Estimating All-Weather Surface Longwave Radiation from Satellite Passive Microwave Data
<p>Spatial distribution of Baseline Surface Radiation Network (BSRN) stations (red dots) over the global land surface and Global Tropical Moored Buoy Array (GTMBA) buoy stations (blue triangles) over the ocean.</p> "> Figure 2
<p>Workflow of constructing a retrieval model for all-weather surface longwave radiation from the Advanced Microwave Scanning Radiometer 2 (AMSR2) data. BSRN: baseline surface radiation network. ERA5: European centre for medium-range weather forecasts reanalysis v5. GTMBA: global tropical moored buoy array. NN: neural network. RFI: radio frequency interference. SDLR: surface downward longwave radiation. SHAP: Shapley additive explanation. SULR: surface upward longwave radiation.</p> "> Figure 3
<p>Performances of different neural network (NN) structures for surface upward longwave radiation (SULR) estimation. The metrics are bias, root mean square error (RMSE), and R<sup>2</sup> from top to bottom. Each NN structure was trained 10 times. The “8” indicates a single hidden layer with eight neurons, and “8 × 4” indicates two hidden layers in which the first layer has eight neurons, and the second layer has four neurons. The 16 × 8 structure showed the best performance.</p> "> Figure 4
<p>Performances of different neural network (NN) structures for surface downward longwave radiation (SDLR) estimation. The metrics are bias, root mean square error (RMSE), and R<sup>2</sup> from top to bottom. Each NN structure was trained 10 times. The “16 × 8” indicates two hidden layers in which the first layer has 16 neurons, and the second layer has 8 neurons. The 32 × 16 structure showed the best performance.</p> "> Figure 5
<p>Histograms of the feature importance of surface upward/downward longwave radiation (SULR/SDLR) models based on the Shapley additive explanation (SHAP) method using daily calculation results from 2019. The blue dashed line indicates the Mean(|SHAP|) value of 5.</p> "> Figure 6
<p>Comparison of the global Advanced Microwave Scanning Radiometer 2 (AMSR2) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) surface upward longwave radiation (SULR) data from 1 January 2020. (<b>a</b>) AMSR2 SULR derived from ascending data; (<b>b</b>) AMSR2 SULR derived from descending data; (<b>c</b>) ERA5 SULR matched with ascending data; (<b>d</b>) ERA5 SULR matched with descending data; (<b>e</b>) difference between AMSR2 and ERA5 SULR for ascending data; and (<b>f</b>) difference between AMSR2 and ERA5 SULR for descending data.</p> "> Figure 7
<p>Comparison of the global Advanced Microwave Scanning Radiometer 2 (AMSR2) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) surface downward longwave radiation (SDLR) data from 1 January 2020. (<b>a</b>) AMSR2 SDLR derived from ascending data; (<b>b</b>) AMSR2 SDLR derived from descending data; (<b>c</b>) ERA5 SDLR matched with ascending data; (<b>d</b>) ERA5 SDLR matched with descending data; (<b>e</b>) difference between AMSR2 and ERA5 SDLR for ascending data; and (<b>f</b>) difference between AMSR2 and ERA5 SDLR for descending data.</p> "> Figure 8
<p>Validations for (<b>a</b>) surface upward longwave radiation (SULR) and (<b>c</b>) surface downward longwave radiation (SDLR) derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2) using Baseline Surface Radiation Network (BSRN) measurements and for (<b>b</b>) SULR and (<b>d</b>) SDLR derived from the AMSR2 using the Global Tropical Moored Buoy Array (GTMBA) measurements. The color indicates the density of sampling points, with higher density in red and lower density in blue.</p> "> Figure 9
<p>Validation of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) surface longwave radiation using site measurements. (<b>a</b>) ERA5 surface upward longwave radiation (SULR) based on Baseline Surface Radiation Network (BSRN) data; (<b>b</b>) ERA5 SULR based on Global Tropical Moored Buoy Array (GTMBA) data; (<b>c</b>) ERA5 surface downward longwave radiation (SDLR) based on BSRN data; and (<b>d</b>) ERA5 SDLR based on GTMBA data. The color indicates the density of sampling points, with higher density in red and lower density in blue.</p> "> Figure 10
