Identification of Rubber Plantations in Southwestern China Based on Multi-Source Remote Sensing Data and Phenology Windows
<p>Map of XSBN, showing location, major rivers and altitude variation.</p> "> Figure 2
<p>Number of total and effective pixel observations for Landsat-7/ETM+, Landsat-8/OLI and Sentinel-2 MSI in XSBN. (<b>a</b>) Landsat-7/ETM+ data from 2000 to 2020. (<b>b</b>) Landsat-8/OLI from 2013 to 2020. (<b>c</b>) Sentinel-2 MSI data from 2014 to 2020.</p> "> Figure 3
<p>The spatial distribution of six types of training and validation samples, including (S1) tea plantations, (S2) water bodies, (S3) impervious surfaces, (S4) natural forests, (S5) cultivated land and (S6) rubber plantations, are shown in this figure. S1–S6 are the sample points collecting areas and high-resolution Google Earth remote sensing images corresponding to those areas.</p> "> Figure 4
<p>Flowchart of the remote sensing identification method proposed for rubber plantations.</p> "> Figure 5
<p>Combining stratified sampling with non-homogenous data voting, with (S1–S6) representing sampling areas for water bodies, cultivated land, impervious surfaces, natural forests, tea plantations and rubber plantations, respectively.</p> "> Figure 6
<p>Construction process of time series curves for natural forests, cultivated land, tea plantations, water bodies, impervious surfaces and rubber plantations: (<b>a</b>) selection of 74 sampling areas within the study area; (<b>b</b>) collection of sample points with high-resolution images from Google Earth.</p> "> Figure 7
<p>(<b>a</b>) The NDVI, EVI, LSWI and NDI_VV indexes of the four datasets were calculated and sorted according to time series to form a new dataset. (<b>b</b>) The HANTS algorithm was used to reconstruct each index curve.</p> "> Figure 8
<p>False color composite images of (<b>a</b>) Landsat-7/ETM+ (R/G/B = SR_B5/B4/B3), (<b>b</b>) Landsat-8/OLI (R/G/B = B6/B5/B4) and (<b>c</b>) Sentinel-2 MSI (R/G/B = B11/B8/B4) in the defoliation, foliation and vigorous growth stage of rubber plantations. As can be seen from the small area images, the spectral characteristics of the rubber plantations in the defoliation and foliation stages were significantly different from those of other land use/cover types, and the rubber plantations and the natural forests were easily mixed in the vigorous growth stage. (A) Natural forests, (B) rubber plantations, (C) impervious surfaces, (D) water bodies, (E) cultivated land are marked on the images.</p> "> Figure 9
<p>The classification results for CS 3, CS 4 and CS 5 rubber plantations are shown on a comparison map. The green portion is the rubber plantations identification result, whereas the bottom image is a high-resolution remote sensing image from Google Earth.</p> "> Figure 10
<p>Results of cross-validation of PA and UA in rubber plantations in 2014, 2016, 2018 and 2020 (10 times of cross-validation for PA and UA values in each period).</p> "> Figure 11
<p>Results of cross-validation of OA and Kappa in rubber plantations in 2014, 2016, 2018 and 2020 (10 times of cross-validation for OA and Kappa values in each period).</p> "> Figure 12
<p>(<b>a</b>) Remote sensing identification results of four rubber plantations in 2014, 2016, 2018 and 2020 and (<b>b</b>) a typical planting area of rubber plantations in the north, south and central areas were selected for comparison with Google Earth high-resolution images.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Sample Selection Optimization
2.4. Determination of Key Phenological Windows of Rubber Plantations
2.5. Feature Selection Optimization
2.6. Random Forest (RF) Algorithm
2.7. Accuracy Assessment
2.8. Post-Classification Processing
3. Results
3.1. Phenological Characteristics of Rubber Plantations in XSBN
3.2. Accuracy Comparison of Different Classification Schemes
3.3. Accuracy Evaluation of Optimal Classification Scenarios
4. Discussion
4.1. Characteristics of the “Stratified Sampling + Non-Homogenous Data Voting” Method of Sample Selection
4.2. Uncertainty
5. Conclusions
- (1)
- By using available, free LULC datasets and Google Earth high-resolution images, the sample selection process was optimized using the method of “stratified sampling + non-homogeneous data voting”, which effectively solved the problem of field samples in plateau mountainous areas. Research papers with an insufficient number of samples, often due to the high difficulty in obtaining them, are prone to errors and omissions.
