Global Feature Attention Network: Addressing the Threat of Adversarial Attack for Aerial Image Semantic Segmentation
<p>Illustration of the adversarial examples attack on aerial image semantic segmentation.</p> "> Figure 2
<p>Illustration of the proposed global feature attention network (GFANet). The global context encoder is adopted to build global spatial dependency and suppress adversarial noise. The global coordinate attention mechanism and feature consistency alignment are used for global feature enhancement and fusion of shallow and deep features. Each feature map is shown with the size of its tensor (e.g., <span class="html-italic">h</span>, <span class="html-italic">w</span>, and <span class="html-italic">c</span> represent the height, width, and the number of channels, respectively).</p> "> Figure 3
<p>Example images and corresponding ground truth from the UAVid, Semantic Drone, and AeroScapes datasets. The first row shows the UAVid [<a href="#B2-remotesensing-15-01325" class="html-bibr">2</a>] dataset. The second row shows the Semantic Drone [<a href="#B70-remotesensing-15-01325" class="html-bibr">70</a>] dataset. The third row shows the AeroScapes [<a href="#B71-remotesensing-15-01325" class="html-bibr">71</a>] dataset.</p> "> Figure 4
<p>Visualization results of different methods on clean example test set in UAVid dataset. (<b>a</b>) Original Images. (<b>b</b>) Ground Truth. (<b>c</b>) LANet [<a href="#B10-remotesensing-15-01325" class="html-bibr">10</a>]. (<b>d</b>) AERFC [<a href="#B11-remotesensing-15-01325" class="html-bibr">11</a>]. (<b>e</b>) AFNet [<a href="#B12-remotesensing-15-01325" class="html-bibr">12</a>]. (<b>f</b>) GFANet.</p> "> Figure 5
<p>Visualization results of different methods on adversarial example test set in UAVid dataset. (<b>a</b>) Adversarial Images. (<b>b</b>) Ground Truth. (<b>c</b>) LANet [<a href="#B10-remotesensing-15-01325" class="html-bibr">10</a>]. (<b>d</b>) AERFC [<a href="#B11-remotesensing-15-01325" class="html-bibr">11</a>]. (<b>e</b>) AFNet [<a href="#B12-remotesensing-15-01325" class="html-bibr">12</a>]. (<b>f</b>) GFANet.</p> "> Figure 6
<p>Quantitative comparison results of calean examples and adversarial examples on different datasets. (<b>a</b>) UAVid dataset [<a href="#B2-remotesensing-15-01325" class="html-bibr">2</a>]. (<b>b</b>) Semantic Drone dataset [<a href="#B70-remotesensing-15-01325" class="html-bibr">70</a>]. (<b>c</b>) Aeroscapes dataset [<a href="#B71-remotesensing-15-01325" class="html-bibr">71</a>].</p> "> Figure 7
<p>Visualization results of different methods on clean example test set in Semantic Drone dataset. (<b>a</b>) Original Images. (<b>b</b>) Ground Truth. (<b>c</b>) MCLNet [<a href="#B13-remotesensing-15-01325" class="html-bibr">13</a>]. (<b>d</b>) BSNet [<a href="#B14-remotesensing-15-01325" class="html-bibr">14</a>]. (<b>e</b>) SBANet [<a href="#B15-remotesensing-15-01325" class="html-bibr">15</a>]. (<b>f</b>) GFANet.</p> "> Figure 8
<p>Visualization results of different methods on adversarial example test set in Semantic Drone dataset. (<b>a</b>) Adversarial Images. (<b>b</b>) Ground Truth. (<b>c</b>) MCLNet [<a href="#B13-remotesensing-15-01325" class="html-bibr">13</a>]. (<b>d</b>) BSNet [<a href="#B14-remotesensing-15-01325" class="html-bibr">14</a>]. (<b>e</b>) SBANet [<a href="#B15-remotesensing-15-01325" class="html-bibr">15</a>]. (<b>f</b>) GFANet.</p> "> Figure 9
<p>Visualization results of different methods on the clean example test set in the AeroScapes dataset. (<b>a</b>) Original Images. (<b>b</b>) Ground Truth. (<b>c</b>) MANet [<a href="#B16-remotesensing-15-01325" class="html-bibr">16</a>]. (<b>d</b>) HPSNet [<a href="#B17-remotesensing-15-01325" class="html-bibr">17</a>]. (<b>e</b>) TCHNet [<a href="#B70-remotesensing-15-01325" class="html-bibr">70</a>]. (<b>f</b>) GFANet.</p> "> Figure 10
