Wavelet analysis of stratospheric gravity wave packets over Macquarie Island, 1. Wave parameters. J. Geophys. Res. 2001, 106, 10275–10288. [Google Scholar] [CrossRef] [Green Version]
- Zink, F.; Vicent, R.A. Wavelet analysis of stratospheric gravity wave packets over Macquarie Island, 2. Intermittency and Meanflow accelerations. J. Geophys. Res. 2000, 106, 10289–10297. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Geller, M.A.; Alexander, M.J. Spatial and temporal variations of gravity wave parameters, Part I: Intrinsic frequency, wavelength, and vertical propagation direction. J. Atmos. Sci. 2005, 62, 125–142. [Google Scholar] [CrossRef]
- Zhang, S.D.; Yi, F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E), China. Ann. Geophys. 2005, 23, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.D.; Huang, C.M.; Huang, K.M.; Yi, F.; Zhang, Y.H.; Gong, Y.; Gan, Q. Spatial and seasonal variability of medium and high -frequency gravity waves in the lower atmosphere revealed by US radiosonde data. Ann. Geophys. 2014, 32, 1129–1143. [Google Scholar] [CrossRef]
- Zhang, S.D.; Yi, F.; Huang, C.M.; Zhou, Q.H. Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data. Ann. Geophys. 2010, 28, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y.; Huang, C.M.; Zhang, S.D.; Huang, K.M.; Zhang, Y.; Gong, Y.; Gan, Q.; Jia, Y. Low-frequency oscillations of the gravity wave energy density in the lower atmosphere at low latitudes revealed by U.S. radiosonde data. J. Geophys. Res. Atmos. 2016, 121, 13458–13473. [Google Scholar] [CrossRef]
- Zhang, S.D.; Yi, F.; Huang, C.M.; Huang, K.M.; Gan, Q.; Zhang, Y.H.; Gong, Y. Latitudinal and altitudinal variability of lower atmospheric inertial gravity waves revealed by U.S. radiosonde data. J. Geophys. Res. Atmos. 2013, 118, 7750–7764. [Google Scholar] [CrossRef]
- Gong, J.; Geller, M.A. Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources. J. Geophys. Res. 2010, 115, D11110. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, J.; Xue, H.; Zhang, S.; Huang, K.; Dong, W.; Shao, J.; Yi, M.; Zhang, Y. Tropospheric Gravity Waves as observed by the High-Resolution China Radiosonde Network and Their Potential Sources. J. Geophys. Res. Atmos. 2022, 127, e2022JD037174. [Google Scholar] [CrossRef]
- Liu, H.-L. Large wind shears and their implications for diffusion in regions with enhanced staic stability: The mesopause and the tropopause. J. Geophys. Res. Atmos. 2017, 122, 9579–9590. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef] [Green Version]
- Lachmy, O.; Harnik, N. The Transition to a Subtropical Jet Regime and Its Maintenance. J. Atmos. Sci. 2014, 71, 1389–1409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, J.; Sheng, B.; Fan, Y.; Ji, X.; Li, Q. The Gravity Wave Activity during Two Recent QBO Disruptions Revealed by U.S. High-Resolution Radiosonde Data. Remote Sens. 2023, 15, 472. https://doi.org/10.3390/rs15020472
Li H, Zhang J, Sheng B, Fan Y, Ji X, Li Q. The Gravity Wave Activity during Two Recent QBO Disruptions Revealed by U.S. High-Resolution Radiosonde Data. Remote Sensing. 2023; 15(2):472. https://doi.org/10.3390/rs15020472
Chicago/Turabian StyleLi, Haiyan, Jian Zhang, Bosi Sheng, Yi Fan, Xuanting Ji, and Qingxiang Li. 2023. "The Gravity Wave Activity during Two Recent QBO Disruptions Revealed by U.S. High-Resolution Radiosonde Data" Remote Sensing 15, no. 2: 472. https://doi.org/10.3390/rs15020472
APA StyleLi, H., Zhang, J., Sheng, B., Fan, Y., Ji, X., & Li, Q. (2023). The Gravity Wave Activity during Two Recent QBO Disruptions Revealed by U.S. High-Resolution Radiosonde Data. Remote Sensing, 15(2), 472. https://doi.org/10.3390/rs15020472