SAR and ASCAT Tropical Cyclone Wind Speed Reconciliation
"> Figure 1
<p>(<b>a</b>) The geographic locations of SAR TC images used in this study. Note that simultaneous ASCAT acquisitions with a time departure less than 3.5 h can be found. The red, black, and blue squares denote RS-2, S1-A, and S1-B, respectively. (<b>b</b>) Scatter plot of S1 SAR winds versus RS-2 wind speeds, which suggests a high consistency between these two SAR wind sources. Thus, the differences between S1 and RS-2 winds can be assumed negligible when the same GMF is used.</p> "> Figure 2
<p>(<b>Left panels</b>—<b>a</b>,<b>d</b>,<b>g</b>): Scatter plots of ASCAT winds versus SAR MS1AHW wind speeds. (<b>Middle panels</b>—<b>b</b>,<b>e</b>,<b>h</b>): Wind-speed PDFs of original/adjusted satellite winds as a function of wind speeds. (<b>Right panels</b>—<b>c</b>,<b>f</b>,<b>i</b>): Bias (<b>blue curves</b>) and SDD values (<b>red curves</b>) of three wind sources as a function of mean wind speeds. The mean wind speed is considered the best truth when errors are similar; see the close SDD values. The upper panels present the statistical comparison between SAR- and ASCAT-retrieved wind speeds, showing an apparent discrepancy at extremes. The second row of panels presents statistical results with respect to SAR wind speeds when upscaling ASCAT and ECMWF winds to the CMOD7D wind speed scale. The lower panels show the corresponding results when downscaling SAR winds to the CMOD7 wind speed scale. As can be found, the proposed CMOD7D-v2 adjustment can efficiently eliminate the wind speed differences between SAR and ASCAT/ECMWF winds, generating similar wind-speed PDF curves.</p> "> Figure 3
<p>(<b>a</b>) Scatter plot of adjusted ASCAT CMOD7 winds (by Polverari-2021) versus SAR MS1AHW winds. (<b>b</b>) Scatter plot of adjusted ASCAT CMOD7 winds (by Chou-2013) versus SAR MS1AHW winds. (<b>c</b>) Wind speed bias values of three kinds of adjusted ASCAT winds as a function of mean wind speeds. It can be observed that the ASCAT winds adjusted by CMOD7D-v2 have the lowest wind speed bias values.</p> "> Figure 4
<p>(<b>Left panels</b>–<b>a</b>,<b>d</b>): TC wind fields imaged by adjusted ASCAT CMOD7 wind speeds. (<b>Middle panels</b>–<b>b</b>,<b>e</b>): TC wind field imaged by SAR MS1AHW winds. (<b>Right panels</b>–<b>c</b>,<b>f</b>): The blue and red solid curves indicate the wind speed variations provided by original SAR and ASCAT winds along the transect through the TC centres, showing a large discrepancy, especially around the eyewall with deep gradients. Note that the CMOD7D-v2 adjustment performs well in bridging the gap: the adjusted ASCAT winds (red dashed curves) are close to the SAR ones.</p> "> Figure 5
<p>Error SDs of SAR, adjusted ASCAT, and adjusted ECMWF winds under different representativeness errors (<math display="inline"><semantics> <msup> <mi>r</mi> <mn>2</mn> </msup> </semantics></math>). (<b>a</b>) for ≤14 m/s; (<b>b</b>) for >14 m/s, and (<b>c</b>) for the whole wind speed regime. The optimal representativeness error is determined when the spread in observation error SDs reach the minimum—see the gray dashed lines.</p> "> Figure 6
<p>(<b>a</b>) SAR VV wind speeds (retrieved with CMOD7 GMF) versus SAR MS1AHW estimates (calculated from dual-polarized signals). (<b>b</b>) Adjusted SAR VV wind speeds versus SAR MS1AHW estimates. (<b>c</b>) The bias values of CMOD7D wind speeds (by three wind-adjustment schemes) as a function of mean wind speed. The black, red, and blue curves indicate the corresponding results of the proposed CMOD7D-v2, Polverari-2021 and Chou-2013, respectively. As can be observed, the CMOD7D-v2 adjustment has smaller bias values over the whole wind-speed regime.</p> "> Figure 7