<p>Visualization results of different methods on the adversarial example test set in the AeroScapes dataset. (<b>a</b>) Original Images. (<b>b</b>) Ground Truth. (<b>c</b>) MANet [<a href="#B16-remotesensing-15-01325" class="html-bibr">16</a>]. (<b>d</b>) HPSNet [<a href="#B17-remotesensing-15-01325" class="html-bibr">17</a>]. (<b>e</b>) TCHNet [<a href="#B70-remotesensing-15-01325" class="html-bibr">70</a>]. (<b>f</b>) GFANet.</p> "> Figure 11
<p>The pixel accuracy of different methods on the adversarial example test set with different perturbation values. (<b>a</b>) UAVid dataset [<a href="#B2-remotesensing-15-01325" class="html-bibr">2</a>]. (<b>b</b>) Semantic Drone dataset [<a href="#B70-remotesensing-15-01325" class="html-bibr">70</a>]. (<b>c</b>) Aeroscapes dataset [<a href="#B71-remotesensing-15-01325" class="html-bibr">71</a>].</p> ">
Abstract
:1. Introduction
- We systematically analyze the impact of adversarial attacks on aerial image semantic segmentation for the first time and propose a robust aerial image semantic segmentation network based on global context feature information awareness and fusion.
- We construct the global context encoder (GCE) module, global coordinate attention mechanism (GCAM), and feature consistency alignment (FCA) module to resist adversarial noise interference by using the robust characteristics of global features.
- We design a universal adversarial training strategy to enhance the defense of the semantic segmentation model against different adversarial example attacks by introducing Gaussian noise in the adversarial training process.
- The extensive experiments conducted on three aerial image datasets containing large-scale urban and suburban scenes demonstrate the robustness of the proposed method against adversarial attacks while maintaining high semantic segmentation accuracy.
2. Related Works
2.1. Global Feature Extraction
2.2. Adversarial Attacks
2.3. Adversarial Defense
3. Methodology
3.1. Global Context Encoder
3.2. Global Coordinate Attention Mechanism
3.3. Feature Consistency Alignment
3.4. Universal Adversarial Training
Algorithm 1: Universarial Adversarial Training. |
Input: adversarial training times T, iteration times I, training set label number M, training set , target label , perturbation , iteration perturbation stride , mean , variance . |
Output: model parameter . |
1: for to T do |
2: for to M do |
3: |
4: for to I do |
5: |
6: |
7: |
8: end for |
9: |
10: end for |
11: end for |
4. Experiments and Analysis
4.1. Dataset Information
4.2. Experimental Setup and Implementation Details
Algorithm 2: Adversarial Attack on GFANet. |
Input: |
1: Aerial image x and corresponding ground truth y. |
2: Semantic segmentation model f with parameters . |
3: Adversarial perturbation amplitude , training epochs , and learning rate . |
Output: The predictions on the adversarial example . |
4: Initialize model parameters with uniform distribution. |
5: for t in do |
6: Compute the global context features via (11). |
7: Compute the coordinate attention features via (17). |
8: Computer the global consistency features via (22). |
9: Computer the cross-entropy loss via (24). |
10: Update by descending its stochastic gradients. |
11: end for |
12: Generate the adversarial image via (2), (4), (5). |
13: Feed the adversarial image to the trained model f to achieve the segmentation. |
4.3. Evaluate Metrics
- The PA is the basic evaluate metric in semantic segmentation, which is defined as the correctly classified pixel in all pixels as .