- (2)
- Five classification scenarios were developed for rubber plantations throughout the phenology period by integrating NDVI, EVI, LSWI, NDI_VV, TCT-BRI, TCT-GRE, TCT-WET and FVC composite images, slope and elevation data. Compared to the other scenarios, the addition of the NDI_VV index may significantly minimize the misclassification of rubber plantations and tea plantations while improving accuracy, which indicates the enormous potential of radar data in distinguishing tree species of varying heights.
- (3)
- The four accuracy evaluation indexes of UA, PA, OA and Kappa coefficient derived from CS 5 were cross-validated, and the result indicated that the method proposed provides reliable results on spatial distribution of rubber in the fragmented terrain and mixed vegetation environment of highland mountainous regions, and is potentially transferable to other similar areas as a robust approach for rapid monitoring of rubber plantations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.C.; Zhang, J.; Xue, Y.F.; Zhang, P. Remote sensing image extraction for rubber forest distribution in the border regions of China, Laos and Myanmar based on Google Earth Engine platform. Trans. Chin. Soc. Agric. Eng. 2020, 36, 174–181. [Google Scholar]
- Wauters, J.B.; Coudert, S.; Grallien, E.; Jonard, M.; Ponette, Q. Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). For. Ecol. Manag. 2008, 255, 2347–2361. [Google Scholar] [CrossRef]
- Li, Z.; Fox, J.M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 2012, 32, 420–432. [Google Scholar] [CrossRef]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.F.; Su, Y.F.; Xu, J.C. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Chang. Hum. Policy Dimens. 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Koh, L.P.; Wilcove, D.S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 2008, 1, 60–64. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Fox, J.M.; Xu, J.C. The rubber juggernaut. Science 2009, 324, 1024–1025. [Google Scholar] [CrossRef]
- Li, H.; Aide, T.M.; Ma, Y.; Liu, W.; Cao, M. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers. Conserv. 2007, 16, 1731–1745. [Google Scholar] [CrossRef]
- Li, Z.; Fox, J.M. Rubber tree distribution mapping in Northeast Thailand. Int. J. Geosci. 2011, 2, 573–584. [Google Scholar] [CrossRef]
- Fox, J.; Castella, J.C. Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders? J. Peasant Stud. 2013, 40, 155–170. [Google Scholar] [CrossRef]
- Xu, J.C.; Grumbine, R.E.; Beckschäfer, P. Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecol. Indic. 2014, 36, 749–756. [Google Scholar]
- Zhang, J.Q.; Corlett, R.T.; Zhai, D.L. After the rubber boom: Good news and bad news for biodiversity in Xishuangbanna, Yunnan, China. Reg. Environ. Chang. 2019, 19, 1713–1724. [Google Scholar] [CrossRef]
- Zhu, H. Forest vegetation of Xishuangbanna, south China. For. Stud. China 2006, 8, 1–58. [Google Scholar]
- Sarathchandra, C.; Alemu Abebe, Y.; Worthy, F.R.; Lakmali Wijerathne, I.; Ma, H.X.; Bi, Y.F.; Guo, J.Y.; Chen, H.F.; Yan, Q.S.; Geng, Y.F. Impact of land use and land cover changes on carbon storage in rubber dominated tropical Xishuangbanna, South West China. Ecosyst. Health Sustain. 2021, 7, 1915183. [Google Scholar] [CrossRef]
