Time-Series FY4A Datasets for Super-Resolution Benchmarking of Meteorological Satellite Images
<p>REGC range from the FY4A AGRI 105<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> scan (marked within the rectangle box).</p> "> Figure 2
<p>Image patches from the FY4ASRcolor dataset.</p> "> Figure 3
<p>Structure of enhanced deep residual networks (EDSR).</p> "> Figure 4
<p>Blocks in EDSR.</p> "> Figure 5
<p>Structure of dual regression networks (DRN).</p> "> Figure 6
<p>Blocks in DRN.</p> "> Figure 7
<p>Structure of the efficient non-local contrastive attention (ENLCA) network.</p> "> Figure 8
<p>Blocks in ENLCA.</p> "> Figure 9
<p>Structure of adaptive target generator (AdaTarget).</p> "> Figure 10
<p>Structure of scale-arbitrary super-resolution (ArbRCAN).</p> "> Figure 11
<p>Blocks in ArbRCAN.</p> "> Figure 12
<p>Processing steps for the two datasets.</p> "> Figure 13
<p>Local manifestation of the super-resolution results on the FY4ASRcolor dataset: Patch 1.</p> "> Figure 14
<p>Local manifestation of the super-resolution results on the FY4ASRcolor dataset: Patch 2.</p> "> Figure 15
<p>Local manifestation of the super-resolution results on the FY4ASRcolor dataset: Patch 3.</p> "> Figure 16
<p>Local manifestation of the super-resolution results on the FY4ASRcolor dataset: Patch 4.</p> ">
Abstract
:1. Introduction
- (1)
- We present two medium-resolution remote sensing datasets that are the first meteorological datasets and are almost temporally continuous.
- (2)
- We validate the performance bounds of existing single-image super-resolution algorithms on the datasets to provide the baseline for performance improvement.
2. Proposed FY4ASRgray and FY4ASRcolor Datasets
3. Experimental Scheme
3.1. Methods for Validation
3.2. Training and 16-bit Preprocessing
3.3. Metrics
4. Experimental Results
4.1. Visual Comparison
4.2. Digital Comparison
5. Discussion
5.1. Sequence Super-Resolution
5.2. Spatiotemporal Fusion
5.3. Generalization of Trained Models across Datasets
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, J.; Huang, Y.; Lu, K.; Wang, L. Nonlocal Low-Rank-Based Compressed Sensing for Remote Sensing Image Reconstruction. IEEE Geosci. Remote. Sens. Lett. 2016, 13, 1557–1561. [Google Scholar] [CrossRef]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Young, P.; Lai, A.; Hodosh, M.; Hockenmaier, J. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. TACL 2014, 2, 67–78. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, D.; Chen, H.; Liao, Z.; Zhu, J.; Li, C.; Wook Baik, S. An omni-scale global-local aware network for shadow extraction in remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 2022, 193, 29–44. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, D.; Chen, H.; Liu, Z.; Mao, W.; Zhu, J.; Hu, Y.; Baik, S.W. Damaged Building Detection From Post-Earthquake Remote Sensing Imagery Considering Heterogeneity Characteristics. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, D.; Shen, X.; Liu, Y.; Zhu, J.; Hussain, T.; Baik, S.W. Clustering Feature Constraint Multiscale Attention Network for Shadow Extraction From Remote Sensing Images. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Lei, Z.; Zeng, Y.; Liu, P.; Su, X. Active deep learning for hyperspectral image classification with uncertainty learning. IEEE Geosci. Remote. Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Ma, A.; Lu, X.; Zhong, Y. LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, Virtual, 6–14 December 2021; Vanschoren, J., Yeung, S., Eds.; Volume 1. [Google Scholar]
- Chen, B.; Feng, Q.; Niu, B.; Yan, F.; Gao, B.; Yang, J.; Gong, J.; Liu, J. Multi-modal fusion of satellite and street-view images for urban village classification based on a dual-branch deep neural network. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102794. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Yan, Z.; Xu, F.; Wang, R.; Diao, W.; Chen, J.; Li, J.; Feng, Y.; Xu, T.; et al. FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 2022, 184, 116–130. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, S.; Saeedi, P. Cloud-Net: An End-To-End Cloud Detection Algorithm for Landsat 8 Imagery. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1029–1032. [Google Scholar]