- The mPA is the mean of the sum of category pixel accuracy (cPA), where represents the correct proportion of predicted category pixels.
- The F1_score is the geometric mean between the precision (P) and recall (R) of each class as , where and .
- The mIoU is defined as the mean of IoU, and the IoU is calculated as . and are the set of prediction pixels and ground truth pixels for the ith class.
4.4. Comparison with State-of-the-Art Methods
4.5. Ablation Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, X.; Shi, J.; Gu, L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery. Expert Syst. Appl. 2021, 169, 114417–114426. [Google Scholar] [CrossRef]
- Lyu, Y.; Vosselman, G.; Xia, G.-S.; Yilmaz, A.; Yang, M.Y. UAVid: A Semantic Segmentation Dataset for UAV Imagery. ISPRS J. Photogramm. 2020, 165, 108–119. [Google Scholar] [CrossRef]
- Wu, G.; Pedrycz, W.; Li, H.; Ma, M.; Liu, J. Coordinated Planning of Heterogeneous Earth Observation Resources. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 109–125. [Google Scholar] [CrossRef]
- Girisha, S.; Verma, U.; Manohara Pai, M.M.; Pai, R.M. UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by Embedding Temporal Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4115–4127. [Google Scholar] [CrossRef]
- Erdelj, M.; Natalizio, E.; Chowdhury, K.R.; Akyildiz, I.F. Help from the Sky: Leveraging UAVs for Disaster Management. IEEE Pervasive Comput. 2017, 16, 24–32. [Google Scholar] [CrossRef]
- Nogueira, K.; Fadel, S.G.; Dourado, I.C.; Werneck, R.D.O.; Munoz, J.A.V.; Penatti, O.A.B.; Calumby, R.T.; Li, L.T.; dos Santos, J.A.; Torres, R.d.S. Exploiting ConvNet Diversity for Flooding Identification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1446–1450. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.-F.; Sun, Q.; Sun, H.-M.; Jia, R.-S. NT-Net: A Semantic Segmentation Network for Extracting Lake Water Bodies From Optical Remote Sensing Images Based on Transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, Y.; Wang, L. Semantic Segmentation of Remote Sensing Imagery Using an Object-Based Markov Random Field Model With Auxiliary Label Fields. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3015–3028. [Google Scholar] [CrossRef]
- Ding, L.; Tang, H.; Bruzzone, L. LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 426–435. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Jiang, J.; Han, Z.; Deng, S.; Li, Z.; Fang, T.; Huo, H.; Li, Q.; Liu, M. Adaptive Effective Receptive Field Convolution for Semantic Segmentation of VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3532–3546. [Google Scholar] [CrossRef]
- Liu, R.; Mi, L.; Chen, Z. AFNet: Adaptive Fusion Network for Remote Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7871–7886. [Google Scholar] [CrossRef]
- He, P.; Jiao, L.; Shang, R.; Wang, S.; Liu, X.; Quan, D.; Yang, K.; Zhao, D. MANet: Multi-Scale Aware-Relation Network for Semantic Segmentation in Aerial Scenes. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Hou, J.; Guo, Z.; Wu, Y.; Diao, W.; Xu, T. BSNet: Dynamic Hybrid Gradient Convolution Based Boundary-Sensitive Network for Remote Sensing Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–22. [Google Scholar] [CrossRef]
