A Novel ST-ViBe Algorithm for Satellite Fog Detection at Dawn and Dusk
<p>Study area distribution of ground observation stations and Bright temperature difference image (Band7 (3.9 µm)−Band14 (11.2 µm). The image was taken at 8:00 on 30 November 2015).</p> "> Figure 2
<p>Bright temperature difference images at (<b>a</b>) 7:30, and (<b>b</b>) 16:40, on 30 November 2015.</p> "> Figure 3
<p>BTD of fog and surface at (<b>a</b>) dawn, and (<b>b</b>) dusk. The backward differential absolute value of fog and surface brightness temperature difference at (<b>c</b>) dawn, and (<b>d</b>) dusk (i.e., the absolute values of BTD at the measurement time minus the BTD at the previous time). These data were recorded in Zhengzhou city, Henan Province, from 6:30 to 18:00 on 29 November 2015. All the recorded times are in Beijing Time (8 h after the UTC).</p> "> Figure 4
<p>Flowchart of the ST-ViBe fog detection algorithm.</p> "> Figure 5
<p>LBSP coding neighborhood field.</p> "> Figure 6
<p>The false color images and detection results of the ST-ViBe algorithm at 7:10 (<b>a</b>,<b>b</b>); 7:30 (<b>c</b>,<b>d</b>); 7:50 (<b>e</b>,<b>f</b>); and 8:10 (<b>g</b>,<b>h</b>), on 30 November 2015. The backgrounds of the images are false color images with MIR 3.9 µm (R), TIR 8.6 µm (G), and TIR 11.2 µm (B).</p> "> Figure 7
<p>The false color images and detection results of the ST-ViBe algorithm at 16:10 (<b>a</b>,<b>b</b>); 16:30 (<b>c</b>,<b>d</b>); 16:50 (<b>e</b>,<b>f</b>); and 17:10 (<b>g</b>,<b>h</b>), on 30 November 2015. The backgrounds of the images are false color images with MIR 3.9 µm ®, TIR 8.6 µm (G), and TIR 11.2 µm (B).</p> "> Figure 8
<p>(<b>a</b>) False color image, (<b>b</b>) ViBe algorithm, (<b>c</b>) Improved ViBe algorithm, and (<b>d</b>) ST-ViBe algorithm fog detection results at 7:30 on 30 November 2015.</p> "> Figure 9
<p>(<b>a</b>) False color image, (<b>b</b>) ViBe algorithm, (<b>c</b>) Improved ViBe algorithm, and (<b>d</b>) ST-ViBe algorithm fog detection results at 16:50 on 30 November 2015.</p> "> Figure 10
<p>Ground observation and fog detection results based on the ST-VIBE algorithm at 8:00 (<b>a</b>–<b>d</b>) and 17:00 (<b>e</b>–<b>h</b>) from 27–30 November 2015.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Datasets
2.1.1. Study Area
2.1.2. Datasets and Preprocessing
Satellite Datasets
Validation Datasets
2.2. Physical Basis
2.3. ST-ViBe Algorithm Principle
2.3.1. Target Detection
2.3.2. Update of the Background Model
2.4. ST-ViBe Model Construction for Dawn and Dusk Fog Detection
2.4.1. ST-ViBe Background Model Initialization
2.4.2. Establishing the Foreground Detection Parameter Set
2.4.3. Determination of the Initial Value of the Model Parameters and Adaptive Adjustment of the Distance Measurement Threshold
2.4.4. Foreground Detection and Background Update
2.4.5. Traditional Cloud Removal Methods
2.4.6. Postprocessing
2.5. Evaluation of the Method
3. Results and Discussion
3.1. Qualitative Analysis of the Time-Series Fog Detection Results of the ST-ViBe Algorithm
3.2. Qualitative Analysis of Algorithm Fog Detection Results
3.3. Quantitative Verification of the ST-ViBe Algorithm
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaurasia, S.; Sathiyamoorthy, V.; Paul Shukla, B.; Simon, B.; Joshi, P.C.; Pal, P.K. Night Time Fog Detection Using MODIS Data over Northern India. Meteorol. Appl. 2011, 18, 483–494. [Google Scholar] [CrossRef]
- Han, J.-H.; Suh, M.-S.; Yu, H.-Y.; Roh, N.-Y. Development of Fog Detection Algorithm Using GK2A/AMI and Ground Data. Remote Sens. 2020, 12, 3181. [Google Scholar] [CrossRef]