- Mohajerani, S.; Saeedi, P. Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery Via Filtered Jaccard Loss Function and Parametric Augmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 4254–4266. [Google Scholar] [CrossRef]
- Ji, S.; Dai, P.; Lu, M.; Zhang, Y. Simultaneous Cloud Detection and Removal From Bitemporal Remote Sensing Images Using Cascade Convolutional Neural Networks. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 732–748. [Google Scholar] [CrossRef]
- Gao, Y.; Guan, J.; Zhang, F.; Wang, X.; Long, Z. Attention-Unet-Based Near-Real-Time Precipitation Estimation from Fengyun-4A Satellite Imageries. Remote. Sens. 2022, 14, 2925. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, J.; Tang, W.; Tang, R. Explicit and stepwise models for spatiotemporal fusion of remote sensing images with deep neural networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102611. [Google Scholar] [CrossRef]
- Wei, J.; Yang, H.; Tang, W.; Li, Q. Spatiotemporal-Spectral Fusion for Gaofen-1 Satellite Images. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, P.; Li, J.; Wang, L.; He, G. Remote Sensing Data Fusion With Generative Adversarial Networks: State-of-the-art methods and future research directions. IEEE Geosci. Remote. Sens. Mag. 2022, 10, 295–328. [Google Scholar] [CrossRef]
- Zhu, S.; Ma, Z. Does AGRI of FY4A Have the Ability to Capture the Motions of Precipitation? IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, M.; Wang, M.; Hong, D.; Yu, L.; Wang, J.; Gong, P.; Huang, X. Enhanced resolution of FY4 remote sensing visible spectrum images utilizing super-resolution and transfer learning techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2022, 15, 1–9. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu, Y.; Tan, M. Closed-Loop Matters: Dual Regression Networks for Single Image Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5406–5415. [Google Scholar]
- Xia, B.; Hang, Y.; Tian, Y.; Yang, W.; Liao, Q.; Zhou, J. Efficient Non-local Contrastive Attention for Image Super-resolution. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 2759–2767. [Google Scholar]
- Jo, Y.; Wug Oh, S.; Vajda, P.; Joo Kim, S. Tackling the Ill-Posedness of Super-Resolution through Adaptive Target Generation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16231–16240. [Google Scholar]
- Wang, L.; Wang, Y.; Lin, Z.; Yang, J.; An, W.; Guo, Y. Learning A Single Network for Scale-Arbitrary Super-Resolution. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 4781–4790. [Google Scholar]
- Ranchin, T.; Wald, L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation. Photogramm. Eng. Remote. Sens. 2000, 66, 49–61. [Google Scholar]
- Du, Q.; Younan, N.H.; King, R.; Shah, V.P. On the Performance Evaluation of Pan-Sharpening Techniques. IEEE Geosci. Remote. Sens. Lett. 2007, 4, 518–522. [Google Scholar] [CrossRef]
- Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. A Global Quality Measurement of Pan-Sharpened Multispectral Imagery. IEEE Geosci. Remote. Sens. Lett. 2004, 1, 313–317. [Google Scholar] [CrossRef]
- Lyu, W.; Lu, W.; Ma, M. No-reference quality metric for contrast-distorted image based on gradient domain and HSV space. J. Vis. Commun. Image Represent. 2020, 69, 102797. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Venkatanath, N.; Praneeth, D.; Bh, M.C.; Channappayya, S.S.; Medasani, S.S. Blind image quality evaluation using perception based features. In Proceedings of the 2015 Twenty First National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015; pp. 1–6. [Google Scholar]
- Xiang, X.; Tian, Y.; Zhang, Y.; Fu, Y.; Allebach, J.P.; Xu, C. Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3370–3379. [Google Scholar]
- Gu, J.; Sun, X.; Zhang, Y.; Fu, K.; Wang, L. Deep Residual Squeeze and Excitation Network for Remote Sensing Image Super-Resolution. Remote. Sens. 2019, 11, 1817. [Google Scholar] [CrossRef]