- Li, A.; Jiao, L.; Zhu, H.; Li, L.; Liu, F. Multitask Semantic Boundary Awareness Network for Remote Sensing Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.; Zhang, C.; Duan, C.; Su, J.; Wang, L.; Atkinson, P.M. Multiattention Network for Semantic Segmentation of Fine-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Yang, K.; Tong, X.-Y.; Xia, G.-S.; Shen, W.; Zhang, L. Hidden Path Selection Network for Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Xu, Y.; Du, B.; Zhang, L. Assessing the Threat of Adversarial Examples on Deep Neural Networks for Remote Sensing Scene Classification: Attacks and Defenses. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1604–1617. [Google Scholar] [CrossRef]
- Wang, K.; Li, F.; Chen, C.-M.; Hassan, M.M.; Long, J.; Kumar, N. Interpreting Adversarial Examples and Robustness for Deep Learning-Based Auto-Driving Systems. IEEE Trans. Intell. Transport. Syst. 2022, 23, 9755–9764. [Google Scholar] [CrossRef]
- Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2805–2824. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, C.; Wen, S.; Han, Q.-L.; Nepal, S.; Zhang, X.; Xiang, Y. Daedalus: Breaking Nonmaximum Suppression in Object Detection via Adversarial Examples. IEEE Trans. Cybern. 2021, 52, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Arnab, A.; Miksik, O.; Torr, P.H.S. On the Robustness of Semantic Segmentation Models to Adversarial Attacks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 3040–3053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing Properties of Neural Networks. arXiv 2014, arXiv:1312.6199. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2015, arXiv:1412.6572. [Google Scholar]
- Moosavi-Dezfooli, S.-M.; Fawzi, A.; Frossard, P. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2574–2582. [Google Scholar]
- Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The Limitations of Deep Learning in Adversarial Settings. In Proceedings of the IEEE European Symposium on Security and Privacy, Saarbrucken, Germany, 11–15 March 2016; pp. 372–387. [Google Scholar]
- Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. arXiv 2017, arXiv:1608.04644. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. arXiv 2019, arXiv:1706.06083. [Google Scholar]
- Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial Machine Learning at Scale. arXiv 2017, arXiv:1611.01236. [Google Scholar]
- Moosavi-Dezfooli, S.-M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal Adversarial Perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 July 2017; pp. 86–94. [Google Scholar]
- Czaja, W.; Fendley, N.; Pekala, M.; Ratto, C.; Wang, I.-J. Adversarial Examples in Remote Sensing. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 6 November 2018; ACM: New York, NY, USA, 2018; pp. 408–411. [Google Scholar]
- Li, W.; Li, Z.; Sun, J.; Wang, Y.; Liu, H.; Yang, J.; Gui, G. Spear and Shield: Attack and Detection for CNN-Based High Spatial Resolution Remote Sensing Images Identification. IEEE Access. 2019, 7, 94583–94592. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Zhu, G.; Li, Q.; Zhu, J.; Huang, H.; Peng, J.; Zhao, L. Attack Selectivity of Adversarial Examples in Remote Sensing Image Scene Classification. IEEE Access. 2020, 8, 137477–137489. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Chen, L.; Peng, J.; Huang, H.; Cui, Z.; Mei, X.; Wu, G. Adversarial Examples for CNN-Based SAR Image Classification: An Experience Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1333–1347. [Google Scholar] [CrossRef]