<p>(<b>a</b>) SAR VV wind speeds (retrieved with CMOD7 GMF) versus SFMR measurements. (<b>b</b>) Adjusted SAR VV wind speeds versus SFMR measurements. (<b>c</b>) The bias values of CMOD7D wind speeds (by three wind-adjustment schemes) as a function of mean wind speed. The black, red, and blue curves indicate the corresponding results of the proposed CMOD7D-v2, Polverari-2021 and Chou-2013, respectively. As can be observed, the CMOD7D-v2 adjustment has smaller bias values over the whole wind-speed regime.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. RadarSat-2 and Sentinel-1 SAR Images
2.2. ASCAT Data
2.3. ECMWF Forecasts
2.4. SFMR Observations
3. Methods
4. Results
5. Discussion
5.1. Tests between SAR VV- and Dual-Polarized Wind Speeds
5.2. Tests between SAR VV Winds and SFMR Observations
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Bias Values and Standard Deviation of Difference with Regard to Mean Values
References
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Ocean. 2007, 112, C03006. [Google Scholar] [CrossRef]
- Hwang, P.A.; Stoffelen, A.; van Zadelhoff, G.J.; Perrie, W.; Zhang, B.; Li, H.; Shen, H. Cross-polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval. J. Geophys. Res. Ocean. 2015, 120, 893–909. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Perrie, W.; Hwang, P.A.; Zhang, B.; Yang, X. A hurricane wind speed retrieval model for C-band RADARSAT-2 cross-polarization ScanSAR images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4766–4774. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B.; Zhang, B.; Husson, R. Combined co-and cross-polarized SAR measurements under extreme wind conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6746–6755. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Mouche, A.; Chapron, B.; Knaff, J.; Zhao, Y.; Zhang, B.; Combot, C. Copolarized and Cross-Polarized SAR Measurements for High-Resolution Description of Major Hurricane Wind Structures: Application to Irma Category 5 Hurricane. J. Geophys. Res. Ocean. 2019, 124, 3905–3922. [Google Scholar] [CrossRef] [Green Version]
- Stoffelen, A.; Mouche, A.A.; Polverari, F.; van Zadelhoff, G.J.; Sapp, J.; Portabella, M.; Chang, P.; Lin, W.; Jelenak, Z. C-band High and Extreme-Force Speeds (CHEFS)—Final Report. 2020. Available online: http://hdl.handle.net/10261/222000 (accessed on 4 May 2022).
- Knaff, J.A.; Sampson, C.R.; Kucas, M.E.; Slocum, C.J.; Brennan, M.J.; Meissner, T.; Ricciardulli, L.; Mouche, A.; Reul, N.; Morris, M.; et al. Estimating tropical cyclone surface winds: Current status, emerging technologies, historical evolution, and a look to the future. Trop. Cyclone Res. Rev. 2021, 10, 125–150. [Google Scholar] [CrossRef]
- Large, W.; Crawford, G. Observations and simulations of upper-ocean response to wind events during the ocean storms experiment. J. Phys. Oceanogr. 1995, 25, 2831–2852. [Google Scholar] [CrossRef]
- Zeng, L.; Brown, R.A. Scatterometer observations at high wind speeds. J. Appl. Meteorol. 1998, 37, 1412–1420. [Google Scholar] [CrossRef]
- Stoffelen, A.; Marseille, G.J.; Ni, W.; Mouche, A.; Polverari, F.; Portabella, M.; Lin, W.; Sapp, J.; Chang, P.; Jelenak, Z. Hurricane ocean wind speeds. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1182–1185. [Google Scholar]
- Wright, E.E.; Bourassa, M.A.; Stoffelen, A.; Bidlot, J.R. Characterizing Buoy Wind Speed Error in High Winds and Varying Sea State with ASCAT and ERA5. Remote Sens. 2021, 13, 4558. [Google Scholar] [CrossRef]
- Sapp, J.W.; Alsweiss, S.O.; Jelenak, Z.; Chang, P.S.; Carswell, J. Stepped Frequency Microwave Radiometer Wind-Speed Retrieval Improvements. Remote Sens. 2019, 11, 214. [Google Scholar] [CrossRef] [Green Version]
- Polverari, F.; Sapp, J.W.; Portabella, M.; Stoffelen, A.; Jelenak, Z.; Chang, P.S. On dropsonde surface-adjusted winds and their use for the Stepped Frequency Microwave Radiometer wind speed calibration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4208308. [Google Scholar] [CrossRef]