- Xu, J.C.; Ma, E.T.; Tashi, D.; Fu, Y.S.; Lu, Z.; Melick, D. Integrating sacred knowledge for conservation: Cultures and landscapes in southwest China. Ecol. Soc. 2005, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Chen, J.; Guo, H.; Hu, H.; Chen, A.; Cui, J. Agrobiodiversity loss and livelihood vulnerability as a consequence of converting from subsistence farming systems to commercial plantation-dominated systems in Xishuangbanna, Yunnan, China: A household level analysis. Land Degrad. Dev. 2010, 21, 274–284. [Google Scholar] [CrossRef]
- Qin, Y.W.; Xiao, X.M.; Dong, J.W.; Zhou, Y.T.; Zhu, Z.; Zhang, G.L.; Du, G.M.; Jin, C.; Kou, W.L.; Wang, J. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS—J. Photogramm. Remote Sens. 2015, 105, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.S. Principle and Method of Remote Sensing Application Analysis; Science Press: Beijing, China, 2013; pp. 1–4. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Kou, W.L.; Xiao, X.M.; Dong, J.W.; Gan, S.; Zhai, D.L.; Zhang, G.L.; Qin, Y.W.; Li, L. Mapping deciduous rubber plantation areas and stand ages with PALSAR and Landsat images. Remote Sens. 2015, 7, 1048–1073. [Google Scholar] [CrossRef] [Green Version]
- Broich, M.; Huete, A.; Tulbure, M.G.; Ma, X.; Xin, Q.; Paget, M.; Restrepo-Coupe, N.; Davies, K.; Devadas, R.; Held, A. Land surface phenological response to decadal climate variability across Australia using satellite remote sensing. Biogeosciences 2014, 11, 5181–5198. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.L.; Yi, S.H.; Peichl, M.; Wang, X.Y. Diverse responses of vegetation phenology to climate change in different grasslands in Inner Mongolia during 2000–2016. Remote Sens. 2017, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, J.H.; Feng, Z.M. Mapping rubber tree plantations using a Landsat-based phenological algorithm in Xishuangbanna, southwest China. Remote Sens. Lett. 2015, 6, 49–58. [Google Scholar] [CrossRef]
- Baban, S.M.J.; Wan Yusof, K. Mapping land use/cover distribution on a mountainous tropical island using remote sensing and GIS. Int. J. Remote Sens. 2001, 22, 1909–1918. [Google Scholar] [CrossRef]
- Xu, F.; Li, Z.F.; Zhang, S.Y.; Huang, N.T.; Quan, Z.Y.; Zhang, W.M.; Liu, X.J.; Jiang, X.S.; Pan, J.J.; Prishchepov, A.V. Mapping winter wheat with combinations of temporally aggregated Sentinel-2 and Landsat-8 data in Shandong Province, China. Remote Sens. 2020, 12, 2065. [Google Scholar] [CrossRef]
- Liu, X.N.; Feng, Z.M.; Jiang, L.G.; Li, P.; Liao, C.H.; Yang, Y.Z.; You, Z. Rubber plantation and its relationship with topographical factors in the border region of China, Laos and Myanmar. J. Geogr. Sci. 2013, 23, 1019–1040. [Google Scholar] [CrossRef]
- Liu, X.N.; Feng, Z.M.; Jiang, L.G.; Zhang, J.H. Rubber plantations in Xishuangbanna: Remote sensing identification and digital mapping. Resour. Sci. 2012, 34, 1769–1780. [Google Scholar]
- Zhai, D.L.; Cannon, C.H.; Slik, J.F.; Zhang, C.P.; Dai, Z.C. Rubber and pulp plantations represent a double threat to Hainan’s natural tropical forests. J. Environ. Manag. 2012, 96, 64–73. [Google Scholar] [CrossRef]
