Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes
<p>Overall workflow of this study.</p> "> Figure 2
<p>Locations of the study sites across northern Sweden. The green dots in the left figure show the experimental sites and the blue dots in the right figures denote the field sampling sites. The scale in the left figure is for whole Sweden, and the scale at the corner in the right figures is for the right 8 figures showing different fields.</p> "> Figure 3
<p>Variation in forage dry matter yield (<italic>DMY</italic>) of the dataset (180 samples, <xref ref-type="table" rid="remotesensing-15-02350-t002">Table 2</xref>) at four sites in 2019 and 2020. The horizontal lines in the boxplot show the first quartile (Q1), median and third quartile (Q3) of the datasets. The upper end of the black line is the upper bound for detecting outliers (Q3 + 1.5 × (Q3–Q1)) and the bottom end of the black line is the lower bound for detecting outliers (Q3 + 1.5 × (Q3–Q1)). The black dot shows outlier, which was removed for the regression analyses.</p> "> Figure 4
<p>Importance of predictor variables (individual bands and vegetation indices) according to the random forest regression analysis in explaining the dry matter yield (<italic>DMY</italic>). Descriptions of the individual bands and indices are given in <xref ref-type="table" rid="remotesensing-15-02350-t004">Table 4</xref>.</p> "> Figure 5
<p>Variation in Nash–Sutcliffe efficiency (<italic>NSE</italic>) of running the models 300 times using partial least square regression (PLSR), random forest regression (RFR) and support vector machine-based regression (SVR). The horizontal lines in the boxplot show the first quartile, median and third quartile of <italic>NSE</italic> values.</p> "> Figure 6
<p>Observed versus estimated dry matter yield (<italic>DMY</italic>, t ha<sup>−1</sup>) for selected random forest regression (RFR) model with a calibration <italic>NSE</italic> value of 0.92 (average value of 300 runs, <xref ref-type="table" rid="remotesensing-15-02350-t005">Table 5</xref>). The timothy contents (%) are marked with different colors and the black color indicates that the botanical compositions of the samples were not measured, hence there was no data.</p> "> Figure 7
<p>Layout of the estimated dry matter yield (<italic>DMY</italic>) for the first harvest from Sentinel-2 imagery obtained on 09 June 2019, one week before the first harvest using a selected RFR model, at Röbäcksdalen field research station. The background imagery is obtained from Google Earth.</p> "> Figure 8
<p>Example of forage dry matter yield (<italic>DMY</italic>) during the growing season, estimated from Sentinel-2 imagery in 2020 at Röbäcksdalen field research station using a selected random forest regression (RFR) model. The red-dashed vertical lines indicate the timing of the first and second harvests.</p> "> Figure 9
<p>Distribution of all of the available Sentinel-2 images (black dots) and available cloud-free Sentinel-2 images (colored dots) during the growing season (May–September) in 2019 and 2020 for different study locations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Measurements
2.2. Remote Sensing Data
2.3. Extraction of Reflectance Data
2.4. Regression Models
2.4.1. Univariate Regression Models
2.4.2. Multivariate Regression Models