- Guy, H.; Turner, D.D.; Walden, V.P.; Brooks, I.M.; Neely, R.R. Passive Ground-Based Remote Sensing of Radiation Fog. Atmos Meas. Tech. 2022, 15, 5095–5115. [Google Scholar] [CrossRef]
- Lee, H.-B.; Heo, J.-H.; Sohn, E.-H. Korean Fog Probability Retrieval Using Remote Sensing Combined with Machine-Learning. GISci. Remote Sens. 2021, 58, 1434–1457. [Google Scholar] [CrossRef]
- He, L.; Gao, H.; Xu, J.; Huang, G. Application of Himawari-8 Satellite Data in Daytime Sea Fog Monitoring in South China Coast. IOP Conf. Ser. Earth Environ. Sci. 2019, 237, 022007. [Google Scholar] [CrossRef]
- Kim, D.; Park, M.-S.; Park, Y.-J.; Kim, W. Geostationary Ocean Color Imager (GOCI) Marine Fog Detection in Combination with Himawari-8 Based on the Decision Tree. Remote Sens. 2020, 12, 149. [Google Scholar] [CrossRef]
- Shao, Z.; Pan, Y.; Diao, C.; Cai, J. Cloud Detection in Remote Sensing Images Based on Multiscale Features-Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4062–4076. [Google Scholar] [CrossRef]
- Wu, X.; Li, S. Automatic Sea Fog Detection over Chinese Adjacent Oceans Using Terra/MODIS Data. Int. J. Remote Sens. 2014, 35, 7430–7457. [Google Scholar] [CrossRef]
- Nilo, S.; Romano, F.; Cermak, J.; Cimini, D.; Ricciardelli, E.; Cersosimo, A.; di Paola, F.; Gallucci, D.; Gentile, S.; Geraldi, E.; et al. Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel. Remote Sens. 2018, 10, 541. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Park, S.; Ha, K.-J.; Shim, J.-S. Algorithm for Sea Fog Monitoring with the Use of Information Technologies. Meteorol. Appl. 2014, 21, 350–359. [Google Scholar] [CrossRef]
- Hunt, G.E. Radiative Properties of Terrestrial Clouds at Visible and Infra-Red Thermal Window Wavelengths. Q. J. R. Meteorol. Soc. 1973, 99, 346–369. [Google Scholar] [CrossRef]
- Ellrod, G.P. Advances in the Detection and Analysis of Fog at Night Using GOES Multispectral Infrared Imagery. Weather Forecast. 1995, 10, 606–619. [Google Scholar] [CrossRef]
- Schreiner, A.J.; Ackerman, S.A.; Baum, B.A.; Heidinger, A.K. A Multispectral Technique for Detecting Low-Level Cloudiness near Sunrise. J. Atmos. Ocean Technol. 2007, 24, 1800–1810. [Google Scholar] [CrossRef]
- Lee, J.-R.; Chung, C.-Y.; Ou, M.-L. Fog Detection Using Geostationary Satellite Data: Temporally Continuous Algorithm. Asia Pac. J. Atmos. Sci. 2011, 47, 113–122. [Google Scholar] [CrossRef]
- Chaurasia, S.; Jenamani, R.K. Detection of Fog Using Temporally Consistent Algorithm with INSAT-3D Imager Data Over India. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5307–5313. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagi, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9 Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Ran, Y.; Ma, H.; Liu, Z.; Wu, X.; Li, Y.; Feng, H. Satellite Fog Detection at Dawn and Dusk Based on the Deep Learning Algorithm under Terrain-Restriction. Remote Sens. 2022, 14, 4328. [Google Scholar] [CrossRef]
- Ma, H.; Li, Y.; Wu, X.; Feng, H.; Ran, Y.; Jiang, B.; Wang, W. A Large-Region Fog Detection Algorithm at Dawn and Dusk for High-Frequency Himawari-8 Satellite Data. Int. J. Remote Sens. 2022, 43, 2599–2616. [Google Scholar] [CrossRef]
- Brutzer, S.; Hoferlin, B.; Heidemann, G. Evaluation of Background Subtraction Techniques for Video Surveillance. In Proceedings of the CVPR 2011, IEEE, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1937–1944. [Google Scholar]
- Chen, H.; Wang, H. Haze Days in North China and the Associated Atmospheric Circulations Based on Daily Visibility Data from 1960 to 2012. J. Geophys. Res. Atmos. 2015, 120, 5895–5909. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y. Analysis of Long-Term Variations of Fog and Haze in China in Recent 50 Years and Their Relations with Atmospheric Humidity. Sci. China Earth Sci. 2014, 57, 36–46. [Google Scholar] [CrossRef]