- Xu, Y.; Du, B.; Zhang, L. Self-Attention Context Network: Addressing the Threat of Adversarial Attacks for Hyperspectral Image Classification. IEEE Trans. Image Process. 2021, 30, 8671–8685. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Z.; Li, Q.; Peng, J.; Wang, S.; Li, H. An Empirical Study of Adversarial Examples on Remote Sensing Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7419–7433. [Google Scholar] [CrossRef]
- Xu, Y.; Ghamisi, P. Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Cheng, G.; Sun, X.; Li, K.; Guo, L.; Han, J. Perturbation-Seeking Generative Adversarial Networks: A Defense Framework for Remote Sensing Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- He, X.; Yang, S.; Li, G.; Li, H.; Chang, H.; Yu, Y. Non-Local Context Encoder: Robust Biomedical Image Segmentation against Adversarial Attacks. arXiv 2019, arXiv:1904.12181. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Dana, K.; Shi, J.; Zhang, Z.; Wang, X.; Tyagi, A.; Agrawal, A. Context Encoding for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7151–7160. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
- Wu, T.; Tang, S.; Zhang, R.; Cao, J.; Zhang, Y. CGNet: A Light-Weight Context Guided Network for Semantic Segmentation. IEEE Trans. Image Process. 2021, 30, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, W.; Zhang, T.; Li, J. HRCNet: High-Resolution Context Extraction Network for Semantic Segmentation of Remote Sensing Images. Remote Sens. 2021, 13, 71. [Google Scholar] [CrossRef]
- Nekrasov, V.; Ju, J.; Choi, J. Global Deconvolutional Networks for Semantic Segmentation. arXiv 2016, arXiv:1602.03930. [Google Scholar]
- Zhang, H.; Zhang, H.; Wang, C.; Xie, J. Co-Occurrent Features in Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 548–557. [Google Scholar]
- Li, X.; Li, T.; Chen, Z.; Zhang, K.; Xia, R. Attentively Learning Edge Distributions for Semantic Segmentation of Remote Sensing Imagery. Remote Sens. 2021, 14, 102. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Liu, F.; Lyu, X.; Tong, Y.; Xu, Z.; Zhou, J. A Synergistical Attention Model for Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Lasang, P.; Sun, Q. Covariance Attention for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 11, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yu, Y.; Jiao, J.; Xing, E.; Ghaoui, L.E.; Jordan, M. Theoretically Principled Trade-off between Robustness and Accuracy. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7472–7482. [Google Scholar]
- Liu, X.; Cheng, M.; Zhang, H.; Hsieh, C.-J. Towards Robust Neural Networks via Random Self-Ensemble. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 October 2018; pp. 381–397. [Google Scholar]
- Wang, Y.; Zou, D.; Yi, J.; Bailey, J.; Ma, X.; Gu, Q. Improving adversarial robustness requires revisiting misclassified examples. In Proceedings of the International Conference on Learning Representations, Virtual, 27–30 April 2020; pp. 185–192. [Google Scholar]