Vegetation Index | Name of Vegetation Index | Formula | Reference | Calibration (n = 49) | Validation (n = 16) | Evaluation (n = 9) | ||
---|---|---|---|---|---|---|---|---|
REDVI2 | Red Edge Difference Vegetation Index | B8A − B6 | [46] | |||||
REDVI1 | Red Edge Difference Vegetation Index | B8A − B5 | [46] | |||||
MCARI11 | Modified chlorophyll absorption in reflectance aindex | [(B8A − B5) − 0.2 × (B8A − B3)] × (B8A/B5) | [46] | |||||
GDVI | Green Difference Vegetation Index | B8A − B3 | [47] | |||||
GOSAVI | Green optimized soil adjusted vegetation index | (1 + 0.16) × (B8A − B3)/(B8A + B3 + 0.16) | [47] | |||||
TCI | Terrestrial chlorophyll index | (B6 − B5)/(B5 − B4) | [48] | |||||
NDRE1 | Normalized Difference Red-edge Index | (B8A − B5)/(B8A + B5) | [49] | |||||
SWIR11-TCARI3 | SWIR11 related transformed Chlorophyll Absorption Reflectance Index | 3 × [(B7 − B11) − 0.2 × (B7 − B3) × (B7/B11)] | [50] | |||||
CIre1 | Red-edge Chlorophyll Index | (B8A/B5) − 1 | [51] | |||||
NDI1 | Normalized difference index | (B8A − B5)/(B8A + B4) | [52] | |||||
MCARI13 | Modified chlorophyll absorption in reflectance index | [(B8A − B7) − 0.2 × (B8A − B3)] × (B8A/B7) | [46] | |||||
DVI | Difference vegetation index | B8A − B4 | [53] | |||||
SWIR11-MCARI3 | SWIR11 related modified chlorophyll absorption in reflectance index | [(B7 − B11) − 0.2 × (B7 − B3)] × (B7/B11) | [50] | |||||
SWIR11-OSAVI | SWIR11 related optimized soil adjusted vegetation index | (1 + 0.16) × (B8A − B11)/(B8A + B11 + 0.16) | [50] | |||||
GNDVI | Green Normalized Difference Vegetation Index | (B8A − B3)/(B8A + B3) | [54] | |||||
SWIR12-MCARI3 | SWIR12 related modified chlorophyll absorption in reflectance index | [(B7 − B12) − 0.2 × (B7 − B3)] × (B7/B12) | [50] | |||||
SWIR12-OSAVI | SWIR12 related optimized soil adjusted vegetation index | (1 + 0.16) × (B8A − B12)/(B8A + B12 + 0.16) | [50] | |||||
CIgreen | Green Chlorophyll Index | (B8A/B3) − 1 | [55] | |||||
GRVI | Green ratio Vegetation index | B8A/B3 | [56] | |||||
MTVI | Modified Triangular Vegetation Index | 1.5 × (1.2 × (B8A − B3) − 2.5 × (B4 − B3))/sqrt((2 × B8A + 1)2 − (6 × B8A − 5 × sqrt(B4)) − 0.5) | [57] | |||||
S2REP2 | Sentinel-2 red-edge position | 705 + 35 × [0.5 × (B7 + B4) − B5]/(B6 − B5) | [50] | |||||
OSAVI | Optimized soil adjusted vegetation index | (1 + 0.16) × (B8A − B4)/(B8A + B4 + 0.16) | [58] | |||||
MCARI23 | Modified chlorophyll absorption reflectance index | [(B7 − B4) − 0.2 × (B7 − B3)] × (B7/B4) | [59] | |||||
TCARI3 | Transformed Chlorophyll Absorption Reflectance Index | 3 × [(B7 − B4) − 0.2 × (B7 − B3) × (B7/B4)] | [60] | |||||
SWIR11-MCARI2 | SWIR11 related modified chlorophyll absorption in reflectance index | [(B6 − B11) − 0.2 × (B6 − B3)] × (B6/B11) | [50] | |||||
SWIR11-TCARI2 | SWIR11 related transformed Chlorophyll Absorption Reflectance Index | 3 × [(B6 − B11) − 0.2 × (B6 − B3) × (B6/B11)] | [50] | |||||
SWIR12-MCARI2 | SWIR12 related modified chlorophyll absorption in reflectance index | [(B6 − B12) − 0.2 × (B6 − B3)] × (B6/B12) | [50] | |||||
NNIR | Normalized NIR Index | B8A/(B8A + B4 + B3) | [47] | |||||
SWIR12-TCARI3 | SWIR12 related transformed Chlorophyll Absorption Reflectance Index | 3 × [(B7 − B12) − 0.2 × (B7 − B3) × (B7/B12)] | [50] | |||||