<p>Comparison between the 10- and 25-km surface longwave radiation of the Advanced Microwave Scanning Radiometer 2 (AMSR2) ascending data in Asia on 1 January 2020. (<b>a</b>) AMSR2 10-km surface upward longwave radiation (SULR); (<b>b</b>) AMSR2 25-km SULR; (<b>c</b>) AMSR2 10-km surface downward longwave radiation (SDLR); and (<b>d</b>) AMSR2 25-km SDLR.</p> "> Figure 11
<p>Validation of the 10-km Advanced Microwave Scanning Radiometer 2 (AMSR2) surface longwave radiation using site measurements. (<b>a</b>) AMSR2 surface upward longwave radiation (SULR) based on Baseline Surface Radiation Network (BSRN) data; (<b>b</b>) AMSR2 SULR based on Global Tropical Moored Buoy Array (GTMBA) data; (<b>c</b>) AMSR2 surface downward longwave radiation (SDLR) based on BSRN data; and (<b>d</b>) AMSR2 SDLR based on GTMBA data. The color indicates the density of sampling points, with higher density in red and lower density in blue.</p> ">
Abstract
:1. Introduction
2. Data
2.1. AMSR2 Data
2.2. ERA5 Reanalysis Data
2.3. BSRN Measurements
2.4. GTMBA Measurements
3. Methods
3.1. Physical Basis for SLR Retrievals from PMW Data
3.2. Quality Control of AMSR2 BT
3.3. Match-Up of AMSR2 and ERA5 Data
3.4. Feature Selection from Input Parameter Candidates
3.5. NN-Based Model Training
3.6. Validation and Evaluation Metrics
4. Results
4.1. Selected Features for Model Inputs
4.2. AMSR2 SLR Data Compared with ERA5 Product
4.3. Validation over BSRN Land and GTMBA Oceanic Sites
5. Discussion
5.1. Impact of Surface Types
5.2. Analysis of Day/Night Effects
5.3. Validation of ERA5 SLR Data
5.4. Model Application on 10-km AMSR2 Data
5.5. Advantages, Limitations, and Future Works
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, S.; Wang, D.; He, T.; Yu, Y. Remote sensing of earth’s energy budget: Synthesis and review. Int. J. Digit. Earth 2019, 12, 737–780. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. The global energy balance as represented in CMIP6 climate models. Clim. Dyn. 2020, 55, 553–577. [Google Scholar] [CrossRef]
- Wild, M. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. WIREs Clim. Chang. 2015, 7, 91–107. [Google Scholar] [CrossRef]
- Rädel, G.; Mauritsen, T.; Stevens, B.; Dommenget, D.; Matei, D.; Bellomo, K.; Clement, A. Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nat. Geosci. 2016, 9, 106–110. [Google Scholar] [CrossRef]
- Wang, G.; Wang, T.; Xue, H. Validation and comparison of surface shortwave and longwave radiation products over the three poles. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102538. [Google Scholar] [CrossRef]
- Gui, S.; Liang, S.; Li, L. Evaluation of satellite-estimated surface longwave radiation using ground-based observations. J. Geophys. Res. Atmos. 2010, 115, D18214. [Google Scholar] [CrossRef] [Green Version]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Matus, A.V.; L’Ecuyer, T.S. The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos. 2017, 122, 2559–2578. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, X.; Zhang, J.; Xia, X. A revisiting of the parametrization of downward longwave radiation in summer over the Tibetan Plateau based on high-temporal-resolution measurements. Atmos. Chem. Phys. 2020, 20, 4415–4426. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Zou, M.; Ma, Y.; Huang, Z.; Xu, K.; Wang, X.; Ge, N.; Cheng, M. Estimation of Downwelling Shortwave and Longwave Radiation in the Tibetan Plateau Under All-Sky Conditions. J. Geophys. Res. Atmos. 2019, 124, 11086–11102. [Google Scholar] [CrossRef]
- Lopes, F.M.; Dutra, E.; Trigo, I.F. Integrating Reanalysis and Satellite Cloud Information to Estimate Surface Downward Long-Wave Radiation. Remote Sens. 2022, 14, 1704. [Google Scholar] [CrossRef]
