Acquisition of Weak BDS Signal in the Lunar Environment
<p>Spatial distribution of each GNSS constellation.</p> "> Figure 2
<p>The transmitting gain patterns of the GNSS satellite antennas.</p> "> Figure 3
<p>Gain pattern of the receiver antenna.</p> "> Figure 4
<p>A simulation scenario where the GNSS signal can reach an LLO satellite. <math display="inline"><semantics> <mi>α</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> are the off-boresight angles of the transmitted and received signals, respectively. The red and green areas are the main and side lobe areas, respectively. <math display="inline"><semantics> <mi>θ</mi> </semantics></math> indicates the maximum off-boresight angle of the main lobe signal. (Please note that the distances shown are not to scale and are intended as an illustration only).</p> "> Figure 5
<p>Block diagram of the parallel code phase search algorithm.</p> "> Figure 6
<p>Block division by the alternate half-bit method, with each block containing 10 ms signals.</p> "> Figure 7
<p>The number of visible GNSS satellites for different GNSS system combinations at a <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> threshold of 15 (<b>left</b>) and 10 (<b>right</b>) dB-Hz. (GREC indicates that quad-GNSS is used.)</p> "> Figure 8
<p>The number of signals from the main or side lobe for different GNSS system combinations at a <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> threshold of 15 (left bar) and 10 (right bar) dB-Hz.</p> "> Figure 9
<p>Received signal power using a quad GNSS system with a reception threshold of 10 dB-Hz.</p> "> Figure 10
<p>Received signal <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> using a quad GNSS system with a reception threshold of 10 dB-Hz.</p> "> Figure 11
<p>Received signal Doppler shift using a quad GNSS system with a reception threshold of 10 dB-Hz.</p> "> Figure 12
<p>GDOP values of different GNSS system combinations at the <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> thresholds of 15 (<b>left</b>) and 10 (<b>right</b>) dB-Hz.</p> "> Figure 13
<p>Detection probability under various <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> using different methods.</p> "> Figure 14
<p>Peak metric values and detection status for each satellite searched by NCOI, CODI, SBCOI, and SBCODI methods for <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>h</mi> </mrow> </msub> </semantics></math> = 200 ms (<b>left</b>) and <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>h</mi> </mrow> </msub> </semantics></math> = 400 ms (<b>right</b>). (Not acquired signals (blue) and acquired signals (green)).</p> "> Figure 15
<p>Correlation values of different methods for a 15 dB-Hz signal using coherent integration of 200 ms.</p> "> Figure 16
<p>GDOP values of LLO using quad-GNSS at a <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> threshold of 10 dB-Hz.</p> "> Figure 17
<p>Histogram of the <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> distribution of the main (<b>left</b>) and side (<b>right</b>) lobe signals, when BDS-3, GPS, and quad-GNSS are applied.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. GNSS Satellites and Signals
2.2. Transmitter and Receiver Patterns
2.3. Observation Scenarios
2.4. BDS B1I Signal
- is the amplitude of the i-th received signal, and the signal power is given by .
- is the binary phase shift key (BPSK)-modulated navigation data.
- is the spreading sequence generated by two shift registers in a certain way, and it is a pseudo random noise (PRN) code of length 2046.
- is the Neumann–Hoffman (NH) code modulated on the navigation data.
- , , and are the code phase, the Doppler shift, and the initial carrier phase offset for the i-th signal, respectively.
- is the receiver intermediate frequency.