IRECI1 | Inverted Red-Edge Chlorophyll Index | (B8A − B4)/(B6 − B5) | [61] | |||||
MCARI22 | Modified chlorophyll absorption reflectance index | [(B6 − B4) − 0.2 × (B6 − B3)] × (B6/B4) | [59] | |||||
TCARI2 | Transformed Chlorophyll Absorption Reflectance Index | 3 × [(B6 − B4) − 0.2 × (B6 − B3) × (B6/B4)] | [60] | |||||
IRECI2 | Inverted Red-Edge Chlorophyll Index | (B7 − B4)/(B6 − B5) | [62] | |||||
RVI | Ratio Vegetation index | B8A/B4 | [56] | |||||
CIre3 | Red-edge Chlorophyll Index | (B8A/B7) − 1 | [51] | |||||
NDRE3 | Normalized Difference Red-edge Index | (B8A − B7)/(B8A + B7) | [49] | |||||
NDI3 | Normalized difference index | (B8A − B7)/(B8A + B4) | [52] | |||||
NDVI | Normalized Difference Vegetation Index | (B8A − B4)/(B8A + B4) | [63] | |||||
NDI2 | Normalized difference index | (B8A − B6)/(B8A + B4) | [52] | |||||
SWIR11-MCARI1 | SWIR11 related modified chlorophyll absorption in reflectance index | [(B5 − B11) − 0.2 × (B5 − B3)] × (B5/B11) | [50] | |||||
S2REP1 | Sentinel-2 red-edge position | 705 + 35 × [0.5 × (B8A + B4) − B5]/(B6 − B5) | [61] | |||||
SWIR12-TCARI2 | SWIR12 related transformed Chlorophyll Absorption Reflectance Index | 3 × [(B6 − B12) − 0.2 × (B6 − B3) × (B6/B12)] | [50] | |||||
GDR | Green reflectance divide red reflectance | B3/B4 | [64] | |||||
SWIR11-NRI | SWIR11 related Normalized ratio index | (B11 − B4)/(B11 + B4) | [50] | |||||
MCARI12 | Modified chlorophyll absorption in reflectance index | [(B8A − B6) − 0.2 × (B8A − B3)] × (B8A/B6) | [46] | |||||
SWIR12-NRI | SWIR12 related Normalized ratio index | (B12 − B4)/(B12 + B4) | [50] | |||||
CIre2 | Red-edge Chlorophyll Index | (B8A/B6) − 1 | [51] | |||||
NDRE2 | Normalized Difference Red-edge Index | (B8A − B6)/(B8A + B6) | [49] | NSE | ||||
REDVI3 | Red Edge Difference Vegetation Index | B8A − B7 | [46] | 1 | ||||
GMR | Green reflectance minus red reflectance | B3 − B4 | [64] | 0.8 | ||||
MCARI21 | Modified chlorophyll absorption reflectance index | [(B5 − B4) − 0.2 × (B5 − B3)] × (B5/B4) | [59] | 0.6 | ||||
CVI | Chlorophyll vegetation index | (B8A/B3) × (B4/B3) | [65] | 0.4 | ||||
SWIR12-TCARI1 | SWIR12 related transformed Chlorophyll Absorption Reflectance Index | 3 × [(B5 − B12) − 0.2 × (B5 − B3) × (B5/B12)] | [50] | 0.2 | ||||
SWIR12-MCARI1 | SWIR12 related modified chlorophyll absorption in reflectance index | [(B5 − B12) − 0.2 × (B5 − B3)] × (B5/B12) | [50] | 0 | ||||
SWIR11-TCARI1 | SWIR11 related transformed Chlorophyll Absorption Reflectance Index | 3 × [(B5 − B11) − 0.2 × (B5 − B3) × (B5/B11)] | [50] | −0.2 | ||||
TCARI1 | Transformed Chlorophyll Absorption Reflectance Index | 3 × [(B5 − B4) − 0.2 × (B5 − B3) × (B5/B4)] | [60] | −0.4 |
2.5. Model Evaluation
3. Results
3.1. Dry Matter Yield Distribution
3.2. Univariate Regressions
3.3. Multivariate Regressions
4. Discussion
5. Conclusions
- (i)
- DMY estimation of harvested forages in northern Sweden from Sentinel-2 data using univariate and multivariate regression models was tested in this study. The results demonstrate precise in-season DMY estimation by the random forest algorithm. Multivariate models performed better than the univariate models in terms of accuracy. Using both individual band reflectances and VIs as predictor variables improved the accuracy of multivariate regression models compared to only utilizing individual bands.