- Yang, F.; Cheng, J. A framework for estimating cloudy sky surface downward longwave radiation from the derived active and passive cloud property parameters. Remote Sens. Environ. 2020, 248, 111972. [Google Scholar] [CrossRef]
- Wang, T.; Shi, J.; Yu, Y.; Husi, L.; Gao, B.; Zhou, W.; Ji, D.; Zhao, T.; Xiong, C.; Chen, L. Cloudy-sky land surface longwave downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements. Remote Sens. Environ. 2018, 205, 100–111. [Google Scholar] [CrossRef]
- Zhou, Y.; Kratz, D.P.; Wilber, A.C.; Gupta, S.K.; Cess, R.D. An improved algorithm for retrieving surface downwelling longwave radiation from satellite measurements. J. Geophys. Res. Atmos. 2007, 112, D15102. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Cheng, J.; Dong, L. Assessment of the Long-Term High-Spatial-Resolution Global LAnd Surface Satellite (GLASS) Surface Longwave Radiation Product Using Ground Measurements. IEEE J-STARS 2020, 13, 2032–2055. [Google Scholar] [CrossRef]
- Duan, S.-B.; Han, X.-J.; Huang, C.; Li, Z.-L.; Wu, H.; Qian, Y.; Gao, M.; Leng, P. Land Surface Temperature Retrieval from Passive Microwave Satellite Observations: State-of-the-Art and Future Directions. Remote Sens. 2020, 12, 2573. [Google Scholar] [CrossRef]
- Alsweiss, S.O.; Jelenak, Z.; Chang, P.S. Remote Sensing of Sea Surface Temperature Using AMSR-2 Measurements. IEEE J-STARS 2017, 10, 3948–3954. [Google Scholar] [CrossRef]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Prigent, C.; Khanbilvardi, R. Estimation of Consistent Global Microwave Land Surface Emissivity from AMSR-E and AMSR2 Observations. J. Appl. Meteorol. Climatol. 2018, 57, 907–919. [Google Scholar] [CrossRef]
- Li, X.; Wigneron, J.-P.; Fan, L.; Frappart, F.; Yueh, S.H.; Colliander, A.; Ebtehaj, A.; Gao, L.; Fernandez-Moran, R.; Liu, X.; et al. A new SMAP soil moisture and vegetation optical depth product (SMAP-IB): Algorithm, assessment and inter-comparison. Remote Sens. Environ. 2022, 271, 112921. [Google Scholar] [CrossRef]
- Wang, M.; Wigneron, J.-P.; Sun, R.; Fan, L.; Frappart, F.; Tao, S.; Chai, L.; Li, X.; Liu, X.; Ma, H.; et al. A consistent record of vegetation optical depth retrieved from the AMSR-E and AMSR2 X-band observations. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102609. [Google Scholar] [CrossRef]
- Derin, Y.; Bhuiyan, M.A.E.; Anagnostou, E.; Kalogiros, J.; Anagnostou, M.N. Modeling Level 2 Passive Microwave Precipitation Retrieval Error Over Complex Terrain Using a Nonparametric Statistical Technique. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9021–9032. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Wentz, F.J.; Bennartz, R. Cloud Liquid Water Path from Satellite-Based Passive Microwave Observations: A New Climatology over the Global Oceans. J. Clim. 2008, 21, 1721–1739. [Google Scholar] [CrossRef]
- Ji, D.; Shi, J.; Xiong, C.; Wang, T.; Zhang, Y. A total precipitable water retrieval method over land using the combination of passive microwave and optical remote sensing. Remote Sens. Environ. 2017, 191, 313–327. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Z.-H.; Mu, X. Global validation of clear-sky models for retrieving land-surface downward longwave radiation from MODIS data. Remote Sens. Environ. 2022, 271, 112903. [Google Scholar] [CrossRef]
- Schlüssel, P.; Schanz, L.; Englisch, G. Retrieval of latent heat flux and longwave irradiance at the sea surface from SSM/I and AVHRR measurements. Adv. Space Res. 1995, 16, 107–116. [Google Scholar] [CrossRef]
- Liu, Q.; Simmer, C.; Ruprecht, E. Estimating Longwave Net Radiation at Sea Surface from the Special Sensor Microwave/Imager (SSM/I). J. Appl. Meteorol. 1997, 36, 919–930. [Google Scholar] [CrossRef]