2.5. Signal Acquisition Algorithms
2.6. Acquisition Strategy
3. Results
3.1. Observation Results
3.1.1. Visible GNSS Satellites
3.1.2. Received Power and
3.1.3. Doppler Shift
3.1.4. GDOP
3.2. Signal Acquisition Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parker, J.J.K.; Valdez, J.E.; Bauer, F.H.; Moreau, M.C. Use and Protection of Gps Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit. In Proceedings of the Annual AAS Guidance and Control Conference 2016, Breckenridge, CO, USA, 5–10 February 2016; pp. 329–341. [Google Scholar]
- Jing, S.; Zhan, X.Q.; Lu, J.; Feng, S.J.; Ochieng, W.Y. Characterisation of GNSS Space Service Volume. J. Navig. 2015, 68, 107–125. [Google Scholar] [CrossRef]
- Li, W.W.; Jiang, K.C.; Li, M.; Zhao, Q.L.; Wang, M.; Shi, C.; Xu, C.J. BDS and GPS side-lobe observation quality analysis and orbit determination with a GEO satellite onboard receiver. GPS Solut. 2023, 27, 18. [Google Scholar] [CrossRef]
- Donaldson, J.E.; Parker, J.J.K.; Moreau, M.C.; Highsmith, D.E.; Martzen, P.D. Characterization of on-orbit GPS transmit antenna patterns for space users. Navig. J. Inst. Navig. 2020, 67, 411–438. [Google Scholar] [CrossRef]
- Guan, M.; Xu, T.; Li, M.; Gao, F.; Mu, D. Navigation in GEO, HEO, and Lunar Trajectory Using Multi-GNSS Sidelobe Signals. Remote Sens. 2022, 14, 318. [Google Scholar] [CrossRef]
- Bauer, F.H.; Moreau, M.C.; Dahle-Melsaether, M.E.; Petrofski, W.P.; Stanton, B.J.; Thomason, S.; Harris, G.A.; Sena, R.P.; Temple, L.P. The GPS Space Service Volume. In Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss 2006), Fort Worth, TX, USA, 26–29 September 2006; pp. 2503–2514. [Google Scholar]
- Balbach, O.; Eissfeller, B.; Hein, G.W.; Enderle, W.; Schmidhuber, M.; Lemke, N. Tracking GPS above GPS satellite altitude: First results of the GPS experiment on the HEO mission Equator-S. In Proceedings of the IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153), Palm Springs, CA, USA, 20–23 April 1996; pp. 243–249. [Google Scholar]
- Jiang, K.C.; Li, M.; Wang, M.; Zhao, Q.L.; Li, W.W. TJS-2 geostationary satellite orbit determination using onboard GPS measurements. GPS Solut. 2018, 22, 1–14. [Google Scholar] [CrossRef]
- Ramsey, G.; Barker, L.; Chapel, J.; Winkler, S.; Frey, C.; Freesland, D.; Baltimore, P.; Krimchansky, A. Goes-R Series Geo Side-Lobe Capable Gpsr Post-Launch Refinements and Operational Capabilities. In Proceedings of the American Astronautical Society Annual Guidance and Control Conference (AAS GNC 2019), Breckenridge, CO, USA, 17 April 2019. [Google Scholar]
- Winternitz, L.B.; Bamford, W.A.; Price, S.R. New High-Altitude GPS Navigation Results from the Magnetospheric Multiscale Spacecraft and Simulations at Lunar Distances. In Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 1114–1126. [Google Scholar]
- Enderle, W.; Gini, F.; Boomkamp, H.; Parker, J.J.K.; Ashman, B.W.; Welch, B.W.; Koch, M.; Sands, O.S. Space User Visibility Benefits of the Multi-GNSS Space Service Volume: An Internationally-Coordinated, Global and Mission-Specific Analysis. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 1191–1207. [Google Scholar]
- Wang, M.; Shan, T.; Liu, L.; Huan, H.; Tao, R. On-orbit BDS signals and transmit antenna gain analysis for a geostationary satellite. Adv. Space Res. 2022, 69, 2711–2723. [Google Scholar] [CrossRef]