- (ii)
- It was challenging to develop a sufficiently robust model to estimate forage DMY by using Sentinel-2 data. The overfitting problem demonstrated by low model validation accuracy was the main indicator of this. The reasons may be the coarse spatial resolution and the small model training datasets. Data fusion by combining Sentinel-2 and Sentinel-1 data would be a potential way to overcome this. Furthermore, more datasets are needed for robust model building, and we therefore require continued resources and possibly international collaboration for further data collection. Nevertheless, even though model validation was slightly less accurate, the high accuracy of model calibration and evaluation showed that the selected model was promising.
- (iii)
- The estimated time-series of DMY fitted well with the recorded harvesting dates. The methods established in this study could be used to develop a decision support system to assist farmers in making decisions on fertilization and harvest timing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jordbruksverket. Agricultural Statistics. Available online: https://statistik.sjv.se/PXWeb/pxweb/sv/Jordbruksverkets%20statistikdatabas/?rxid=5adf4929-f548-4f27-9bc9-78e127837625 (accessed on 2 December 2022).
- Gunnarsson, C.; Spörndly, R.; Rosenqvist, H.; De Toro, A.; Hansson, P.A. A method of estimating timeliness costs in forage harvesting illustrated using harvesting systems in Sweden. Grass Forage Sci. 2009, 64, 276–291. [Google Scholar] [CrossRef]
- Zhou, Z.; Morel, J.; Parsons, D.; Kucheryavskiy, S.V.; Gustavsson, A.-M. Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data. Comput. Electron. Agric. 2019, 162, 246–253. [Google Scholar] [CrossRef]
- Biewer, S.; Erasmi, S.; Fricke, T.; Wachendorf, M. Prediction of yield and the contribution of legumes in legume-grass mixtures using field spectrometry. Precis. Agric. 2009, 10, 128–144. [Google Scholar] [CrossRef]
- Sun, S.; Zuo, Z.; Yue, W.; Morel, J.; Parsons, D.; Liu, J.; Peng, J.; Cen, H.; He, Y.; Shi, J.; et al. Estimation of biomass and nutritive value of grass and clover mixtures by analyzing spectral and crop height data using chemometric methods. Comput. Electron. Agric. 2022, 192, 106571. [Google Scholar] [CrossRef]
- Hakl, J.; Hrevušová, Z.; Hejcman, M.; Fuksa, P. The use of a rising plate meter to evaluate lucerne (Medicago sativa L.) height as an important agronomic trait enabling yield estimation. Grass Forage Sci. 2012, 67, 589–596. [Google Scholar] [CrossRef]
- Hall, A.; Turner, L.; Irvine, L.; Kilpatrick, S. Pasture management and extension on Tasmanian dairy farms-who measures up? Rural. Ext. Innov. Syst. J. 2017, 13, 32–40. [Google Scholar]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Marais Sicre, C.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Chen, Y.; Guerschman, J.; Shendryk, Y.; Henry, D.; Harrison, M.T. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, 13, 603. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Xie, D.; Yin, X.; Liu, C.; Liu, G. Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation. Remote Sens. 2016, 8, 10. [Google Scholar] [CrossRef]
- Khanal, S.; KC, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Punalekar, S.M.; Verhoef, A.; Quaife, T.; Humphries, D.; Bermingham, L.; Reynolds, C. Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model. Remote Sens. Environ. 2018, 218, 207–220. [Google Scholar] [CrossRef]