- Stoffelen, A.; Mouche, A.A.; Polverari, F.; van Zadelhoff, G.J.; Sapp, J.; Portabella, M.; Chang, P.; Lin, W.; Jelenak, Z. An In-Situ Reference for High and Extreme Winds; European Geosciences Union: Vienna, Austria, 2020. [Google Scholar]
- Polverari, F.; Portabella, M.; Lin, W.; Sapp, J.W.; Stoffelen, A.; Jelenak, Z.; Chang, P.S. On High and Extreme Wind Calibration Using ASCAT. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4202210. [Google Scholar] [CrossRef]
- Verhoef, A.; Vogelzang, J.; Verspeek, J.; Stoffelen, A. Long-term scatterometer wind climate data records. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2186–2194. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef]
- Young, I.R.; Kirezci, E.; Ribal, A. The global wind resource observed by scatterometer. Remote Sens. 2020, 12, 2920. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. Calibration and cross validation of global ocean wind speed based on scatterometer observations. J. Atmos. Ocean. Technol. 2020, 37, 279–297. [Google Scholar] [CrossRef]
- Mendeley Data. Calibration of Reanalysis Data in the Atlantic Ocean Using Satellite Data. 2022. Available online: https://data.mendeley.com/datasets/tkf74fy9wh (accessed on 4 May 2022).
- Campos, R.M.; Gramcianinov, C.B.; de Camargo, R.; da Silva Dias, P.L. Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. Remote Sens. 2022, 14, 4918. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Zhang, J.A.; Uhlhorn, E.W.; He, Y. High-resolution hurricane vector winds from C-band dual-polarization SAR observations. J. Atmos. Ocean. Technol. 2014, 31, 272–286. [Google Scholar] [CrossRef]
- Chou, K.H.; Wu, C.C.; Lin, S.Z. Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J. Geophys. Res. Atmos. 2013, 118, 9011–9021. [Google Scholar] [CrossRef]
- Tamizi, A.; Young, I.R.; Ribal, A.; Alves, J.H. Global scatterometer observations of the structure of tropical cyclone wind fields. Mon. Weather Rev. 2020, 148, 4673–4692. [Google Scholar] [CrossRef]
- Holland, G.J.; Belanger, J.I.; Fritz, A. A revised model for radial profiles of hurricane winds. Mon. Weather Rev. 2010, 138, 4393–4401. [Google Scholar] [CrossRef]
- Ribal, A.; Tamizi, A.; Young, I.R. Calibration of scatterometer wind speed under hurricane conditions. J. Atmos. Ocean. Technol. 2021, 38, 1859–1870. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Ocean 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Vogelzang, J.; Stoffelen, A.; Verhoef, A.; De Vries, J.; Bonekamp, H. Validation of two-dimensional variational ambiguity removal on SeaWinds scatterometer data. J. Atmos. Ocean Technol. 2009, 26, 1229–1245. [Google Scholar] [CrossRef]
- Vogelzang, J. Estimation of Background Error Correlation Functions; Technical Report, NWPSAF-KN-TR-023 Version 1.0; KNMI: De Bilt, The Netherlands, 2014. [Google Scholar]
- Vogelzang, J.; Stoffelen, A. Improvements in Ku-band scatterometer wind ambiguity removal using ASCAT-based empirical background error correlations. Q. J. R. Meteorol. Soc. 2018, 144, 2245–2259. [Google Scholar] [CrossRef]
- Isaksen, L.; Stoffelen, A. ERS scatterometer wind data impact on ECMWF’s tropical cyclone forecasts. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1885–1892. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, X.; Zhang, W.; Duan, B.; Cao, X.; Leng, H. Assimilation of sentinel-1 derived sea surface winds for typhoon forecasting. Remote Sens. 2017, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Duong, Q.P.; Langlade, S.; Payan, C.; Husson, R.; Mouche, A.; Malardel, S. C-band SAR Winds for Tropical Cyclone monitoring and forecast in the South-West Indian Ocean. Atmosphere 2021, 12, 576. [Google Scholar] [CrossRef]
- CSA. RadarSat-2. 2021. Available online: https://www.asc-csa.gc.ca/eng/satellites/radarsat2/what-is-radarsat2.asp. (accessed on 4 May 2022).