- Maeda, T.; Taniguchi, Y.; Imaoka, K. GCOM-W1 AMSR2 Level 1R Product: Dataset of Brightness Temperature Modified Using the Antenna Pattern Matching Technique. IEEE Trans. Geosci. Remote Sens. 2016, 54, 770–782. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. Roy. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, X.; Xu, J.; Yang, S.; Guan, S.; Jia, K.; Yao, Y. Comprehensive assessment of global atmospheric downward longwave radiation in the state-of-the-art reanalysis using satellite and flux tower observations. Clim. Dyn. 2022. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Zhu, F.; Zhou, X. Does ERA5 outperform satellite products in estimating atmospheric downward longwave radiation at the surface? Atmos. Res. 2021, 252, 105453. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data. 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, A.; Gilgen, H.; Hegner, H.; Müller, G.; Wild, M.; Dutton, E.G.; Forgan, B.; Fröhlich, C.; Philipona, R.; Heimo, A.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [Google Scholar] [CrossRef]
- Liang, S.L.; Wang, K.C.; Zhang, X.T.; Wild, M. Review on Estimation of Land Surface Radiation and Energy Budgets From Ground Measurement, Remote Sensing and Model Simulations. IEEE J-STARS 2010, 3, 225–240. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Meyers, G.; Ando, K.; Masumoto, Y.; Murty, V.S.N.; Ravichandran, M.; Syamsudin, F.; Vialard, J.; Yu, L.; Yu, W. RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Am. Meteorol. Soc. 2009, 90, 459–480. [Google Scholar] [CrossRef] [Green Version]
- McPhaden, M.; Busalacchi, A.; Anderson, D. A TOGA Retrospective. Oceanography 2010, 23, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Schmetz, J. Towards a surface radiation climatology: Retrieval of downward irradiances from satellites. Atmos. Res. 1989, 23, 287–321. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Holmes, T.R.H.; Yilmaz, M.T.; Crow, W.T. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations. Hydrol. Earth Syst. Sci. 2011, 15, 3135–3151. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Qian, B.; Bao, Y.; Li, M.; Petropoulos, G.P.; Liu, X.; Li, L. Detection and Analysis of C-Band Radio Frequency Interference in AMSR2 Data over Land. Remote Sens. 2019, 11, 1228. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Zhang, X.; Atkinson, P.M.; Stein, A.; Li, L. Geoscience-aware deep learning: A new paradigm for remote sensing. Sci. Remote Sens. 2022, 5, 100047. [Google Scholar] [CrossRef]
- Jiao, Z.-H.; Mu, X. Single-footprint retrieval of clear-sky surface longwave radiation from hyperspectral AIRS data. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102802. [Google Scholar] [CrossRef]
- Kratz, D.P.; Gupta, S.K.; Wilber, A.C.; Sothcott, V.E. Validation of the CERES Edition-4A Surface-Only Flux Algorithms. J. Appl. Meteorol. Climatol. 2020, 59, 281–295. [Google Scholar] [CrossRef]
- Morcrette, J.-J. The surface downward longwave radiation in the ECMWF forecast system. J. Clim. 2002, 15, 1875–1892. [Google Scholar] [CrossRef]
- Mao, K.; Shi, J.; Li, Z.; Qin, Z.; Li, M.; Xu, B. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data. Sci. China Ser. D-Earth Sci. 2007, 50, 1115–1120. [Google Scholar] [CrossRef]
- Huang, C.; Duan, S.-B.; Jiang, X.-G.; Han, X.-J.; Leng, P.; Gao, M.-F.; Li, Z.-L. A physically based algorithm for retrieving land surface temperature under cloudy conditions from AMSR2 passive microwave measurements. Int. J. Remote Sens. 2018, 40, 1828–1843. [Google Scholar] [CrossRef]
- Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. Atmos. 2009, 114, D04113. [Google Scholar] [CrossRef] [Green Version]
- Ninghai, S.; Fuzhong, W. Evaluation of Special Sensor Microwave Imager/Sounder (SSMIS) Environmental Data Records. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1006–1016. [Google Scholar] [CrossRef]
- Bonafoni, S.; Mattioli, V.; Basili, P.; Ciotti, P.; Pierdicca, N. Satellite-Based Retrieval of Precipitable Water Vapor Over Land by Using a Neural Network Approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3236–3248. [Google Scholar] [CrossRef]