- Chen, Z.; Jia, K.; Xiao, C.; Wei, D.; Zhao, X.; Lan, J.; Wei, X.; Yao, Y.; Wang, B.; Sun, Y. Leaf area index estimation algorithm for GF-5 hyperspectral data based on different feature selection and machine learning methods. Remote Sens. 2020, 12, 2110. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J. Photogramm. Remote Sens. 2018, 135, 173–188. [Google Scholar] [CrossRef]
- Peng, J.; Manevski, K.; Kørup, K.; Larsen, R.; Andersen, M.N. Random forest regression results in accurate assessment of potato nitrogen status based on multispectral data from different platforms and the critical concentration approach. Field Crops Res. 2021, 268, 108158. [Google Scholar] [CrossRef]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Green, S. Modeling managed grassland biomass estimation by using multitemporal remote sensing data—A machine learning approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3254–3264. [Google Scholar] [CrossRef]
- Bispo, P.d.C.; Rodríguez-Veiga, P.; Zimbres, B.; do Couto de Miranda, S.; Henrique Giusti Cezare, C.; Fleming, S.; Baldacchino, F.; Louis, V.; Rains, D.; Garcia, M.; et al. Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach. Remote Sens. 2020, 12, 2685. [Google Scholar] [CrossRef]
- Bhadra, S.; Sagan, V.; Maimaitijiang, M.; Maimaitiyiming, M.; Newcomb, M.; Shakoor, N.; Mockler, T.C. Quantifying Leaf Chlorophyll Concentration of Sorghum from Hyperspectral Data Using Derivative Calculus and Machine Learning. Remote Sens. 2020, 12, 2082. [Google Scholar] [CrossRef]
- Thorp, K.R.; Dierig, D.A.; French, A.N.; Hunsaker, D.J. Analysis of hyperspectral reflectance data for monitoring growth and development of lesquerella. Ind. Crops Prod. 2011, 33, 524–531. [Google Scholar] [CrossRef]
- Vapnik, V. Estimation of Dependences Based on Empirical Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Dube, T. Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions. Precis. Agric. 2017, 18, 859–881. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Dusseux, P.; Guyet, T.; Pattier, P.; Barbier, V.; Nicolas, H. Monitoring of grassland productivity using Sentinel-2 remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102843. [Google Scholar] [CrossRef]
- Guerini Filho, M.; Kuplich, T.M.; Quadros, F.L.F.D. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. Int. J. Remote Sens. 2020, 41, 2861–2876. [Google Scholar] [CrossRef]
- Cai, Z.; Junttila, S.; Holst, J.; Jin, H.; Ardö, J.; Ibrom, A.; Peichl, M.; Mölder, M.; Jönsson, P.; Rinne, J. Modelling daily gross primary productivity with sentinel-2 data in the nordic region–comparison with data from modis. Remote Sens. 2021, 13, 469. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Stendardi, L.; Tømmervik, H.; Nilsen, L.; Arntzen, I.; Cooper, E.J. Time-series of cloud-free sentinel-2 ndvi data used in mapping the onset of growth of central spitsbergen, svalbard. Remote Sens. 2021, 13, 3031. [Google Scholar] [CrossRef]
- Lantmet. Available online: https://www.slu.se/fakulteter/nj/om-fakulteten/centrumbildningar-och-storre-forskningsplattformar/faltforsk/vader/lantmet/ (accessed on 8 October 2022).
- ESA. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial (accessed on 10 October 2022).
- ESA. Sentinel-2 MSI—Level 2A Products Algorithm Theoretical Basis Document. Available online: https://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-SRN-V2.10.0.pdf (accessed on 8 April 2023).