- ESA. Sentinel-1. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Introducing_Sentinel-1/ (accessed on 4 May 2022).
- Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M. Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmos. Meas. Tech. 2014, 7, 437–449. [Google Scholar] [CrossRef]
- Zhang, G.; Perrie, W.; Li, X.; Zhang, J.A. A hurricane morphology and sea surface wind vector estimation model based on C-band cross-polarization SAR imagery. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1743–1751. [Google Scholar] [CrossRef]
- Zhang, B.; Mouche, A.A.; Perrie, W. First Quasi-Synchronous Hurricane Quad-Polarization Observations by C-Band Radar Constellation Mission and RADARSAT-2. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Li, X. The first Sentinel-1 SAR image of a typhoon. Acta Oceanol. Sin. 2015, 34, 1–2. [Google Scholar] [CrossRef]
- OSI SAF/EARS Winds Team. ASCAT Wind Product User Manual. Version 1.16. 2019. Available online: https://scatterometer.knmi.nl/publications/pdf/ASCAT_Product_Manual.pdf (accessed on 4 May 2022).
- Lin, W.; Portabella, M.; Stoffelen, A.; Vogelzang, J.; Verhoef, A. On mesoscale analysis and ASCAT ambiguity removal. Q. J. R. Meteorol. Soc. 2016, 142, 1745–1756. [Google Scholar] [CrossRef] [Green Version]
- Rémy, S.; Kipling, Z.; Flemming, J.; Boucher, O.; Nabat, P.; Michou, M.; Bozzo, A.; Ades, M.; Huijnen, V.; Benedetti, A.; et al. Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1). Geosci. Model Dev. 2019, 12, 4627–4659. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, J.A.; Yang, X.; Pichel, W.G.; DeMaria, M.; Long, D.; Li, Z. Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull. Am. Meteorol. Soc. 2013, 94, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Klotz, B.W.; Uhlhorn, E.W. Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Ocean Technol. 2014, 31, 2392–2408. [Google Scholar] [CrossRef]
- Holbach, H.M.; Uhlhorn, E.W.; Bourassa, M.A. Off-Nadir SFMR brightness temperature measurements in high-wind conditions. J. Atmos. Ocean Technol. 2018, 35, 1865–1879. [Google Scholar] [CrossRef]
- Bucci, L.R.; O’handley, C.; Emmitt, G.D.; Zhang, J.A.; Ryan, K.; Atlas, R. Validation of an airborne Doppler wind lidar in tropical cyclones. Sensors 2018, 18, 4288. [Google Scholar] [CrossRef] [Green Version]
- Combot, C.; Mouche, A.; Knaff, J.; Zhao, Y.; Zhao, Y.; Vinour, L.; Quilfen, Y.; Chapron, B. Extensive high-resolution synthetic aperture radar (SAR) data analysis of tropical cyclones: Comparisons with SFMR flights and best track. Mon. Weather Rev. 2020, 148, 4545–4563. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Perrie, W.; Zhang, J.A. Tropical cyclone winds and inflow angle asymmetry from SAR imagery. Geophys. Res. Lett. 2021, 48, e2021GL095699. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, X.; Han, B.; Mansaray, L.R.; Guo, Q.; Huang, J. The influence of different spatial resolutions on the retrieval accuracy of sea surface wind speed with C-2PO models using full polarization C-band SAR. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5015–5025. [Google Scholar] [CrossRef]