- Dong, J.W.; Xiao, X.; Sheldon, S.; Biradar, C.; Xie, G. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS—J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Zhai, D.L.; Dong, J.W.; Cadisch, G.; Wang, M.C.; Kou, W.L.; Xu, J.C.; Xiao, X.M.; Abbas, S. Comparison of pixel-and object-based approaches in phenology-based rubber plantation mapping in fragmented landscapes. Remote Sens. 2017, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.W.; Li, P.; Feng, Z.M.; Lin, Y.M.; You, Z.; Yang, Y.Z. Mapping rubber plantations in Xishuangbanna, southwest China based on the re-normalization of two Landsat-based vegetation–moisture indices and meteorological data. Geocarto Int. 2021, 36, 1923–1937. [Google Scholar] [CrossRef]
- Chen, H.L.; Chen, X.M.; Chen, Z.L.; Zhu, N.; Tao, Z. A primary study on rubber acreage estimation from MODIS-based information in Hainan. Chin. J. Trop. Crops 2010, 31, 1181–1185. [Google Scholar]
- Dong, J.W.; Xiao, X.M.; Sheldon, S.; Biradar, C.; Duong, N.D.; Hazarika, M. A comparison of forest cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and FRA. Remote Sens. Environ. 2012, 127, 60–73. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Van der Linden, S.; Hostert, P. Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series. Remote Sens. 2013, 5, 2795–2812. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Fu, X.H.; Zhang, Z.; Wu, Q. Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sens. 2015, 7, 6041–6058. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.Q.; Li, X.P.; Xiao, X.M.; Zhao, B.; Dong, J.W.; Kou, W.L.; Qin, Y.W.; Yang, C.; Wu, Z.X.; Sun, R. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 117–130. [Google Scholar] [CrossRef]
- Beckschäfer, P. Obtaining rubber plantation age information from very dense Landsat TM & ETM+ time series data and pixel-based image compositing. Remote Sens. Environ. 2017, 196, 89–100. [Google Scholar]
- Xiao, C.W.; Li, P.; Feng, Z.M.; Liu, X.N. An updated delineation of stand ages of deciduous rubber plantations during 1987–2018 using Landsat-derived bi-temporal thresholds method in an anti-chronological strategy. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 40–50. [Google Scholar] [CrossRef]
- Xiao, C.W.; Li, P.; Feng, Z.M. Monitoring annual dynamics of mature rubber plantations in Xishuangbanna during 1987–2018 using Landsat time series data: A multiple normalization approach. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 30–41. [Google Scholar] [CrossRef]
- Bai, J.; Sun, R.; Zhang, H.L.; Wang, Y.; Jin, Z.F. Tea plantation identification using GF-1 and Sentinel-2 time series data. Trans. Chin. Soc. Agric. Eng. 2021, 37, 179–185. [Google Scholar]
- Tan, S.; Wu, B.F.; Zhang, X. Mapping Paddy Rice in the Hainan Province Using both Google Earth Engine and Remote Sensing Images. Geo-Inf. Sci. 2019, 21, 937–947. [Google Scholar]
- Chen, B.Q.; Wu, Z.X.; Wang, J.K.; Dong, J.W.; Guan, L.M.; Chen, J.M.; Yang, K.; Xie, G.S. Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network. ISPRS—J. Photogramm. Remote Sens. 2015, 102, 148–160. [Google Scholar] [CrossRef]
- Walker, W.S.; Stickler, C.M.; Kellndorfer, J.M.; Kirsch, K.M.; Nepstad, D.C. Large-area classification and mapping of forest and land cover in the Brazilian Amazon: A comparative analysis of ALOS/PALSAR and Landsat data sources. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 594–604. [Google Scholar] [CrossRef]