PSNR | RMSE | SSIM | Corr | BRISQUE | B | PIQE | |
---|---|---|---|---|---|---|---|
AdaTarget | 30.889 | 7.359 | 0.923 | 0.961 | 48.662 | 5.175 | 76.970 |
ArbRCAN | 31.887 | 6.658 | 0.931 | 0.964 | 51.222 | 5.330 | 82.094 |
DRN | 32.098 | 6.481 | 0.936 | 0.971 | 50.181 | 5.104 | 76.836 |
EDSR | 31.924 | 6.618 | 0.934 | 0.966 | 51.880 | 5.575 | 86.715 |
ENLCA | 31.734 | 6.734 | 0.933 | 0.967 | 50.007 | 5.526 | 87.142 |
PSNR | RMSE | SSIM | Corr | BRISQUE | NIQE | PIQE | |
---|---|---|---|---|---|---|---|
AdaTarget | 32.936 | 5.845 | 0.949 | 0.974 | 55.277 | 5.321 | 69.261 |
ArbRCAN | 32.020 | 6.525 | 0.934 | 0.969 | 52.239 | 5.695 | 85.274 |
DRN | 32.678 | 6.036 | 0.945 | 0.973 | 56.544 | 5.305 | 73.763 |
EDSR | 32.707 | 6.008 | 0.947 | 0.974 | 57.697 | 6.064 | 87.603 |
ENLCA | 32.907 | 5.874 | 0.949 | 0.974 | 58.092 | 6.112 | 85.989 |
PSNR | SSIM | RMSE | Correlated Coefficient | |||||
---|---|---|---|---|---|---|---|---|
Band1 | Band2 | Band3 | Band1 | Band2 | Band3 | |||
AdaTarget | 29.223 | 0.618 | 116.264 | 158.832 | 166.606 | 0.913 | 0.897 | 0.903 |
ArbRCAN | 28.717 | 0.608 | 123.249 | 170.134 | 175.077 | 0.912 | 0.893 | 0.901 |
DRN | 28.922 | 0.599 | 119.516 | 166.740 | 171.436 | 0.908 | 0.886 | 0.897 |
EDSR | 28.542 | 0.595 | 125.390 | 175.339 | 178.229 | 0.909 | 0.887 | 0.898 |
ENLCA | 28.073 | 0.593 | 131.300 | 183.972 | 185.968 | 0.913 | 0.891 | 0.901 |
SAM | ERGAS | RASE | Q4 | |
---|---|---|---|---|
AdaTarget | 0.079 | 0.261 | 0.253 | 0.903 |
ArbRCAN | 0.078 | 0.263 | 0.255 | 0.901 |
DRN | 0.079 | 0.271 | 0.263 | 0.895 |
EDSR | 0.078 | 0.269 | 0.260 | 0.897 |
ENLCA | 0.078 | 0.269 | 0.260 | 0.900 |
PSNR | SSIM | RMSE | Correlated Coefficient | |||||
---|---|---|---|---|---|---|---|---|
Band1 | Band2 | Band3 | Band1 | Band2 | Band3 | |||
AdaTarget | 37.617 | 0.964 | 51.624 | 64.531 | 61.548 | 0.986 | 0.987 | 0.990 |
ArbRCAN | 37.183 | 0.963 | 53.435 | 68.251 | 64.617 | 0.985 | 0.986 | 0.989 |
DRN | 37.835 | 0.968 | 50.906 | 63.390 | 59.562 | 0.986 | 0.988 | 0.991 |
EDSR | 38.095 | 0.971 | 49.805 | 61.710 | 57.742 | 0.987 | 0.988 | 0.991 |
ENLCA | 37.790 | 0.968 | 51.004 | 63.693 | 59.905 | 0.986 | 0.987 | 0.990 |
SAM | ERGAS | RASE | Q4 | |
---|---|---|---|---|
AdaTarget | 0.045 | 0.094 | 0.092 | 0.987 |
ArbRCAN | 0.047 | 0.099 | 0.097 | 0.986 |
DRN | 0.044 | 0.092 | 0.090 | 0.988 |
EDSR | 0.043 | 0.089 | 0.088 | 0.988 |
ENLCA | 0.044 | 0.092 | 0.090 | 0.988 |
Pre-Trained | Re-Trained with FY4ASRcolor | |||
---|---|---|---|---|
<5% Allowed | <15% Allowed | <5% Allowed | <15% Allowed | |
AdaTarget | 8.17% | 27.08% | 42.97% | 77.98% |
ArbRCAN | 9.32% | 25.87% | 45.52% | 77.25% |
DRN | 9.82% | 28.36% | 46.46% | 79.69% |
EDSR | 10.01% | 30.59% | 46.75% | 81.13% |
ENLCA | 10.06% | 28.97% | 46.60% | 79.85% |
AdaTarget | ArbRCAN | DRN | EDSR | ENCLA | ||
---|---|---|---|---|---|---|
denseres- | pre-train | 26.0674 | 28.6735 | 28.9303 | 28.4478 | 24.4844 |
idential91 | re-train | 21.8658 | 23.1110 | 23.0275 | 22.8833 | 21.8143 |
railways- | pre-train | 19.8586 | 20.1817 | 19.4924 | 19.2759 | 20.0070 |
tation565 | re-train | 17.2072 | 16.7615 | 15.8631 | 16.1601 | 17.2335 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zhou, C.; Wang, J.; Chen, Z. Time-Series FY4A Datasets for Super-Resolution Benchmarking of Meteorological Satellite Images. Remote Sens. 2022, 14, 5594. https://doi.org/10.3390/rs14215594
Wei J, Zhou C, Wang J, Chen Z. Time-Series FY4A Datasets for Super-Resolution Benchmarking of Meteorological Satellite Images. Remote Sensing. 2022; 14(21):5594. https://doi.org/10.3390/rs14215594
Chicago/Turabian StyleWei, Jingbo, Chenghao Zhou, Jingsong Wang, and Zhou Chen. 2022. "Time-Series FY4A Datasets for Super-Resolution Benchmarking of Meteorological Satellite Images" Remote Sensing 14, no. 21: 5594. https://doi.org/10.3390/rs14215594
APA StyleWei, J., Zhou, C., Wang, J., & Chen, Z. (2022). Time-Series FY4A Datasets for Super-Resolution Benchmarking of Meteorological Satellite Images. Remote Sensing, 14(21), 5594. https://doi.org/10.3390/rs14215594