- Feinman, R.; Curtin, R.R.; Shintre, S.; Gardner, A.B. Detecting Adversarial Samples from Artifacts. arXiv 2017, arXiv:1703.00410. [Google Scholar]
- Ma, X.; Li, B.; Wang, Y.; Erfani, S.M.; Wijewickrema, S.; Schoenebeck, G.; Song, D.; Houle, M.E.; Bailey, J. Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality. arXiv 2018, arXiv:1801.02613. [Google Scholar]
- Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; McDaniel, P. On the (Statistical) Detection of Adversarial Examples. arXiv 2017, arXiv:1702.06280. [Google Scholar]
- Tao, G.; Ma, S.; Liu, Y.; Zhang, X. Attacks Meet Interpretability: Attribute-Steered Detection of Adversarial Samples. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 6–11 December 2018; pp. 113–118. [Google Scholar]
- Feinman, R.; Lake, B.M. Learning Inductive Biases with Simple Neural Networks. arXiv 2018, arXiv:1802.02745. [Google Scholar]
- Xu, W.; Evans, D.; Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. In Proceedings of the Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21 December 2018; pp. 158–164. [Google Scholar]
- Gu, S.; Rigazio, L. Towards Deep Neural Network Architectures Robust to Adversarial Examples. arXiv 2015, arXiv:1412.5068. [Google Scholar]
- Ross, A.S.; Doshi-Velez, F. Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing Their Input Gradients. arXiv 2017, arXiv:1711.09404. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Nayebi, A.; Ganguli, S. Biologically Inspired Protection of Deep Networks from Adversarial Attacks. arXiv 2017, arXiv:1703.09202. [Google Scholar]
- Cisse, M.; Adi, Y.; Neverova, N.; Keshet, J. Houdini: Fooling Deep Structured Prediction Models. arXiv 2017, arXiv:1707.05373. [Google Scholar]
- Gao, J.; Wang, B.; Lin, Z.; Xu, W.; Qi, Y. DeepCloak: Masking Deep Neural Network Models for Robustness Against Adversarial Samples. arXiv 2017, arXiv:1702.06763. [Google Scholar]
- Sun, Z.; Ozay, M.; Okatani, T. HyperNetworks with Statistical Filtering for Defending Adversarial Examples. arXiv 2017, arXiv:1711.01791. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Gao, Y.; Beijbom, O.; Zhang, N.; Darrell, T. Compact Bilinear Pooling. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 317–326. [Google Scholar]
- Zhu, X.; Cheng, D.; Zhang, Z.; Lin, S.; Dai, J. An Empirical Study of Spatial Attention Mechanisms in Deep Networks. In Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October 2019; pp. 6687–6696. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717. [Google Scholar]
- Chen, L.; Liu, F.; Zhao, Y.; Wang, W.; Yuan, X.; Zhu, J. VALID: A Comprehensive Virtual Aerial Image Dataset. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation, Paris, France, 31 May 2020; pp. 2009–2016. [Google Scholar]
- Nigam, I.; Huang, C.; Ramanan, D. Ensemble Knowledge Transfer for Semantic Segmentation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1499–1508. [Google Scholar]
- Zhang, C.; Jiang, W.; Zhang, Y.; Wang, W.; Zhao, Q.; Wang, C. Transformer and CNN Hybrid Deep Neural Network for Semantic Segmentation of Very-High-Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
Methods | Per-Class IoU (%) | Evaluate Metrics (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Building | Road | Tree | Low.veg. | M.car | S.car | Human | Clutter | PA | mPA | mF1 | mIoU | |