- Ashman, B.W.; Parker, J.J.K.; Bauer, F.H.; Esswein, M. Exploring the Limits of High Altitude Gps for Future Lunar Missions. In Proceedings of the American Astronautical Society Annual Guidance and Control Conference (AAS GNC 2018), Breckenridge, CO, USA, 2–5 February 2018. [Google Scholar]
- Su, X.; Geng, T.; Li, W.W.; Zhao, Q.L.; Xie, X. Chang’E-5T Orbit Determination Using Onboard GPS Observations. Sensors 2017, 17, 1260. [Google Scholar] [CrossRef]
- Lin, K.; Zhan, X.Q.; Yang, R.; Shao, F.W.; Huang, J.H. BDS Space Service Volume characterizations considering side-lobe signals and 3D antenna pattern. Aerosp. Sci. Technol. 2020, 106, 106071. [Google Scholar] [CrossRef]
- Capuano, V.; Botteron, C.; Leclere, J.; Tian, J.; Wang, Y.G.; Farine, P.A. Feasibility study of GNSS as navigation system to reach the Moon. Acta Astronaut. 2015, 116, 186–201. [Google Scholar] [CrossRef]
- Delepaut, A.; Giordano, P.; Ventura-Traveset, J.; Blonski, D.; Schonfeldt, M.; Schoonejans, P.; Aziz, S.; Walker, R. Use of GNSS for lunar missions and plans for lunar in-orbit development. Adv. Space Res. 2020, 66, 2739–2756. [Google Scholar] [CrossRef]
- Lin, Z.; Shi, T.; Zhuang, X.; He, Y. Evaluation of Multiple GNSS Navigation Performance in Lunar Transfer Orbit and Circumlunar Orbit. In Proceedings of the 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 28–30 October 2022; pp. 566–571. [Google Scholar]
- Ziedan, N.I.; Garrison, J.L. Unaided acquisition of weak GPS signals using circular correlation or double-block zero padding. In Proceedings of the 2004 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 26–29 April 2004; pp. 461–470. [Google Scholar]
- Borio, D.; Lachapelle, G. A non-coherent architecture for GNSS digital tracking loops. Ann. Telecomm. 2009, 64, 601–614. [Google Scholar] [CrossRef]
- Chung, C.D. Differentially Coherent Detection Technique for Direct-Sequence Code Acquisition in a Rayleigh Fading Mobile Channel. IEEE Trans. Commun. 1995, 43, 1116–1126. [Google Scholar] [CrossRef]
- Van Diggelen, F. A-GPS: Assisted GPS, GNSS, and SBAS; Artech House: Boston, MA, USA, 2009. [Google Scholar]
- Lo Presti, L.; Zhu, X.F.; Fantino, M.; Mulassano, P. GNSS Signal Acquisition in the Presence of Sign Transition. IEEE J-STSP 2009, 3, 557–570. [Google Scholar] [CrossRef]
- Palmerini, G.B.; Sabatini, M.; Perrotta, G. En route to the Moon using GNSS signals. Acta Astronaut. 2009, 64, 467–483. [Google Scholar] [CrossRef]
- Capuano, V.; Blunt, P.; Botteron, C.; Tian, J.; Leclere, J.; Wang, Y.G.; Basile, F.; Farine, P.A. Standalone GPS L1 C/A Receiver for Lunar Missions. Sensors 2016, 16, 374. [Google Scholar] [CrossRef]
- Meng, Y.S.; Qu, B.; Wang, Y.G.; Bian, L.; Li, L.L.; Wang, X.L. A High Sensitive GNSS Receiver for High Altitude Space Missions. In Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 1688–1694. [Google Scholar]
- Musumeci, L.; Dovis, F.; Silva, J.S.; da Silva, P.F.; Lopes, H.D. Design of a High Sensitivity GNSS receiver for Lunar missions. Adv. Space Res. 2016, 57, 2285–2313. [Google Scholar] [CrossRef]
- Wang, Z.S.; Meng, Z.F.; Gao, S.; Peng, J. Orbit Design Elements of Chang’e 5 Mission. Space Sci. Tech. 2021, 2021, 9897105. [Google Scholar] [CrossRef]
- Test and Assessment Research Center of China Satellite Navigation Office. Available online: http://www.csno-tarc.cn/gps/constellation (accessed on 2 March 2023).
- Development of the BeiDou Navigation Satellite System (Version 4.0). Available online: http://www.beidou.gov.cn/xt/gfxz/201912/P020191227430565455478.pdf (accessed on 1 March 2023).