- Schmeisser, L.; Hinkelman, L.M.; Ackerman, T.P. Evaluation of Radiation and Clouds From Five Reanalysis Products in the Northeast Pacific Ocean. J. Geophys. Res. Atmos. 2018, 123, 7238–7253. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; Van Tricht, K.; Lhermitte, S.; L’Ecuyer, T.S. Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophys. Res. Lett. 2017, 44, 3355–3364. [Google Scholar] [CrossRef]
- de Nijs, A.H.A.; Parinussa, R.M.; de Jeu, R.A.M.; Schellekens, J.; Holmes, T.R.H. A Methodology to Determine Radio-Frequency Interference in AMSR2 Observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5148–5159. [Google Scholar] [CrossRef]
- Eytan, E.; Koren, I.; Altaratz, O.; Kostinski, A.B.; Ronen, A. Longwave radiative effect of the cloud twilight zone. Nat. Geosci. 2020, 13, 669–673. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- van der Schalie, R.; van der Vliet, M.; Albergel, C.; Dorigo, W.; Wolski, P.; de Jeu, R. Characterizing natural variability in complex hydrological systems using passive microwave-based climate data records: A case study for the Okavango Delta. Hydrol. Earth Syst. Sci. 2022, 26, 3611–3627. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, J.; Chen, K.-S.; Li, Z.; Ma, H.; Chen, Q.; Bi, H.; Shi, P.; Zhu, L.; Cui, C. Comparison of Different Intercalibration Methods of Brightness Temperatures From FY-3D and AMSR2. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Wu, P.; Su, Y.; Duan, S.-b.; Li, X.; Yang, H.; Zeng, C.; Ma, X.; Wu, Y.; Shen, H. A two-step deep learning framework for mapping gapless all-weather land surface temperature using thermal infrared and passive microwave data. Remote Sens. Environ. 2022, 277, 113070. [Google Scholar] [CrossRef]
- Cucchi, M.; Weedon, G.P.; Amici, A.; Bellouin, N.; Lange, S.; Müller Schmied, H.; Hersbach, H.; Buontempo, C. WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 2020, 12, 2097–2120. [Google Scholar] [CrossRef]
Short Name | Frequency (GHz) | Bands | NEΔT (K) | IFOV (km2) |
---|---|---|---|---|
T6H/T6V | 6.925 | C | 0.34 | 35 × 62 |
T7H/T7V | 7.3 | C | 0.43 | 34 × 58 |
T10H/T10V | 10.65 | X | 0.70 | 24 × 42 |
T18H/T18V | 18.7 | K | 0.70 | 14 × 22 |
T23H/T23V | 23.8 | K | 0.60 | 15 × 26 |
T36H/T36V | 36.5 | Ka | 0.70 | 7 × 12 |
T89H/T89V | 89.0 (A) | W | 1.20 | 3 × 5 |
\ | 89.0 (B) | W | 1.20 | 3 × 5 |
No. | SULR ASC | SULR DES | SDLR ASC/DES |
---|---|---|---|
1 | T89V | T89V | T89V |
2 | T06H | T06H | T23H |
3 | T23V | T23V | T23V |
4 | T06V | T06V | T89H |
5 | T36H | T36H | T06H |
6 | T89H | T23H | T36H |
7 | T23H | T36V | T36V |
8 | \ | \ | T10H |
9 | \ | \ | Elevation |
Type | Bias | RMSE | R2 |
---|---|---|---|
SDLR | |||
Island | −0.62 | 20.66 | 0.50 |
Coastal | −5.33 | 35.68 | 0.67 |
Polar | −4.47 | 22.88 | 0.91 |
Continent | 0.30 | 34.70 | 0.61 |
Desert | −12.77 | 33.48 | 0.66 |
SULR | |||
Coastal | −1.02 | 43.36 | 0.53 |
Polar | 17.54 | 27.15 | 0.94 |
Continent | −4.26 | 36.22 | 0.60 |
Type | Bias | RMSE | R2 | Bias | RMSE | R2 |
---|---|---|---|---|---|---|
SDLR on the land | SULR on the land | |||||
Day | 3.24 | 33.40 | 0.82 | 13.96 | 35.02 | 0.91 |
Night | −7.85 | 32.47 | 0.83 | −11.09 | 35.70 | 0.92 |
SDLR on the ocean | SULR on the ocean | |||||
Day | −4.91 | 13.62 | 0.66 | −0.02 | 4.93 | 0.87 |
Night | −3.17 | 13.22 | 0.66 | −5.90 | 7.74 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Z. Estimating All-Weather Surface Longwave Radiation from Satellite Passive Microwave Data. Remote Sens. 2022, 14, 5960. https://doi.org/10.3390/rs14235960
Jiao Z. Estimating All-Weather Surface Longwave Radiation from Satellite Passive Microwave Data. Remote Sensing. 2022; 14(23):5960. https://doi.org/10.3390/rs14235960
Chicago/Turabian StyleJiao, Zhonghu. 2022. "Estimating All-Weather Surface Longwave Radiation from Satellite Passive Microwave Data" Remote Sensing 14, no. 23: 5960. https://doi.org/10.3390/rs14235960
APA StyleJiao, Z. (2022). Estimating All-Weather Surface Longwave Radiation from Satellite Passive Microwave Data. Remote Sensing, 14(23), 5960. https://doi.org/10.3390/rs14235960