- Lucas, R.M.; Clewley, D.; Accad, A.; Butler, D.; Armston, J.; Bowen, M.; Bunting, P.; Carreiras, J.; Dwyer, J.; Eyre, T. Mapping forest growth and degradation stage in the Brigalow Belt Bioregion of Australia through integration of ALOS PALSAR and Landsat-derived foliage projective cover data. Remote Sens. Environ. 2014, 155, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Wang, X.N.; Tian, J.Y.; Li, X.J.; Wang, L.; Gong, H.L.; Chen, B.B.; Li, X.C.; Guo, J.H. Benefits of Google Earth Engine in remote sensing. Natl. Remote Sens. Bull. 2022, 26, 299–309. [Google Scholar] [CrossRef]
- Liao, C.H.; Li, P.; Feng, Z.M.; Zhang, J.H. Area monitoring by remote sensing and spatiotemporal variation of rubber plantations in Xishuangbanna. Trans. Chin. Soc. Agric. Eng. 2014, 30, 170–180. [Google Scholar]
- Xin, J.K.; Zheng, Z.; Pin, Z.Y. Changes of rubber plantation aboveground biomass along elevation gradient in Xishuangbanna. Chin. J. Ecol. 2006, 25, 1028–1032. [Google Scholar]
- Liu, W.J.; Liu, W.Y.; Li, P.J.; Gao, L.; Shen, Y.X.; Wang, P.Y.; Zhang, Y.P.; Li, H.M. Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agric. For. Meteorol. 2007, 143, 80–91. [Google Scholar] [CrossRef]
- Yu, H.Y.; Hammond, J.; Ling, S.H.; Zhou, S.X.; Mortimer, P.E.; Xu, J.C. Greater diurnal temperature difference, an overlooked but important climatic driver of rubber yield. Ind. Crop. Prod. 2014, 62, 14–21. [Google Scholar] [CrossRef]
- Cao, M.; Zou, X.M.; Warren, M.; Zhu, H. Tropical forests of xishuangbanna, China. Biotropica 2006, 38, 306–309. [Google Scholar] [CrossRef]
- Zhai, D.L.; Yu, H.Y.; Chen, S.C.; Ranjitkar, S.; Xu, J.C. Responses of rubber leaf phenology to climatic variations in Southwest China. Int. J. Biometeorol. 2019, 63, 607–616. [Google Scholar] [CrossRef]
- Yi, Z.F.; Wong, G.; Cannon, C.H.; Xu, J.C.; Beckschäfer, P.; Swetnam, R.D. Can carbon-trading schemes help to protect China’s most diverse forest ecosystems? A case study from Xishuangbanna, Yunnan. Land Use Pol. 2014, 38, 646–656. [Google Scholar] [CrossRef]
- Zhu, H.; Cao, M.; Hu, H.B. Geological History, Flora, and Vegetation of Xishuangbanna, Southern Yunnan, China. Biotropica 2006, 38, 310–317. [Google Scholar] [CrossRef]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.Q.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; Van Leeuwen, W.J.D.A. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Xiao, X.M.; Boles, S.; Liu, J.Y.; Zhuang, D.F.; Frolking, S.; Li, C.S.; Salas, W.; Moore III, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS—J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- Jin, Z.N.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, L.; Menenti, M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sens. Environ. 2015, 163, 217–228. [Google Scholar] [CrossRef]
- Yan, K.; Gao, S.; Chi, H.J.; Qi, J.B.; Song, W.J.; Tong, Y.Y.; Mu, X.H.; Yan, G.J. Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Macintyre, P.; Van Niekerk, A.; Mucina, L. Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101980. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. LARS Symposia. 1976, 159, 41–51. [Google Scholar]
- Lamqadem, A.A.; Saber, H.; Pradhan, B. Quantitative assessment of desertification in an arid oasis using remote sensing data and spectral index techniques. Remote Sens. 2018, 10, 1862. [Google Scholar] [CrossRef] [Green Version]
- Nedkov, R. Orthogonal transformation of segmented images from the satellite Sentinel-2. C. R. Acad. Bulg. Sci. 2017, 70, 687–692. [Google Scholar]