- R Core Team. R: A Language and Environment for Statistical Computing, Version 3.0.2; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Adar, S.; Sternberg, M.; Paz-Kagan, T.; Henkin, Z.; Dovrat, G.; Zaady, E.; Argaman, E. Estimation of aboveground biomass production using an unmanned aerial vehicle (UAV) and VENμS satellite imagery in Mediterranean and semiarid rangelands. Remote Sens. Appl. Soc. Environ. 2022, 26, 100753. [Google Scholar] [CrossRef]
- Naidoo, L.; van Deventer, H.; Ramoelo, A.; Mathieu, R.; Nondlazi, B.; Gangat, R. Estimating above ground biomass as an indicator of carbon storage in vegetated wetlands of the grassland biome of South Africa. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 118–129. [Google Scholar] [CrossRef]
- Reddersen, B.; Fricke, T.; Wachendorf, M. A multi-sensor approach for predicting biomass of extensively managed grassland. Comput. Electron. Agric. 2014, 109, 247–260. [Google Scholar] [CrossRef]
- Wehrens, R.; Mevik, B.-H. The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 2007, 18, 1–23. [Google Scholar]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Spinger: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Weisz, R. Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agron. J. 2005, 97, 1443–1451. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Magney, T.S.; Eitel, J.U.; Vierling, L.A. Mapping wheat nitrogen uptake from RapidEye vegetation indices. Precis. Agric. 2017, 18, 429–451. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Morier, T.; Cambouris, A.N.; Chokmani, K. In-Season Nitrogen Status Assessment and Yield Estimation Using Hyperspectral Vegetation Indices in a Potato Crop. Agron. J. 2015, 107, 1295–1309. [Google Scholar] [CrossRef]
- Lepine, L.C.; Ollinger, S.V.; Ouimette, A.P.; Martin, M.E. Examining spectral reflectance features related to foliar nitrogen in forests: Implications for broad-scale nitrogen mapping. Remote Sens. Environ. 2016, 173, 174–186. [Google Scholar] [CrossRef]
- Dimitrov, P.; Kamenova, I.; Roumenina, E.; Filchev, L.; Ilieva, I.; Jelev, G.; Gikov, A.; Banov, M.; Krasteva, V.; Kolchakov, V.; et al. Estimation of biophysical and biochemical variables of winter wheat through Sentinel-2 vegetation indices. Bulg. J. Agric. Sci. 2019, 25, 819–832. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.; Rascher, U. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Daughtry, C.; Walthall, C.; Kim, M.; De Colstoun, E.B.; McMurtrey Iii, J. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Odindi, J.; Kutywayo, D. Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data. ISPRS J. Photogramm. Remote Sens. 2018, 138, 1–11. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Bowen, T.R.; Hopkins, B.G.; Ellsworth, J.W.; Cook, A.G.; Funk, S.A. In-season variable rate N in potato and barley production using optical sensing instrumentation. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA; 2005; pp. 141–148. [Google Scholar]
- Wang, Y.; Wang, D.; Zhang, G.; Wang, J. Estimating nitrogen status of rice using the image segmentation of GR thresholding method. Field Crops Res. 2013, 149, 33–39. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1482–1493. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Bao, Y.; Luo, J.; Jin, X.; Xu, X.; Song, X.; Yang, G. Exploring the Best Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression. Remote Sens. 2014, 6, 6221–6241. [Google Scholar] [CrossRef]
- Otgonbayar, M.; Atzberger, C.; Chambers, J.; Damdinsuren, A. Mapping pasture biomass in Mongolia using partial least squares, random forest regression and Landsat 8 imagery. Int. J. Remote Sens. 2019, 40, 3204–3226. [Google Scholar] [CrossRef]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Huang, C.; Song, X. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation. Remote Sens. Environ. 2020, 247, 111950. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Dupuy, S.; Vintrou, É.; Ameline, M.; Butler, S.; Bégué, A. A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated Sentinel-2 time series, VHRS and DEM). Remote Sens. 2017, 9, 259. [Google Scholar] [CrossRef]