- Mouche, A.; Chapron, B. Global C-Band Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization. J. Geophys. Res. Ocean 2015, 120, 7195–7207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Huang, J.; Mansaray, L.R.; Guo, Q.; Wang, X. Developing a subswath-based wind speed retrieval model for Sentinel-1 VH-polarized SAR data over the ocean surface. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1561–1572. [Google Scholar] [CrossRef]
- Stoffelen, A.; Vogelzang, J. Wind Bias Correction Guide; EUMETSAT: Darmstadt, Germany, 2018; Volume 540. [Google Scholar]
- Bentamy, A.; Mouche, A.; Grouazel, A.; Moujane, A.; Mohamed, A.A. Using sentinel-1A SAR wind retrievals for enhancing scatterometer and radiometer regional wind analyses. Int. J. Remote Sens. 2019, 40, 1120–1147. [Google Scholar] [CrossRef]
- Hasager, C.B.; Hahmann, A.N.; Ahsbahs, T.; Karagali, I.; Sile, T.; Badger, M.; Mann, J. Europe’s offshore winds assessed with synthetic aperture radar, ASCAT and WRF. Wind Energy Sci. 2020, 5, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Gade, M.; Stoffelen, A. An introduction to microwave remote sensing of the Asian Seas. In Remote Sensing of the Asian Seas; Springer: Cham, Switzerland, 2019; pp. 81–101. [Google Scholar]
- ECMWF. IFS Documentation CY47R1—Part III: Dynamics and Numerical Procedures. 2020. Available online: https://www.ecmwf.int/node/19747 (accessed on 4 May 2022).
- Bidlot, J.-R.; Prates, F.; Ribas, R.; Mueller-Quintino, A.; Crepulja, M.; Vitart, F. Enhancing Tropical Cyclone Wind Forecasts. 2020. Available online: https://www.ecmwf.int/en/newsletter/164/meteorology/enhancing-tropical-cyclone-wind-forecasts (accessed on 4 May 2022).
- Vogelzang, J.; Stoffelen, A. Triple collocation. In EUTMETSAT Report; KNMI: De Bilt, The Netherlands, 2012. [Google Scholar]
- Lin, W.; Portabella, M.; Stoffelen, A.; Vogelzang, J.; Verhoef, A. ASCAT wind quality under high subcell wind variability conditions. J. Geophys. Res. Ocean 2015, 120, 5804–5819. [Google Scholar] [CrossRef] [Green Version]
- Hoareau, N.; Portabella, M.; Lin, W.; Ballabrera-Poy, J.; Turiel, A. Error characterization of sea surface salinity products using triple collocation analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5160–5168. [Google Scholar] [CrossRef]
- Vogelzang, J.; Stoffelen, A.; Verhoef, A.; Figa-Saldaña, J. On the quality of high-resolution scatterometer winds. J. Geophys. Res. Ocean 2011, 116, C10033. [Google Scholar] [CrossRef] [Green Version]
- Vogelzang, J.; Stoffelen, A. Quadruple Collocation Analysis of In-Situ, Scatterometer, and NWP Winds. J. Geophys. Res. Ocean 2021, 126, e2021JC017189. [Google Scholar] [CrossRef]