- Yuan, Y.X.; Wen, Q.K.; Zhao, X.L.; Liu, S.; Zhu, K.P.; Hu, B. Identifying Grassland Distribution in a Mountainous Region in Southwest China Using Multi-Source Remote Sensing Images. Remote Sens. 2022, 14, 1472. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, B.H.; Huang, L.; Chen, G.K. Rice and Greenhouse Identification in Plateau Areas Incorporating Sentinel-1/2 Optical and Radar Remote Sensing Data from Google Earth Engine. Remote Sens. 2022, 14, 5727. [Google Scholar] [CrossRef]
- Li, X.H.; Cheng, Z.X.; Qin, W.X.; Jun, C.Y. Mapping the Spatial Distribution of Tea Plantations with 10 m Resolution in Fujian Province Using Google Earth Engine. Geo-Inf. Sci. 2021, 23, 1325–1337. [Google Scholar]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.G.; Oliphant, A.; Xiong, J.; Giri, C.; Pyla, V.; Dixit, S.; Whitbread, A.M. Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud. GISci. Remote Sens. 2020, 57, 302–322. [Google Scholar] [CrossRef] [Green Version]
- Li, C.C.; Xian, G.; Zhou, Q.; Pengra, B.W. A novel automatic phenology learning (APL) method of training sample selection using multiple datasets for time-series land cover mapping. Remote Sens. Environ. 2021, 266, 112670. [Google Scholar] [CrossRef]
- Gao, S.P.; Liu, X.L.; Bo, Y.C.; Shi, Z.T.; Zhou, H.M. Rubber identification based on blended high spatio-temporal resolution optical remote sensing data: A case study in Xishuangbanna. Remote Sens. 2019, 11, 496. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.B.; Xu, J.C.; Zhai, D.L. Integrating phenological and geographical information with artificial intelligence algorithm to map rubber plantations in Xishuangbanna. Remote Sens. 2021, 13, 2793. [Google Scholar] [CrossRef]
Dataset | S1_GRD | L7_SR | L8_SR | S2_SR | Total Size |
---|---|---|---|---|---|
Year | |||||
2014 | 45 | 81 | 107 | 0 | 233 |
2015 | 168 | 81 | 106 | 0 | 355 |
2016 | 198 | 86 | 109 | 0 | 393 |
2017 | 227 | 83 | 105 | 0 | 415 |
2018 | 301 | 78 | 90 | 39 | 508 |
2019 | 329 | 87 | 112 | 736 | 1264 |
2020 | 347 | 75 | 105 | 742 | 1269 |
Sensors | Landsat-7/ETM+ | Landsat-8/OLI | Sentinel-2 A/B MSI | Sentinel-1 C-SAR |
---|---|---|---|---|
L7_SR | L8_SR | S2_SR | S1_GRD | |
Description | Blue/450–520 nm/30 m | Blue/452–512 nm/30 m | Blue/496.6(S2A)/492.1(S2B) nm/10 m | HH/5.405 GHz/10 m |
Green/520–600 nm/30 m | Green/533–590 nm/30 m | Green/560(S2A)/559(S2B) nm/10 m | HV/5.405 GHz/10 m | |
Red/630–690 nm/30 m | Red/636–673 nm/30 m | Red/664.5(S2A)/665(S2B) nm/10 m | VV/5.405 GHz/10 m | |
NIR/770–900 nm/30 m | NIR/851–879 nm/30 m | NIR/835.1(S2A)/833(S2B) nm/10 m | VH/5.405 GHz/10 m | |
SWIR1/1550–1750 nm/30 m | SWIR1/1566–1651 nm/30 m | SWIR1/1613.7(S2A)/1610.4(S2B) nm/20 m | — | |
SWIR2/2080–2350 nm/30 m | SWIR2/2107–2294 nm/30 m | SWIR2/2202.4(S2A)/2185.7(S2B) nm/20 m | — |
Name | Spatial Resolution | Categories | Mapping Time | Mapping Range | Mapping Accuracy |
---|---|---|---|---|---|
ESA_2020_10m | 10 m | 11 | 2020 | global | 74.4% |
Esri_2020_10m | 10 m | 10 | 2020 | global | 85% |
Dynamic World | 10 m | 9 | 2020 | global | — |
Indices | Expressions | Time Windows | Phenology Stages |
---|---|---|---|
NDVI | 01/09–02/09 | Defoliation stage I | |
02/09–02/15 | Defoliation stage II | ||
02/15–03/01 | Foliation stage I | ||