- Dutta, D.; Chaudhuri, S. Nowcasting Visibility during Wintertime Fog over the Airport of a Metropolis of India: Decision Tree Algorithm and Artificial Neural Network Approach. Nat. Hazards 2015, 75, 1349–1368. [Google Scholar] [CrossRef]
- GB/T 27964-2011GB/T; Grade of Fog Forecast. China Meteorological Administration (CMA): Beijing, China, 2011. (In Chinese)
- Barnich, O.; van Droogenbroeck, M. ViBE: A Powerful Random Technique to Estimate the Background in Video Sequences. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Taipei, Taiwan, 19–24 April 2009; pp. 945–948. [Google Scholar]
- Barnich, O.; van Droogenbroeck, M. ViBe: A Universal Background Subtraction Algorithm for Video Sequences. IEEE Trans. Image Process. 2011, 20, 1709–1724. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, G.-A.; Jodoin, J.-P.; Saunier, N. Change Detection in Feature Space Using Local Binary Similarity Patterns. In Proceedings of the 2013 International Conference on Computer and Robot Vision, IEEE, Regina, SK, Canada, 28–31 May 2013; pp. 106–112. [Google Scholar]
- St-Charles, P.-L.; Bilodeau, G.-A. Improving Background Subtraction Using Local Binary Similarity Patterns. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, IEEE, Steamboat Springs, CO, USA, 24–26 March 2014; pp. 509–515. [Google Scholar]
- Liao, S.; Zhao, G.; Kellokumpu, V.; Pietikainen, M.; Li, S.Z. Modeling Pixel Process with Scale Invariant Local Patterns for Background Subtraction in Complex Scenes. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, San Francisco, CA, USA, 13–18 June 2010; pp. 1301–1306. [Google Scholar]
- Elgammal, A.; Duraiswami, R.; Harwood, D.; Davis, L.S. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proc. IEEE 2002, 90, 1151–1163. [Google Scholar] [CrossRef]
- Tan, X.; Triggs, B. Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions. IEEE Trans. Image Process. 2010, 19, 1635–1650. [Google Scholar] [CrossRef]
- Robert, A.H., Jr. Cloud Dynamics; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Bai, T.; Li, D.; Sun, K.; Chen, Y.; Li, W. Cloud Detection for High-Resolution Satellite Imagery Using Machine Learning and Multi-Feature Fusion. Remote. Sens. 2016, 8, 715. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. Dynamical Nighttime Fog/Low Stratus Detection Based on Meteosat SEVIRI Data: A Feasibility Study. Pure Appl. Geophys. 2007, 164, 1179–1192. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, L. A Comprehensive Dynamic Threshold Algorithm for Daytime Sea Fog Retrieval over the Chinese Adjacent Seas. Pure Appl. Geophys. 2013, 170, 1931–1944. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, J.; Qin, P. An Algorithm for Daytime Sea Fog Detection over the Greenland Sea Based on MODIS and CALIOP Data. J. Coast Res. 2019, 90, 95–103. [Google Scholar] [CrossRef]
- Min, W.; Guo, X.; Han, Q. An Improved ViBe Algorithm and Its Application in Traffic Video Processing. Opt. Precis. Eng. 2017, 25, 806–811. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.; Liu, J.; Lin, L. Analysis of the Heavy Mist Characteristics in Different Geographical Conditions in the Southwest of Hubei Province. Plateau Mt. Meteorol. Res. 2011, 31, 51–58. [Google Scholar]
Date | Satellite Detection | Ground Observation (Fog) | Ground Observation (Nonfog) | POD | FAR | CSI |
---|---|---|---|---|---|---|
27 November 2015 | Fog | 21 | 4 | 0.724 | 0.160 | 0.636 |
Nonfog | 8 | 138 | ||||