- Vogelzang, J.; Stoffelen, A.; Lindsley, R.D.; Verhoef, A.; Verspeek, J. The ASCAT 6.25-km wind product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2321–2331. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Pichel, W.G.; Li, Z. Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4743–4750. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Cross-polarized Synthetic Aperture Radar: A new potential measurement technique for Hurricanes. Bull. Am. Meteorol. Soc. 2012, 93, 531–541. [Google Scholar] [CrossRef]
No. | TC Name | Acquisition Time | Cyclone Location | TC Centre | Category |
---|---|---|---|---|---|
1 | KARL | 2016-09-23 | ATL | (65.2°W, 31.1°N) | 1 |
2 | DUMAZILE | 2018-03-08 | IND | (57.6°E, 29.4°S) | TS |
3 | JONGDARI | 2018-07-24 | WPA | (137.2°E, 21.1°N) | 1 |
4 | HECTOR | 2018-08-07 | EPA | (147.9°W, 16.1°N) | 4 |
5 | SOULIK | 2018-08-18 | WPA | (140.1°E, 24.8°N) | 2 |
6 | MIRIAM | 2018-08-29 | EPA | (139.2°W, 14.0°N) | 1 |
7 | BELNA | 2019-12-07 | IND | (47.7°E, 9.3°S) | 1 |
8 | MINDULLE | 2021-09-25 | WPA | (137.0°E, 18.6°N) | 4 |
9 | MALOU | 2021-10-26 | WPA | (139.1°E, 20.7°N) | 2 |
Wind Speed Regime | Operation | SAR | ASCAT | ECMWF | Representativeness Error () |
---|---|---|---|---|---|
≤14 m/s | Not Adjusted 1 | 1.43 | 0.76 | 1.45 | 0.36 |
>14 m/s | Upscale 2 | 2.52 (−0.29) | 1.47 (−0.28) | 2.53 (−0.30) | 0.24 (+0.02) |
Downscale 3 | 1.63 (−1.18) | 1.01 (−0.74) | 1.65 (−1.18) | 0.05 (−0.17) | |
Not Adjusted | 2.81 | 1.75 | 2.83 | 0.22 | |
Overall Dataset | Upscale | 1.83 (−0.16) | 1.06 (−0.12) | 1.83 (−0.17) | 0.36 (−0.24) |
Downscale | 1.49 (−0.50) | 0.85 (−0.33) | 1.51 (−0.49) | 0.24 (−0.36) | |
Not Adjusted | 1.99 | 1.18 | 2.00 | 0.60 |
Year | S1-A | S1-B | RS-2 | Sum of Tracks |
---|---|---|---|---|
2014 | 2 | 0 | 8 | 10 |
2015 | 0 | 0 | 12 | 12 |
2016 | 10 | 2 | 5 | 17 |
2017 | 9 | 5 | 9 | 23 |
2018 | 8 | 9 | 10 | 27 |
2019 | 23 | 5 | 2 | 30 |
2020 | 13 | 13 | 17 | 43 |
2021 | 0 | 1 | 2 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, W.; Stoffelen, A.; Ren, K.; Yang, X.; Vogelzang, J. SAR and ASCAT Tropical Cyclone Wind Speed Reconciliation. Remote Sens. 2022, 14, 5535. https://doi.org/10.3390/rs14215535
Ni W, Stoffelen A, Ren K, Yang X, Vogelzang J. SAR and ASCAT Tropical Cyclone Wind Speed Reconciliation. Remote Sensing. 2022; 14(21):5535. https://doi.org/10.3390/rs14215535
Chicago/Turabian StyleNi, Weicheng, Ad Stoffelen, Kaijun Ren, Xiaofeng Yang, and Jur Vogelzang. 2022. "SAR and ASCAT Tropical Cyclone Wind Speed Reconciliation" Remote Sensing 14, no. 21: 5535. https://doi.org/10.3390/rs14215535
APA StyleNi, W., Stoffelen, A., Ren, K., Yang, X., & Vogelzang, J. (2022). SAR and ASCAT Tropical Cyclone Wind Speed Reconciliation. Remote Sensing, 14(21), 5535. https://doi.org/10.3390/rs14215535