- Crabbe, R.A.; Lamb, D.W.; Edwards, C.; Andersson, K.; Schneider, D. A preliminary investigation of the potential of sentinel-1 radar to estimate pasture biomass in a grazed pasture landscape. Remote Sens. 2019, 11, 872. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Schwieder, M.; Leitão, P.J.; da Cunha Bustamante, M.M.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- Mantero, P.; Moser, G.; Serpico, S.B. Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Trans. Geosci. Remote Sens. 2005, 43, 559–570. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.-B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.P.W.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
Year | Locations | Temperature (°C) | Precipitation (mm) | Solar Radiation (MJ m−2) |
---|---|---|---|---|
2019 | Ås | 11.3 | 216.4 | 2484 |
Lännäs | 12.6 | 156.8 | 2579 | |
Öjebyn | 12.1 | 355.1 | 2852 | |
Röbäcksdalen | 11.9 | 262.4 | 2144 | |
2020 | Ås | 11.5 | 217.4 | 2437 |
Lännäs | 12.8 | 204.6 | 2748 | |
Öjebyn | 12.3 | 318.2 | 2667 | |
Röbäcksdalen | 12.3 | 312.7 | 2203 |
Locations | Latitude | Longitude | Year | Management | Fields | n |
---|---|---|---|---|---|---|
Ås | 63°15′N | 14°36′E | 2019/2020 | Organic | 1 | 30 |
Lännäs | 63° 8′N | 17°45′E | 2019/2020 | Organic | 1 | 42 |
Öjebyn | 65°21′N | 21°24′E | 2019 | Conventional | 1 | 21 |
Röbäcksdalen | 63°47′N | 20°14′E | 2019/2020 | Conventional | 5 | 87 |
Locations | 2019 (n) | 2020 (n) |
---|---|---|
Ås | 2 | 1 |
Lännäs | 5 | 6 |
Öjebyn | 9 | 0 |
Röbäcksdalen | 9 | 42 |
Indicator | Calibration (n = 49) | Validation (n = 16) | Evaluation (n = 9) | ||||||
---|---|---|---|---|---|---|---|---|---|
PLSR | RFR | SVR | PLSR | RFR | SVR | PLSR | RFR | SVR | |
NSE | 0.81 ± 0.17 | 0.92 ± 0.01 | 0.95 ± 0.04 | 0.34 ± 0.41 | 0.55 ± 0.22 | 0.61 ± 0.21 | 0.35 ± 1.11 | 0.86 ± 0.04 | 0.61 ± 0.26 |
RMSE | 0.39 ± 0.17 | 0.27 ± 0.03 | 0.19 ± 0.11 | 0.75 ± 0.21 | 0.63 ± 0.17 | 0.58 ± 0.17 | 0.49 ± 0.31 | 0.26 ± 0.03 | 0.43 ± 0.14 |
Year | Location | Mean Interval (days) | Standard Deviation (days) |
---|---|---|---|
2019 | Ås | 8.50 | 6.80 |
Lännäs | 7.39 | 6.09 | |
Öjebyn | 5.11 | 3.74 | |
Röbäcksdalen Field 1 | 3.89 | 2.41 | |
Röbäcksdalen Field 2 | 4.00 | 2.50 | |
Röbäcksdalen Field 3 | 4.00 | 2.41 | |
Röbäcksdalen Field 4 | 4.83 | 3.30 | |
Röbäcksdalen Field 5 | 7.00 | 7.47 | |
2020 | Ås | 3.38 | 4.08 |
Lännäs | 6.95 | 8.39 | |
Öjebyn | 4.13 | 3.80 | |
Röbäcksdalen Field 1 | 4.06 | 3.90 | |
Röbäcksdalen Field 2 | 4.06 | 3.59 | |
Röbäcksdalen Field 3 | 5.35 | 5.67 | |
Röbäcksdalen Field 4 | 4.58 | 3.98 | |
Röbäcksdalen Field 5 | 5.00 | 4.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Zeiner, N.; Parsons, D.; Féret, J.-B.; Söderström, M.; Morel, J. Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes. Remote Sens. 2023, 15, 2350. https://doi.org/10.3390/rs15092350
Peng J, Zeiner N, Parsons D, Féret J-B, Söderström M, Morel J. Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes. Remote Sensing. 2023; 15(9):2350. https://doi.org/10.3390/rs15092350
Chicago/Turabian StylePeng, Junxiang, Niklas Zeiner, David Parsons, Jean-Baptiste Féret, Mats Söderström, and Julien Morel. 2023. "Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes" Remote Sensing 15, no. 9: 2350. https://doi.org/10.3390/rs15092350
APA StylePeng, J., Zeiner, N., Parsons, D., Féret, J. -B., Söderström, M., & Morel, J. (2023). Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes. Remote Sensing, 15(9), 2350. https://doi.org/10.3390/rs15092350