28 November 2015 | Fog | 42 | 7 | 0.689 | 0.143 | 0.618 |
Nonfog | 19 | 103 | ||||
29 November 2015 | Fog | 40 | 5 | 0.727 | 0.111 | 0.667 |
Nonfog | 15 | 111 | ||||
30 November 2015 | Fog | 86 | 9 | 0.775 | 0.095 | 0.717 |
Nonfog | 25 | 51 | ||||
Mean | 0.729 | 0.127 | 0.660 |
Date | Satellite Detection | Ground Observation (Fog) | Ground Observation (Nonfog) | POD | FAR | CSI |
---|---|---|---|---|---|---|
27 November 2015 | Fog | 20 | 5 | 0.741 | 0.2 | 0.625 |
Nonfog | 7 | 133 | ||||
28 November 2015 | Fog | 16 | 4 | 0.615 | 0.2 | 0.533 |
Nonfog | 10 | 135 | ||||
29 November 2015 | Fog | 29 | 2 | 0.69 | 0.065 | 0.659 |
Nonfog | 13 | 121 | ||||
30 November 2015 | Fog | 54 | 7 | 0.711 | 0.115 | 0.651 |
Nonfog | 22 | 82 | ||||
Mean | 0.689 | 0.145 | 0.617 |
Cases | Satellite Detection | Ground Observation (Fog) | Ground Observation (Nonfog) | POD | FAR | CSI |
---|---|---|---|---|---|---|
5 January 2017 | Fog Nonfog | 58 20 | 5 88 | 0.744 | 0.079 | 0.699 |
5 February 2017 | Fog Nonfog | 70 18 | 10 73 | 0.795 | 0.125 | 0.714 |
17 March 2017 | Fog Nonfog | 25 17 | 6 123 | 0.595 | 0.194 | 0.521 |
6 April 2017 | Fog Nonfog | 56 24 | 11 80 | 0.700 | 0.164 | 0.615 |
10 May 2017 | Fog Nonfog | 20 6 | 3 142 | 0.769 | 0.130 | 0.690 |
7 June 2017 | Fog Nonfog | 48 20 | 20 83 | 0.706 | 0.294 | 0.545 |
26 July 2017 | Fog Nonfog | 30 17 | 6 118 | 0.638 | 0.167 | 0.566 |
31 August 2017 | Fog Nonfog | 45 22 | 6 97 | 0.672 | 0.118 | 0.616 |
17 September 2017 | Fog Nonfog | 40 5 | 3 123 | 0.889 | 0.070 | 0.833 |
12 October 20170 | Fog Nonfog | 30 8 | 10 123 | 0.789 | 0.250 | 0.625 |
5 November 2017 | Fog Nonfog | 34 14 | 12 111 | 0.708 | 0.261 | 0.567 |
20 December 2017 | Fog Nonfog | 7 3 | 4 157 | 0.700 | 0.364 | 0.500 |
Mean | 0.725 | 0.185 | 0.624 |
Cases | Satellite Detection | Ground Observation (Fog) | Ground Observation (Nonfog) | POD | FAR | CSI |
---|---|---|---|---|---|---|
5 January 2017 | Fog Nonfog | 30 5 | 11 119 | 0.857 | 0.268 | 0.652 |
21 February 2017 | Fog Nonfog | 8 3 | 7 147 | 0.727 | 0.467 | 0.444 |
13 March 2017 | Fog Nonfog | 6 5 | 3 151 | 0.545 | 0.333 | 0.429 |
5 April 2017 | Fog Nonfog | 32 3 | 8 122 | 0.914 | 0.200 | 0.744 |
11 May 2017 | Fog Nonfog | 7 2 | 2 154 | 0.778 | 0.222 | 0.636 |
7 June 2017 | Fog Nonfog | 1 2 | 1 161 | 0.333 | 0.500 | 0.250 |
17 July 2017 | Fog Nonfog | 11 3 | 4 147 | 0.786 | 0.267 | 0.611 |
9 August 2017 | Fog Nonfog | 3 1 | 4 157 | 0.750 | 0.571 | 0.375 |
15 September 2017 | Fog Nonfog | 5 4 | 1 155 | 0.556 | 0.167 | 0.500 |
5 October 2017 | Fog Nonfog | 25 7 | 9 124 | 0.781 | 0.265 | 0.610 |
6 November 2017 | Fog Nonfog | 11 2 | 4 148 | 0.846 | 0.267 | 0.647 |
22 December 2017 | Fog Nonfog | 3 2 | 3 157 | 0.600 | 0.500 | 0.375 |
Mean | 0.706 | 0.336 | 0.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Liu, Z.; Jiang, K.; Jiang, B.; Feng, H.; Hu, S. A Novel ST-ViBe Algorithm for Satellite Fog Detection at Dawn and Dusk. Remote Sens. 2023, 15, 2331. https://doi.org/10.3390/rs15092331
Ma H, Liu Z, Jiang K, Jiang B, Feng H, Hu S. A Novel ST-ViBe Algorithm for Satellite Fog Detection at Dawn and Dusk. Remote Sensing. 2023; 15(9):2331. https://doi.org/10.3390/rs15092331
Chicago/Turabian StyleMa, Huiyun, Zengwei Liu, Kun Jiang, Bingbo Jiang, Huihui Feng, and Shuaifeng Hu. 2023. "A Novel ST-ViBe Algorithm for Satellite Fog Detection at Dawn and Dusk" Remote Sensing 15, no. 9: 2331. https://doi.org/10.3390/rs15092331
APA StyleMa, H., Liu, Z., Jiang, K., Jiang, B., Feng, H., & Hu, S. (2023). A Novel ST-ViBe Algorithm for Satellite Fog Detection at Dawn and Dusk. Remote Sensing, 15(9), 2331. https://doi.org/10.3390/rs15092331