03/01–03/15 | Foliation stage II | ||
EVI | 05/01–05/15 | Vigorous growth stage I | |
05/15–06/01 | Vigorous growth stage II | ||
06/01–06/15 | Vigorous growth stage III | ||
LSWI | 01/09–02/09 | Defoliation stage I | |
02/09–02/15 | Defoliation stage II | ||
02/15–03/01 | Foliation stage I | ||
03/01–03/15 | Foliation stage II | ||
NDI_VV | 02/15–03/07 | Foliation stage I | |
03/07–03/15 | Foliation stage II | ||
FVC | 01/09–02/09 | Defoliation stage I | |
02/09–02/15 | Defoliation stage II | ||
TCT | — | 01/09–02/09 | Defoliation stage I |
02/09–02/15 | Defoliation stage II |
Bands | Blue | Green | Red | NIR | SWIR 1 | SWIR 2 |
---|---|---|---|---|---|---|
Features | ||||||
TCT-BRI | 0.0822 | 0.1360 | 0.2611 | 0.3895 | 0.3882 | 0.1366 |
TCT-GRE | −0.1128 | −0.1680 | −0.3480 | 0.3165 | −0.4578 | −0.4064 |
TCT-WET | 0.1363 | 0.2802 | 0.3072 | −0.0807 | −0.4064 | −0.5602 |
Water Bodies | Impervious Surfaces | Tea Plantations | Cultivated Land | Natural Forests | Rubber Plantations | OA | Kappa | ||
---|---|---|---|---|---|---|---|---|---|
CS 1 | PA | 100 | 92.0 | 61.1 | 94.1 | 87.5 | 92.4 | 87.4 | 0.82 |
UA | 100 | 94.8 | 76.3 | 88.2 | 87.5 | 88.0 | |||
CS 2 | PA | 100 | 91.3 | 61.4 | 96.5 | 87.3 | 93.9 | 88.4 | 0.83 |
UA | 100 | 93.3 | 79.2 | 94.2 | 87.3 | 88.0 | |||
CS 3 | PA | 100 | 94.2 | 60.0 | 96.9 | 88.2 | 93.9 | 88.5 | 0.84 |
UA | 98.4 | 92.9 | 79.1 | 95.3 | 86.3 | 88.2 | |||
CS 4 | PA | 100 | 94.2 | 60.0 | 96.4 | 88.5 | 95.1 | 89.0 | 0.84 |
UA | 98.4 | 92.9 | 83.7 | 95.0 | 87.1 | 88.0 | |||
CS 5 | PA | 100 | 94.9 | 62.7 | 96.5 | 89.1 | 95.2 | 90.0 | 0.86 |
UA | 98.4 | 92.9 | 84.4 | 95.3 | 88.2 | 88.8 |
Predicted Value | Water Bodies | Impervious Surfaces | Tea Plantations | Cultivated Land | Natural Forests | Rubber Plantations |
---|---|---|---|---|---|---|
True Value | ||||||
Water bodies | 61 | 0 | 0 | 0 | 0 | 0 |
Impervious surfaces | 0 | 131 | 1 | 0 | 0 | 0 |
Tea plantations | 0 | 3 | 178 | 3 | 27 | 73 |
Cultivated land | 1 | 5 | 0 | 245 | 0 | 3 |
Natural forests | 0 | 0 | 6 | 0 | 285 | 29 |
Rubber plantations | 0 | 2 | 26 | 3 | 11 | 835 |
PA (%) | 100 | 94.9 | 62.7 | 96.5 | 89.1 | 95.2 |
UA (%) | 98.4 | 92.9 | 84.4 | 95.3 | 88.2 | 88.8 |
OA (%) | 90.0 | Kappa | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Liu, Z.; Wen, Q.; Tan, R.; Wang, Y.; Zhao, J.; Feng, J. Identification of Rubber Plantations in Southwestern China Based on Multi-Source Remote Sensing Data and Phenology Windows. Remote Sens. 2023, 15, 1228. https://doi.org/10.3390/rs15051228
Chen G, Liu Z, Wen Q, Tan R, Wang Y, Zhao J, Feng J. Identification of Rubber Plantations in Southwestern China Based on Multi-Source Remote Sensing Data and Phenology Windows. Remote Sensing. 2023; 15(5):1228. https://doi.org/10.3390/rs15051228
Chicago/Turabian StyleChen, Guokun, Zicheng Liu, Qingke Wen, Rui Tan, Yiwen Wang, Jingjing Zhao, and Junxin Feng. 2023. "Identification of Rubber Plantations in Southwestern China Based on Multi-Source Remote Sensing Data and Phenology Windows" Remote Sensing 15, no. 5: 1228. https://doi.org/10.3390/rs15051228
APA StyleChen, G., Liu, Z., Wen, Q., Tan, R., Wang, Y., Zhao, J., & Feng, J. (2023). Identification of Rubber Plantations in Southwestern China Based on Multi-Source Remote Sensing Data and Phenology Windows. Remote Sensing, 15(5), 1228. https://doi.org/10.3390/rs15051228