- Hogg, D.C. Fun with the Friis free-space transmission formula. IEEE Antennas Propag. Mag. 1993, 35, 33–35. [Google Scholar] [CrossRef]
- Misra, P. Global Positioning System: Signals, Measurements, and Performance; Ganga-Jamuna Press: Lincoln, MA, USA, 2011. [Google Scholar]
- Xu, S.; Wu, F.L.; Geng, C.C. BeiDou Signal Acquisition based on a New Double Block Zero-padding Method. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 1414–1421. [Google Scholar]
- Gebre-Egziabher, D.; Gleason, S. GNSS Applications and Methods; Artech House: Boston, MA, USA, 2009. [Google Scholar]
- Chen, L.; Lu, X.C.; Shen, N.; Wang, L.; Zhuang, Y.; Su, Y.; Li, D.R.; Chen, R.Z. Signal acquisition of Luojia-1A low earth orbit navigation augmentation system with software defined receiver. Geo. Spat. Inf. Sci. 2022, 25, 47–62. [Google Scholar] [CrossRef]
- Lin, M.Y.; Luo, Y.M.; Zhu, X.F.; Tu, G.Y.; Lu, Z.P. Optimal GPS Acquisition Algorithm in Severe Ionospheric Scintillation Scene. Electronics 2023, 12, 1343. [Google Scholar] [CrossRef]
- Nezhadshahbodaghi, M.; Mosavi, M.R.; Rahemi, N. Improved Semi-Bit Differential Acquisition Method for Navigation Bit Sign Transition and Code Doppler Compensation in Weak Signal Environment. J. Navig. 2020, 73, 892–911. [Google Scholar] [CrossRef]
- Witternigg, N.; Obertaxer, G.; Schonhuber, M.; Palmerini, G.B.; Rodriguez, F.; Capponi, L.; Soualle, F.; Floch, J.J. Weak GNSS Signal Navigation for Lunar Exploration Missions. In Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss+ 2015), Tampa, FL, USA, 14–18 September 2015; pp. 3928–3944. [Google Scholar]
- Li, Y.F.; Shivaramaiah, N.C.; Akos, D.M. Design and implementation of an open-source BDS-3 B1C/B2a SDR receiver. GPS Solut. 2019, 23, 3. [Google Scholar] [CrossRef]
- Wu, M.Y.; Zhao, L.; Ding, J.H.; Gao, Y.; Li, Y.F.; Kang, Y.Y. A BDS-3 B1C/B2a dual-frequency joint tracking architecture based on adaptive Kalman filter and extended integration time. GPS Solut. 2020, 24, 30. [Google Scholar] [CrossRef]
System | Band | Frenquency (MHz) |
---|---|---|
GPS | L1 | 1575.42 |
BDS | B1I | 1575.42 |
GLONASS | L1 | 1602 1 |
Galileo | E1 | 1575.42 |
System | GPS | BDS | GLONASS | Galileo | |
---|---|---|---|---|---|
MEO | GEO/IGSO | ||||
Earth blocking angle 1 (deg) | 13.5 | 12.9 | 8.6 | 14.1 | 12.2 |
Parameter | Value |
---|---|
Intermediate frequency, (MHz) | 12.276 |
Sampling frequency, (MHz) | 49.104 |
Doppler shift, (KHz) | [−30, 30] |
Code Phase, (chip) | [1, 2046] |
(dB-HZ) | [10, 35] |
Algorithm | (ms) | 1 |
---|---|---|
NCOI | 200/400 | |
CODI | 200/400 | |
SBCOI | 200/400 | |
SBCODI | 200/400 |
Receiver Threshold (dB-Hz) | Systems | At Least One Signal (%) | Four or More Signals (%) |
---|---|---|---|
15 | BDS-3 | 67.86 | 4.82 |
GPS | 67.75 | 22.77 | |
BDS-3+GPS | 68.63 | 63.51 | |
GREC | 69.21 | 68.00 | |
10 | BDS-3 | 68.90 | 66.33 |
GPS | 69.18 | 61.75 | |
BDS-3+GPS | 69.35 | 68.27 | |
GREC | 69.59 | 68.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, Z.; Chen, L.; Yan, J. Acquisition of Weak BDS Signal in the Lunar Environment. Remote Sens. 2023, 15, 2445. https://doi.org/10.3390/rs15092445
Ju Z, Chen L, Yan J. Acquisition of Weak BDS Signal in the Lunar Environment. Remote Sensing. 2023; 15(9):2445. https://doi.org/10.3390/rs15092445
Chicago/Turabian StyleJu, Zhanghai, Liang Chen, and Jianguo Yan. 2023. "Acquisition of Weak BDS Signal in the Lunar Environment" Remote Sensing 15, no. 9: 2445. https://doi.org/10.3390/rs15092445
APA StyleJu, Z., Chen, L., & Yan, J. (2023). Acquisition of Weak BDS Signal in the Lunar Environment. Remote Sensing, 15(9), 2445. https://doi.org/10.3390/rs15092445