LANet | 81.39 | 76.35 | 77.48 | 68.34 | 71.72 | 63.33 | 31.15 | 62.47 | 87.24 | 78.53 | 85.74 | 66.52 |
AERFC | 83.25 | 80.62 | 78.51 | 66.96 | 75.18 | 67.85 | 36.53 | 65.42 | 88.07 | 79.85 | 86.43 | 69.28 |
AFNet | 82.26 | 80.95 | 77.41 | 68.03 | 76.84 | 67.11 | 38.71 | 66.46 | 88.41 | 80.98 | 87.15 | 70.47 |
GFANet | 84.72 | 82.77 | 79.32 | 70.25 | 77.31 | 70.92 | 41.26 | 68.57 | 89.28 | 82.41 | 88.54 | 71.89 |
Methods | Per-Class IoU (%) | Evaluate Metrics (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Building | Road | Tree | Low.veg. | M.car | S.car | Human | Clutter | PA | mPA | mF1 | mIoU | |
LANet | 17.12 | 21.43 | 22.21 | 16.56 | 16.21 | 12.64 | 6.15 | 14.52 | 25.42 | 19.46 | 22.61 | 15.85 |
AERFC | 12.23 | 22.57 | 17.23 | 10.52 | 18.37 | 15.28 | 7.32 | 20.17 | 23.17 | 18.23 | 20.17 | 15.46 |
AFNet | 21.45 | 24.32 | 19.75 | 17.28 | 20.63 | 18.52 | 9.75 | 26.34 | 26.73 | 21.75 | 24.36 | 19.75 |
GFANet | 81.63 | 78.52 | 77.16 | 68.43 | 75.35 | 68.14 | 39.57 | 67.26 | 87.65 | 79.86 | 86.45 | 69.51 |
Methods | Per-Class IoU (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tree | Rocks | Dog | Fence | Grass | Water | Bicycle | Pole | Vegetation | Dirt | Pool | |
MCLNet | 62.28 | 55.76 | 45.48 | 59.53 | 73.40 | 82.43 | 67.38 | 11.25 | 75.33 | 50.84 | 87.95 |
BSNet | 74.14 | 64.40 | 55.22 | 59.65 | 78.43 | 77.22 | 65.13 | 18.57 | 73.54 | 52.25 | 89.48 |
SBANet | 73.82 | 60.86 | 62.46 | 60.02 | 84.63 | 86.81 | 65.74 | 23.43 | 76.38 | 53.85 | 88.41 |
GFANet | 75.83 | 68.75 | 75.92 | 64.69 | 94.72 | 92.76 | 72.43 | 35.17 | 78.69 | 62.17 | 96.35 |
Methods | door | gravel | wall | obstacle | car | window | paved | PA | mPA | mF1 | mIoU |
MCLNet | 15.62 | 72.02 | 66.37 | 73.85 | 84.69 | 55.83 | 85.44 | 82.14 | 73.81 | 79.26 | 62.52 |
BSNet | 17.87 | 80.75 | 65.44 | 70.25 | 83.74 | 52.37 | 91.58 | 84.62 | 74.29 | 81.52 | 65.13 |
SBANet | 21.35 | 83.71 | 70.25 | 71.95 | 86.41 | 59.32 | 95.94 | 85.37 | 76.82 | 83.37 | 68.07 |
GFANet | 32.58 | 84.52 | 74.26 | 76.99 | 94.80 | 68.73 | 96.87 | 91.28 | 84.73 | 88.46 | 74.80 |
Methods | Per-Class IoU (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tree | Rocks | Dog | Fence | Grass | Water | Bicycle | Pole | Vegetation | Dirt | Pool | |
MCLNet | 12.13 | 8.75 | 6.52 | 10.27 | 21.54 | 19.75 | 11.32 | 2.14 | 18.62 | 7.45 | 16.48 |
BSNet | 16.87 | 11.35 | 10.23 | 11.58 | 19.74 | 17.82 | 10.16 | 5.83 | 21.52 | 8.64 | 24.62 |
SBANet | 14.79 | 6.47 | 12.58 | 13.74 | 23.57 | 15.26 | 9.13 | 8.52 | 24.57 | 11.85 | 22.47 |
GFANet | 72.15 | 67.24 | 73.59 | 63.52 | 92.38 | 91.57 | 71.96 | 33.82 | 76.23 | 62.08 | 95.22 |
Methods | door | gravel | wall | obstacle | car | window | paved | PA | mPA | mF1 | mIoU |
MCLNet | 1.65 | 18.37 | 13.72 | 15.25 | 20.46 | 6.42 | 20.48 | 29.15 | 23.16 | 26.73 | 12.85 |
BSNet | 3.57 | 26.52 | 15.23 | 17.94 | 18.35 | 8.79 | 22.51 | 34.78 | 26.35 | 29.64 | 15.07 |
SBANet | 7.48 | 28.16 | 21.57 | 19.62 | 22.75 | 9.84 | 28.63 | 35.24 | 27.68 | 32.57 | 16.72 |
GFANet | 30.74 | 82.97 | 72.18 | 75.23 | 93.52 | 67.15 | 95.87 | 89.72 | 82.56 | 87.34 | 73.20 |
Methods | Per-Class IoU (%) | Evaluate Metrics (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Person | Bike | Car | Drone | Boat | Animal | Obs. | Cons. | Veg. | Road | Sky | PA | mPA | mF1 | mIoU | |
MANet | 75.86 | 56.72 | 72.83 | 53.86 | 62.78 | 48.52 | 72.43 | 69.53 | 81.57 | 85.42 | 89.27 | 88.75 | 81.36 | 87.15 | 69.89 |
HPSNet | 81.42 | 60.45 | 68.23 | 58.42 | 65.37 | 45.26 | 70.54 | 73.68 | 84.95 | 87.06 | 91.28 | 89.41 | 82.45 | 88.36 | 71.52 |
TCHNet | 78.95 | 62.37 | 71.12 | 61.53 | 67.26 | 43.57 | 68.15 | 70.93 | 86.04 | 89.48 | 90.57 | 89.53 | 83.06 | 88.75 | 71.81 |
GFANet | 82.14 | 65.29 | 73.46 | 62.38 | 68.59 | 57.32 | 74.98 | 75.64 | 87.25 | 91.06 | 92.43 | 92.87 | 85.23 | 90.05 | 75.50 |
Methods | Per-Class IoU (%) | Evaluate Metrics (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Person | Bike | Car | Drone | Boat | Animal | Obs. | Cons. | Veg. | Road | Sky | PA | mPA | mF1 | mIoU | |
MANet | 12.39 | 2.73 | 6.94 | 3.54 | 8.57 | 7.46 | 6.98 | 7.15 | 15.84 | 16.43 | 21.45 | 36.72 | 27.09 | 32.85 | 9.95 |
HPSNet | 11.54 | 4.36 | 9.26 | 5.71 | 12.58 | 8.43 | 5.45 | 4.62 | 17.35 | 20.76 | 19.42 | 38.51 | 29.32 | 34.42 | 10.86 |
TCHNet | 17.21 | 9.45 | 11.34 | 8.66 | 14.26 | 9.68 | 4.01 | 8.69 | 20.66 | 23.68 | 18.46 | 42.78 | 32.57 | 40.36 | 13.28 |
GFANet | 81.43 | 64.97 | 72.15 | 60.83 | 66.87 | 55.92 | 72.46 | 73.84 | 85.60 | 88.23 | 90.04 | 88.92 | 81.65 | 86.53 | 73.84 |
Baseline | GCE | GCAM | FCA | UAT | UAVid | Semantic Drone | Aeroscapes |
---|---|---|---|---|---|---|---|
✔ | 21.35 | 23.18 | 25.72 | ||||
✔ | ✔ | 48.76 | 52.37 | 55.46 | |||
✔ | ✔ | ✔ | 63.54 | 66.72 | 69.28 | ||
✔ | ✔ | ✔ | ✔ | 79.83 | 82.54 | 85.93 | |
✔ | ✔ | ✔ | ✔ | ✔ | 89.28 | 89.63 | 91.47 |
Method | LANet | AERFC | AFNet | MCLNet | BSNet | SBANet | MANet | HPSNet | TCHNet | GFANet |
---|---|---|---|---|---|---|---|---|---|---|
Normal | 87.24 | 88.07 | 88.41 | 85.32 | 86.73 | 84.86 | 87.59 | 85.43 | 87.15 | 89.28 |
FGSM | 25.42 | 23.17 | 26.73 | 21.58 | 24.73 | 20.68 | 22.35 | 22.04 | 24.28 | 87.65 |
C&W | 19.75 | 17.83 | 18.62 | 16.32 | 17.26 | 15.41 | 16.05 | 15.28 | 18.57 | 85.36 |
PGD | 18.21 | 16.35 | 17.43 | 15.89 | 16.73 | 14.92 | 14.25 | 15.74 | 17.82 | 84.95 |
JSMA | 26.85 | 24.38 | 27.31 | 22.74 | 25.16 | 22.37 | 23.48 | 24.05 | 25.81 | 88.53 |
UAP | 17.23 | 15.08 | 15.87 | 14.62 | 14.89 | 13.75 | 14.52 | 13.28 | 15.46 | 84.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, B.; Liu, Y.; Guo, J. Global Feature Attention Network: Addressing the Threat of Adversarial Attack for Aerial Image Semantic Segmentation. Remote Sens. 2023, 15, 1325. https://doi.org/10.3390/rs15051325
Wang Z, Wang B, Liu Y, Guo J. Global Feature Attention Network: Addressing the Threat of Adversarial Attack for Aerial Image Semantic Segmentation. Remote Sensing. 2023; 15(5):1325. https://doi.org/10.3390/rs15051325
Chicago/Turabian StyleWang, Zhen, Buhong Wang, Yaohui Liu, and Jianxin Guo. 2023. "Global Feature Attention Network: Addressing the Threat of Adversarial Attack for Aerial Image Semantic Segmentation" Remote Sensing 15, no. 5: 1325. https://doi.org/10.3390/rs15051325
APA StyleWang, Z., Wang, B., Liu, Y., & Guo, J. (2023). Global Feature Attention Network: Addressing the Threat of Adversarial Attack for Aerial Image Semantic Segmentation. Remote Sensing, 15(5), 1325. https://doi.org/10.3390/rs15051325